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ABSTRACT:

The development of Mobile Mapping systems over the last decades allowed to quickly collect georeferenced spatial measurements by
means of sensors mounted on mobile vehicles. Despite the large number of applications that can potentially take advantage of such
systems, because of their cost their use is currently typically limited to certain specialized organizations, companies, and Universities.
However, the recent worldwide diffusion of powerful mobile devices typically embedded with GPS, Inertial Navigation System (INS),
and imaging sensors is enabling the development of small and compact mobile mapping systems.
More specifically, this paper considers the development of a 3D reconstruction system based on photogrammetry methods for smart-
phones (or other similar mobile devices). The limited computational resources available in such systems and the users’ request for real
time reconstructions impose very stringent requirements on the computational burden of the 3D reconstruction procedure.
This work takes advantage of certain recently developed mathematical tools (incremental singular value decomposition) and of pho-
togrammetry techniques (structure from motion, Tomasi–Kanade factorization) to access very computationally efficient Euclidian 3D
reconstruction of the scene.
Furthermore, thanks to the presence of instrumentation for localization embedded in the device, the obtained 3D reconstruction can be
properly georeferenced.

1. INTRODUCTION

The developments of photogrammetry during the last decades al-
lowed to obtain high resolution 3D models of the reality from
(quite low cost) camera measurements by means of well known
and typically quite computational demanding signal processing
procedures (data association and structure from motion methods).
Despite some issues (e.g. related to the illumination conditions
of the scene) may occur, the quality of the 3D reconstructions ob-
tained by means of photogrammetry methods are typically com-
parable with those obtained by means of other, more expensive,
sensors.

Nowadays, the world-wide capillary diffusion of low cost mo-
bile cameras and smartphones and the users’ demand for 3D aug-
mented reality systems, possibly quickly obtained by using mo-
bile devices, are motivating the development of computationally
efficient 3D reconstruction methods.

This work deals with the development of a 3D reconstruction sys-
tem based on measurements from an uncalibrated camera, typi-
cally embedded in a (usually low cost) smartphone. In addition,
the goal is to obtain a georeferenced 3D model by exploiting the
measurements of a proper navigation system based on both GPS
and the inertial navigation system of the smartphone.

The main challenge in the development of such 3D reconstruction
systems is the reduction of the computational efforts requested by
classical methods for 3D reconstruction from uncalibrated cam-
eras. Recently, some methods have been proposed in the litera-
ture to reduce such computational effort: most of them are based
on the optimization of bundle adjustment methods, e.g. the use
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of Preconditioned Conjugate Gradients to speed up the bundle ad-
justment optimization (Agarwal et al., 2010, Byröd and Aström,
2010).

Differently from such methods, this work takes advantage of the
Incremental Singular Value Decomposition (ISVD (Brand, 2002))
to obtain a fast factorization of the measurement matrix (Tomasi
and Kanade’s factorization (Tomasi and Kanade, 1992)). This
procedure, which has been recently proposed by Kennedy et al.
(Kennedy et al., 2013), allows to quickly obtain a projective re-
construction of the scene.

This paper proposes the integration of the above factorization al-
gorithm with the information provided by the navigation system
embedded in the device in order to obtain a fast and effective
georeferenced reconstruction of the Euclidian 3D structure of the
scene: thanks to the use of computationally efficient methods, the
overall reconstruction procedure can be executed in real time on
standard mobile devices, e.g. smartphones.

Since the proposed procedure allows to obtain georeferenced 3D
reconstructions, the outcomes of this method can be used both as
reconstructions for an imaging system, and as feedback informa-
tion for the navigation system in order to improve its localization.

2. SYSTEM DESCRIPTION

This work assumes the use of a (typically low cost) mobile de-
vice (e.g. a smartphone). Such device has to be provided of an
imaging sensor (i.e. a camera), and of a navigation system.

The proposed system exploits the embedded camera to estimate
a 3D reconstruction of the scene by means of a Structure from

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-401-2014 401



Motion (SfM) approach (Hartley and Zisserman, 2003, Ma et al.,
2003). The device is moved on several locations, where the user
takes shots of the scene by means of the camera embedded in
the device. 3D reconstruction is accessed by relating with each
others features in shots taken from different point of views.

Nowadays, most of the cameras mounted on standard smarthones
have a resolution of several Mega-pixels, usually sufficient to pro-
vide accurate 3D reconstructions. Hence, the proposed approach
does not impose specific requirements on the camera characteris-
tics.

