Chapter 1 section 4

Transpiration & Water Loss

Water Loss

- Typically, 90 to 95% of a commodity is water.
 Milk has more solids than watermelon (weight basis).
- Besides resulting in direct loss of salable weight, it is also an important source of quality loss.
 - Appearance quality wilting, shriveling, accelerated development of injuries.
 Textural quality loss of crisphess, juiciness, etc.
 - Textural quality- loss of crispness, juiciness, etc.
 Nutritional quality- e.g. vitamins A & C.
- Thus, managing water content of commodities is critically important.

% Water Loss	Potential Effects	
0.5	Increased activity of some cell wall enzyme.	
1	Increased carbon dioxide & ethylene production. Faster ripening, yellowing & abscission. Reduce wound healing (periderm formation).	
2	Reduced turgor. Increased ABA content, reduced susceptibility to chilling injury. Accelerated loss of volatiles.	
3	Reduced severity of certain physiological disorders. Loss of membrane integrity.	
4	Faster loss of vitamins A & C. Loss of flavor. Discoloration of mechanical injuries.	
5	Loss of color intensity & gloss. Accentuation of pitting associated with chilling injury. Wilting & shrivelling.	
6	Loss of textural quality, e.g., softening limpness, flaccidity, & loss of crispness & juiciness.	

Percent water loss that results in unmarketability

Commodity	% Loss
Asparagus	8
Brussels sprouts	8
Cabbage	7
Celery	5
Lettuce	3
Spinach	3

Effect of Water Loss

- Physical Effects.
- Economic Effects.
- Physiological Effects.

Effects of Water Loss

Physical Effects.

- Reduced turgor pressure from as little as 2% water loss →
 - ■Wilting & flaccidity of vegetables.
 - Shriveling and wrinkling of fruit.
- Shriking produce within a package allows it to move /vibrate during transport = damage

Effects of Water Loss

- Economic Effects.
 - Reduced quality /grade of a commodity reduces its value.
 - Commodities are often sold on a weight basis.
 ■Less weight = lower price.

Effects of Water Loss

- Physiological Effects. (% water loss)
 - Beneficial
 - Reduced symptoms of some physiological disorders (~3%).

Effects of Water Loss

Physiological Effects. (% water loss)

- Detrimental
 - Increased respiration & ethylene production (1%)
 Reduced periderm formation in some roots and tubers (1%)
 - Faster ripening, yellowing & senescence (1%)
 - Accelerated reduction in volatiles (2%).
 - ■Faster loss of vitamins A & C (4%).
 - ■Stem end rind breakdown (?%).

甜菜组织脱水同水解酶活性的关系

	活组织中庭	with Arts of the sales			
试验材料	合成	水解	合成/水解率	醉醉程度	
新鲜甜菜	29.8	2.8	10.64	4.3	
脱水6.5%的甜菜	27.0	4.5	6.0	9.6	
脱水15%的甜菜	19.4	6.1	2.4	10.6	

安焉八	的仁平的影响
萎蔫程度	腐烂率(%)
新鲜材料	_
失水7%	37.2
失水13%	55.2
失水17%	65.8
失水28%	96.0

一些蔬菜贮藏中的自然损耗率(%)

	贮藏 天数			
仲央	1d	4d	10d	
油菜	14	33	—	
续表2-11				
菠菜	24.2	—	—	
莴苣	18.7	—	—	
黄瓜	4.2	10.5	18.0	
茄子	6.7	10.5	—	
番茄	_	6.4	9.2	
马铃薯	4.0	4.0	6.0	
洋葱	1.0	4.0	4.0	
胡萝卜	1.0	9.5	_	

水果种类	温度 (℃)	相对湿度 (%)	贮藏时间 (周)	失重率 (%)
香蕉	12.8~15.6	85~90	4	6.2
伏令夏橙	4.4~6.1	88~92	5~6	12.0
甜橙(暗柳)	20	85	1	4.0
番石榴	8.3~10.0	85~90	2~5	14.0
荔枝	约30	80~85	1	15~20
芒果	7.2~10.0	85~90	2.5	6.2
波萝	8.3~10.0	85~90	4~6	4.0

Water - The molecule

Polar molecule.