However, SfM methods allow to reconstruct the scene up to a
scale factor (Hartley and Zisserman, 2003, Fusiello, 2000, Chiuso
et al., 2000), then information on the device position provided by
the navigation system has to be exploited in order to estimate the
unknown scale factor and the georeferenced spatial position. Out-
doors the GPS system can be sufficient to provide estimations of
the device position (Piras et al., 2010), however indoors the GPS
signal is usually not available (or not reliable). In order to allow
position estimation in indoors conditions, the considered device
is assumed to be provided of an INS based on embedded sensors
as well: in particular, the considered smartphone is assumed to be
provided of a 3-axis accelerometer and of a 3-axis magnetome-
ter. Simultaneous measurements by such instruments allow the
estimation of both the movements of the mobile device, and the
attitude of the device during the camera shot.

Information on the position and the attitude of the device can be
exploited in the SfM algorithms as initial conditions for iterative
optimization methods of the parameters, in order to speed up the
convergence. Furthermore, they can be used to reduce the bur-
den of the image processing step by allowing a smart selection of
images to be analyzed in order to find matched features.

Outdoor localization based on the use of the GPS signal can be
considered as a quite standard procedure. Instead, several algo-
rithms have been recently proposed in the literature in order to
access indoor position estimation based on the combined use of
different sensors (Azizyan et al., 2009, Bahl and Padmanabhan,
2000, Cenedese et al., 2010, Foxlin, 2005, El-Sheimy et al., 2006,
Guarnieri et al., 2013, Lukianto and Sternberg, 2011, Masiero et
al., 2013, Ruiz et al., 2012, Youssef and Agrawala, 2005, Wang et
al., 2012, Widyawan et al., 2012). In the procedure described in
the following section it is assumed that estimations of the device
position and attitude are available. In our current implementation
the positioning system is as in (Masiero et al., 2013), however
different choices can be considered without affecting the effec-
tiveness of the procedure.

Our current implementation of the system is on a low cost mobile
phone, shown in Fig. 1. The developed application shall be exe-
cuted on most the Android phones (with the above specifications
on the embedded sensors).

3. ITERATIVE RECONSTRUCTION

The reconstruction procedure is assumed to process data itera-
tively: when a new image shoot is available a new iteration of the
reconstruction procedure starts. Each iteration of the reconstruc-
tion process can be decomposed in the following steps (Fig. 2)
that will be detailed in the following subsections: feature extrac-
tion and matching, projective reconstruction and Euclidian pro-
motion.

Figure 1: Smartphone used to test the reconstruction system:
Huawei U8650 Sonic.

Figure 2: Reconstruction procedure scheme.

3.1 Feature extraction and matching

The considered procedure relies on a feature based approach for
3D reconstruction: the geometry of the scene is reconstructed by
analyzing the position of features from different point of views.
In order to properly estimate the geometry of the scene the same
spatial point has to be recognized and matched in the images
where it is visible. Hence the use of a proper feature extraction
and matching technique is of fundamental importance in order to
ensure the effectiveness of the reconstruction procedure.

Feature extraction and matching here is decomposed in a two
step procedure: first, feature extraction has been implemented by
means of the Affine Scale-Invariant Feature Transform (ASIFT)
(Morel and Yu, 2009): ASIFT provides a method for reliable fea-
ture matching among different images. Feature matching based
on ASIFT is based on the appearance of the 2D images: since
images are taken from different point of views the same feature
can undergo certain appearance changes, the goal of the ASIFT
method is that of extracting features invariant to such deforma-
tions, that are locally modeled as affine transforms.

Despite the ASIFT method is reliable to compensate for local
changes in feature appearance, unfortunately mismatches are un-
avoidable in certain cases, in particular when dealing with repeti-
tive structures, e.g. in human buildings. Then, similarly to (Snavely
et al., 2008), in order to make feature matching more reliable
in such critical conditions, a matching step based on the recon-
structed geometry has been implemented as well. After matching
points between two images through the ASIFT descriptors, the
system use a RANSAC approach (Fischler and Bolles, 1981) to
make a robust feature selection: the system iteratively selects 8
matched points, and, based on them, computes a candidate geom-
etry transformation between the two images (i.e. the fundamental
matrix by using the eight-point algorithm as in (Longuet-Higgins,
1981, Hartley, 1997, Hartley and Zisserman, 2003)). Then, at
each iteration the number of features that are properly matched
by means of the estimated fundamental matrix F is counted: after
the last iteration of the RANSAC algorithm, the matrix F with the
highest number of properly matched features is selected, and the
corresponding properly matched features are considered as prop-
erly associated in the following steps of the procedure (Fig. 3).
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In principle, features detected in a new image should be matched
with the features of all the other frames. However, as the number
of images increases such procedure becomes computationally de-
manding. Several techniques based on different similarity mea-
sures have been previously proposed in the literature to match
features only for “highly correlated” images (Furukawa et al.,
2010, Goesele et al., 2007, Masiero and Cenedese, 2013). The ra-
tionale among such image selection methods is that images to be
compared should be reasonably similar to have a large number of
common features, however they should also have different point
of views (e.g. a large baseline) to ensure a good reconstruction
of the feature spatial positions. In this paper we take advantage
of the information on the device position and orientation to select
the small set of images to compare with the current one for fea-
ture matching: the selection is done using considerations on the
expected reconstruction error modeled similarly to (Masiero and
Cenedese, 2013).

Figure 3: Feature extraction: example of features matched by
means of the ASIFT method in two images. Features considered
as properly matched after the execution of the RANSAC algo-
rithm are shown as green circles. Mismatches are shown as red
circles.

3.2 Projective reconstruction based on ISVD

This subsection presents a projective reconstruction procedure
based on the ISVD (Brand, 2002). The approach is similar to that
in (Kennedy et al., 2013), however while the work in (Kennedy
et al., 2013) was limited to affine cameras, here projective cam-
eras are considered. Furthermore, the projective reconstruction
obtained in this subsection will be generalized to an Euclidian
reconstruction and georeferenced in the next subsection.

Since the camera embedded in the mobile device is modeled as a
projective camera, then the measurement mij of feature j on the
image plane of camera view i can be related with its correspond-
ing 3D point Mj as follows:

mijξij = PiMj (1)

where Pi is the projective matrix of camera view i (taking into
account also of the camera focal length), ξij is the distance of
the optical center of the camera in view i from the orthogonal
projection of Mj on the line corresponding to the optical axis of
camera in view i. mij and Mj are written by using homogeneous
coordinate notation (Ma et al., 2003).

The above equation can be generalized for the case of m different
views and n feature points:

 m11ξ11 . . . m1nξ1n

...
...

mm1ξ11 . . . mmnξ1n

 =

 P1

...
Pm

 [
M1 . . . Mn

]
(2)

where all the features are assumed to be visible in the views. By
construction, matrices M and P have rank ≤ 4 (however when
estimated by real data this condition is usually not exactly satis-
fied because of the presence of noise). (2) is also referred to as the
Tomasi and Kanade’s factorization (Tomasi and Kanade, 1992).

Let the measurement matrix W be defined as the matrix on the
left side of equation (2). Then, the rationale of (2) is that as long
as the measurement matrix W is formed (and the values of the ξij

are known) then the values of the projective matrices associated
to camera views and the positions of the feature points can be
estimated by means of the factorization of W , e.g. by using the
Singular Value Decomposition (SVD):

W = USV ⊤ , P = US(:, 1 : 4) , M = V (:, 1 : 4)⊤ , (3)

where we have used Matlab–like notation for the matrix indices.
Notice that matrices P and M are estimated up to a nonsingular
matrix T , i.e.

W = PM = (PT )(T−1M) . (4)

Notice that the above equation justifies also the arbitrary defini-
tion of P and M in (3).

While being very intuitive, the estimation of camera projection
matrices and point positions with (2) have some drawbacks:

• First, the values of {ξij} are usually not exactly known.
Nevertheless, the information about camera positions and
orientations provided by the navigation system provide us
with a usually quite good initial estimate of such values:
then, a more reliable estimation can be obtained by iterat-
ing the estimation step of P and M described above, and an
estimation step of the {ξij} from the estimated P and M .

• The computational complexity for computing the SVD of
the W matrix (with size (3m)×n) is approximatively O(nm2),
where n ≥ (3m). When dealing with a large number of
camera views and of feature points such computational cost
can become prohibitive for the considered real-time appli-
cation.

• Finally, the computation of P and M as in (2) does not al-
low to deal with features visible only in a subset of the m
available camera views.
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Nevertheless, an iterative approach can be considered in order to
tackle the last two of the above drawbacks: when a new image is
available a new iteration of the algorithm for the estimation of P
and M is started. In order to reduce the computational complex-
ity of such iteration, the new solution is computed as an update
of the previous solution, e.g. the new iteration is initialized by
means of the previously estimated projection matrices and recon-
structed feature points. A brief review of the updating rule of
the ISVD will be presented in the following, for a more detailed
description the reader is referred to (Brand, 2002).