- O atom partially negative.- 2H atoms partially positive.
- Overall neutral molecule.
- Water's polarity is responsible for many of its unique properties.
- Water has one of the highest Dielectric Constants (a measure of a molecule's polarity).

H-bonding

- Polarity gives rise to Hydrogen Bonds.
- H-bonding = the weak electrostatic attraction between partially (+) charged "H" and partially (-) charged "O".
 - Besides water, H-bonds can also form between other molecules with other electronegative atoms (O or N).

Properties of Water

- High Specific Heat (S.H.) (1 kcal/kg/°C)
 - Lots of energy required to raise the temperature of water 1 °C
- High Thermal Conductivity (T.C) (5.2 kcal/kg/h/ °C)
 - Water rapidly conducts heat away from the point of application.
 - Disperses heat quickly (reason for effectiveness for hydro-cooling).

High S.H. & T.C.

- Results In:
 - Heat energy absorbed /distributed without increase in temperature.
 - -Temperature stability.
 - -Prevention of localized overheating.

Properties of Water

■ High heat of vaporization (540 kcal/kg/°C)

- Water that evaporates (transpiration) absorbs a great deal of heat → cools the plant tissue.
- High heat of fusion (80 kcal/kg).
 - When water goes from a liquid to a solid, it releases heat energy. Principal behind freeze protection.
 - From solid to liquid, water absorbs energy. Added benefit for top-icing.

Liquid – Gas Equilibrium

Psychrometrics

- Humidity Ration (HR):
 - -Vertical axis on right.
 - Shows the moisture content of the air (=water content mass of water per mass of air)
 - Also called the mixing ration or absolute humidity.
 - ■Water vapor is often only = 0.4 to 1.5% of the weight of air.

Liquid - Gas Equilibrium

Psychrometrics

- Dry-bulb temperature: – Horizontal axis
- Wet-bulb temperature:
 - Diagonal lines sloping upward from right to left.

Liquid - Gas Equilibrium

Psychrometrics

- Vapor pressure:
 - Not usually shown on psychrometric charts but is directly proportional to humidity ratio.
 - VP=<u>HR * (Atmospheric Pressure in Pa)</u>

0.622

 Shows the partial pressure of water vapor in the air (in mm or inches of mercury (Hg)).

Liquid - Gas Equilibrium

Psychrometrics

- Dew-point temperature:
 - Where the horizontal lines intersect the wetbulb temperature line.
- Relative humidity (RH):
 - Curves sloping upward from left to right.
 - Corresponds to the ratio of actual water content of the air to the maximum water content at a given temperature.

Liquid – Gas Equilibrium

Abbreviations

- RH = Relative humidity.
- VP = Vapor pressure.
- SVP = Saturated vapor pressure (100% relative humidity).

 $\mathsf{RH} = \frac{\mathsf{VP} \times 100}{\mathsf{SVP}}$

Liquid - Gas Equilibrium

Key concepts

- Air water content (vapor pressure or humidity ratio) increases rapidly with increasing temperature.
 - Warm air can hold more water than cold air.

Liquid - Gas Equilibrium

Key concepts

- When warm, moist air is cooled, RH increases until it reaches its dew-point.
- Air cooled below its dew-point begins to loose water as condensation.

Liquid – Gas Equilibrium

Key concepts

- Placing a cold commodity in a warm room with moist air, cools the air that contacts the commodity to below the dew-point.
 - Condensation will form on the commodity surface ("sweating").

Liquid - Gas Equilibrium

Key concepts

- Placing a warm commodity in room with cold, moist air will warm the air contacting the commodity and reduce the humidity around the commodity.
 - Increased water loss until the commodity is cooled.
- Delayed cooling results in greater water loss.

Liquid - Gas Equilibrium

Transpiration

- The rate of water diffusion between two points is related to the concentration gradient.
 - Greater concentration (or vapor pressure) difference = faster diffusion rate (stronger driving force).
 - VPD (vapor pressure difference) is the driving force of water movement.

Liquid – Gas Equilibrium

Transpiration

- VPD = SVP_{tissue} VP _{air}
- SVP tissue =Saturation vapor pressure of the air at a given temperature.
 Air within a commodity is nearly saturated (no less than 95%, usually estimated at 100%)
- VP _{air} = Vapor pressure of the air at a given temperature, pressure & RH.