Let Wt be the matrix decomposed after t iterations of the algo-
rithm (e.g. that formed by the measured features extracted by t
views), then:

Wt ≈ UtStV
⊤

t (5)

where Ut and Vt have h columns (typically 4 ≤ h ≤ rank(Wt)).
At the (t + 1)-th iteration, let Wt+1 = [Wt wt+1] where wt+1 is
a proper column vector. Then, the (approximate) factorization of
Wt+1 can be obtained as follows:

Wt+1 = [Wt | wt+1] ≈ [UtStVt | wt+1] (6)
≈ [UtStVt | Utvt+1 + rt+1] (7)

where vt+1 = U†
t wt+1 (where U†

t stands for the pseudo-inverse
of Ut, U†

t = U⊤
t for unitary Ut) and rt+1 = wt+1 − Utvt+1.

Rearranging the above equation it immediately follows that:

Wt+1 ≈
[
Ut

∣∣∣ rt+1

∥rt+1∥
] [

St vt+1

0 ∥rt+1∥
] [

Vt 0
0 1

]⊤
, (8)

Let the matrix
[

St vt+1

0 ∥rt+1∥
]

be factorized by the SVD algo-

rithm as follows:

[
St vt+1

0 ∥rt+1∥
]
≈ ŨtS̃tṼt

⊤
(9)

where S̃t is an h×h matrix. Then, the factorization of Wt+1 can
be updated by taking:

Ut+1 =

[
Ut

∣∣∣ rt+1

∥rt+1∥
]

Ũt (10)

St+1 = S̃t (11)

Vt+1 =

[
Vt 0
0 1

]
Ṽt (12)

Notice that the above considerations can be easily extended to the
case where Wt+1 is formed by adding a row to Wt.

The procedure described above allow to conveniently update the
SVD factorization (and consequently the factorization of (2) in
our case) in O(nh2) (for m < n and h small with respect to
both n and m). Since in the case of interest h ≪ m, then the
ISVD allow to obtain a great speed up with respect to the direct
use of the SVD.

Accordingly with the definition of the W matrix, adding a col-
umn or a row to Wt corresponds to add a new feature point or a
new camera view, respectively. Hence, the use of the ISVD al-
lows to reduce the computational effort needed to recompute the
estimation of P and M when a new camera view or a new feature
point are considered.

In order to deal with a feature point not available in all the camera
views, when a new measurement of it is available one can select
the part of the W matrix corresponding to the views where such
point is visible, and update such part with a procedure similar to
that presented above (slightly adapted to take into account of the
different conditions of use).

The procedure described above provides an efficient iterative fac-
torization method of the measurement matrix W that leads to a
projective reconstruction of the scene.

3.3 Euclidian promotion and georeferencing the system

Accordingly to (4), the projective reconstruction of the scene es-
timated as in the previous subsection differs from an Euclidian
reconstruction for a nonsingular matrix T . Furthermore, the fi-
nal goal of our system is that of obtaining a georeferenced re-
construction, that differs from an Euclidian reconstruction for a
translation, a rotation and a scale factor.

Two alternative approaches can be considered in order to compute
a georeferenced reconstruction from the projective one.

In the first option, a two step procedure can be considered: first,
estimate the Euclidian reconstruction (Euclidian promotion), and
then use the estimated device positions to estimate the proper
scale, translation and rotation that leads to the georeferenced re-
construction.

Several procedures have been proposed in the literature to tackle
the Euclidian promotion problem (Hartley and Zisserman, 2003,
Fusiello, 2000). For instance, the approach based on Kruppa’s
constraints described in (Heyden and Aström, 1996) can be adopted.
Without loss of generality (Heyden and Aström, 1996, Fusiello,
2000), T can be assumed to be as follows:

T =

[
K 0
r⊤ 1

]
(13)

where K is the intrinsic parameter matrix (Ma et al., 2003), and r
is a 3×1 vector. Then, the estimates {P̂i}i=1,...,m of the camera
projective matrices obtained from the projective reconstruction
have to satisfy the following constraints

P̂i

[
KK⊤ Kr
r⊤K⊤ r⊤r

]
P̂⊤

i = λ2
i KK⊤ (14)

where i = 1, . . . ,m, and {λi} are scale factors. As long as
a sufficiently large number of camera views are available, and
camera measurements are not ideal (i.e. corrupted by noise),
then the above equation typically do not have an exact solution.
Then, matrix T is usually estimated by minimizing the sum of
the squared differences between the left and right sides in (14) for
i = 1, . . . ,m. Such solution is usually computed by means of
iterative optimization methods (e.g. Gauss–Newton algorithm).