Liquid - Gas Equilibrium

Transpiration

- For each commodity, the rate of water loss (J) = VPD * K
- K=proportionality constant.
 Depends on different features of the commodity.

Sample Questions

- Calculating RH, dew-point, vapor pressure (humidity ratio) based on wet-bulb & drybulb measurements.
- How do these change when air is warmed and cooled. When does air loose water or dry commodities out?
- What happens when air moves over refrigeration coils.
- Boundary air layer effects of wraps, packaging, and air speed.

Factors Affecting Water Loss

Commodity factors.

- -Surface to volume ratio.
- -Routes of water loss.
 - Epidermal cells vs. periderm & other cells.

■Structure of the surface.

- Stomates Curticular waxes
- Lenticels Trichomes
- Surface imperfections Architecture

表: 部分果詞	蔬的表面积比(W.G. Burton,
表面积/体积	果蔬种类
50~100	食用叶菜
10~15	较小的软果实
5~10	较小的果实
	豆类果实、坚果(椰子除
	外)、葱、大个软果实(草
2~5	莓)、大黄
	块根、块茎、仁果、柑桔类
	、香蕉、洋葱、葫芦科果实
0.5~1.5	(南瓜除外)
0.2~0.5	萝卜、山药、芜菁、椰子

Factors Affecting Water Loss

- Commodity factors (continued)
 - Physiological state of the commodity.
 ■Stage of maturity or stage of ripeness.
 - -Cultivar.
 - Cultural conditions.
 Weather or growing practices.

洋葱和马铃薯的贮藏失重比较

蔬菜种类	含水量(%)	在 0℃下贮藏3 个月的失重 (%)
洋葱	86.3	1.1
马铃薯	73.0	2.5

Factors Affecting Water Loss

Environmental factors.

-Humidity.

- ■Lower humidity ==> greater VPD → greater water loss
- -Diffusion shells and air velocity.
 - Outside the epidermis, there is a thin layer of air that maintains high humidity ("diffusion shell"). Surface features (e.g. hairs) strongly influence the thickness of this shell.
 - ■Faster air flow ==> decreases thickness of the diffusion shell → increases water loss.

Factors Affecting Water Loss

- Environmental factors (continued).
 - -Temperature
 - ■Higher temperatures ==> generally greater VPD → greater water loss.
 - -Atmospheric pressure
 - Lower pressures (high altitudes) increases water loss.

Reducing Water Loss

Commodity Treatment

Addition of water to some commodities (e.g., cut flowers, potted plants).

Reducing Water Loss

Commodity Treatment

- Careful handling.
 - Injury and punctured surfaces greatly increase water loss.
 - Proper temperature, R.H., packaging, etc.

Reducing Water Loss

Commodity Treatment

Rapid cooling & keeping cold.

Reducing Water Loss

Commodity Treatment

Curing of certain root, bulb, and tuber vegetables.

Reducing Water Loss

Commodity Treatment

Waxing and other surface coatings.

Reducing Water Loss

- **Commodity Treatment**
- Use of plastic films (wraps) that act as moisture barriers.

Reducing Water Loss

Commodity Treatment

- Packaging.
- Polyethylene or plastic liners.
 - Wood or plain fibreboard boxes can absorb water.

Reducing Water Loss

Manipulating the Environment

- Addition of moisture to the air (humidifiers).
- Minimizing air movement around the commodity & reducing room air exchanges.
- Maintaining temperature of refrigeration coils within 1 °C of the air temperature. – Larger evaporator coils ?

Reducing Water Loss

Manipulating the Environment

- Moisture barriers, e.g.
 - In the walls of storage rooms and transport vehicles.
 - Polyethylene liners or curtains within shipping containers.
 - Polymeric films for packaging produce.
- Wet the floor in storage rooms.

Reducing Water Loss

Manipulating the Environment

Use crushed ice in shipping containers and in retail display of commodities that tolerate direct contact with ice.

Reducing Water Loss

Manipulating the Environment

- Sprinkle produce with water during retail marketing.
 - Can be used on leafy vegetables, coolseason root vegetables, and immature fruit-vegetables (e.g., snap beans, peas, sweet corn, and summer squash).