After the estimation of T , the transform between the considered
Euclidian coordinate system and the georeferenced coordinate
system has to be estimated.
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Since the goal of the procedure is to compute a georeferenced
reconstruction, here an alternative approach can is considered,
i.e. the direct estimation of the transform matrix Tg from the
coordinate system of the projective reconstruction to that of the
georeferenced reconstruction.

Let xi be the (georeferenced) position of the device during the
i-th camera acquisition, estimated by the navigation system. The
estimate xi of the device position is assumed to be affected by a
zero-mean Gaussian error with covariance σ2

i . From a statistical
point of view, the estimation error is assumed to be isotropically
distributed over the three spatial directions.

Let Ci be the optical center of the camera during the i-th acqui-
sition, estimated by means of the projective reconstruction.

Assuming that the distance between the optical centers of the em-
bedded camera and the point of the device used for the georefer-
enced position is negligible, then xi and Ci can be related as
follows:

xi ≈ TgCi , for i = 1, . . . ,m. (15)

When a quite large number of camera views is available and cam-
era measurements are quite accurate, then it can be assumed that
errors on the estimated optical centers {Ci}i=1,...,m are smaller
with respect to those on the device positions {xi}i=1,...,m. In
accordance with this observation, hereafter it is assumed that the
errors on the estimated optical centers are negligible with respect
to those on the estimated device positions. Under this assumption
the matrix Tg can be effectively estimated as follows:

Tg = XΣ−1
x C⊤(CΣ−1

x C)† (16)

where X and C are the matrices formed by collecting the vectors
{xi}i=1,...,m and {Ci}i=1,...,m, respectively. Furthermore, the
matrix Σx is the covariance matrix of the first component of the
estimates {xi}, i.e. if such estimates are independent then Σx is
a diagonal m×m matrix. If the estimation errors on the device
positions have the same variance 3σ2 (equally distributed over
the 3 spatial directions), then Σx = diag(σ2, . . . , σ2).

Since the estimation error on the device position has been as-
sumed to be isotropic, then Σx is the covariance matrix for the
second and third component of the estimates {xi}, as well.

4. RESULTS AND CONCLUSIONS

Thanks to use of the ISVD algorithm the proposed reconstruction
procedure allows to significantly reduce the computational time
required for computation 3D reconstructions of the scene. The
system is assumed to immediately process a newly acquired im-
age, first computing the image features, and then computing an
updated scene 3D reconstruction. The computation of such 3D
reconstruction is based on the use of the ISVD algorithm, which
exploits the previously computed reconstruction in order to re-
duce its computational burden: as shown in Fig. 4, as the number
of camera views increases the computational load of the ISVD
algorithm quickly becomes much lower than that of the SVD.

It is worth to notice that some issues may occur when adding
new points to the Tomasi and Kanade’s factorization (solved by
means of the ISVD as presented in subsection 3.2): for instance,
the point position cannot be computed if it is not visible by some
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Figure 4: Comparison of the computational complexity (ex-
pressed in number of operations (nop) of one iteration of the SVD
(blue dashed line) and of the ISVD (red solid line) for a matrix
W with size 3m× n.

cameras. Hence, a measurement related to a point have to be
introduced in the computation only when it is visible by some
cameras already considered in W . Furthermore, in certain cases
(e.g. at the beginning of the algorithm) the 4-th singular value
of W is not so much larger than the following one: in this case
neglecting the eigenvectors associated to the following singular
values may lead to reconstruction errors. In order to reduce this
risk, it is convenient to choose a value for h larger than 4.

Subsection 3.3 considers the problem of directly estimating the
transformation that maps from the Euclidian reconstruction coor-
dinates to the georeferenced ones. To properly validate the pro-
posed approach a Monte Carlo simulation (with 1000 indepen-
dent samples) is considered: at each iteration of the Monte Carlo
simulation a new set of values for the true camera positions and
for the true Tg transformation are independently sampled. Then
the estimated device and optical center positions are assumed to
be affected by zero-mean random Gaussian noises with standard
deviations of 0.5 m and 0.02 m, respectively (accordingly with
the assumption done in subsection 3.3 the variance of the error
on the device positions is much larger than that of the error on the
estimated optical centers). As shown in Fig. 5, the Root Mean
Square Error (RMSE) of the estimated georeferenced device po-
sitions with respect to their true values decreases following the
expected 1/

√
m behavior (Anderson, 2003).

In our future work, we foresee a more in depth validation of the
method by considering reconstructions on different real environ-
ments, and the comparison with the results that can be obtained
by means of bundle adjustment based reconstructions.
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