Modern Control Theory

Zhang cunshan

Shandong University of Technology

Chapter 4:

Controllability and Observability

```
4.1 Concept of Controllability and Observability
4.2 Criteria of Controllability
4.3 Criteria of Observability
4.4 Criteria of Controllability and Observability for linear di
    screte system
4.5 Controllable Canonical Form and Observability Canonical
    Form
4.6 Duality principle of controllability and obersvability
```


4.1 Concept of Controllability and Observability

4.1.1 Definition of Controllability

For linear system $\dot{\mathbf{x}}=A(t) \mathbf{x}+B(t) u$, given the initial va Ive $\mathrm{X}(0)$ at instant t_{0}, if there exist $t_{a}>t_{0}, t_{a} \in J$ (J is definition domain), and a admissible control $u(t)$, such that make $x\left(t_{a}\right)=0$, then the system is controll able at $\left[t_{0}, t_{\alpha}\right]$
explanation:
(1) If a state is affected by input, it is controllable. A system is uncontrollable if any state variable is unaff ected by input.
(2) $X(0)$ is non-zero finite dot and $X\left(t_{a}\right)$ is origin of st ate space.

alliath

(3) $u(t)$ must satisfy condition of solution's uniqueness.
(4) definition domain is a finite interval $\left[t_{0}, t_{\alpha}\right]$.
(5) Controllability is concept reflecting the ability of a syst em reaching any given state.
4.1.2 Definition of Observability

For linear system $\left\{\begin{array}{l}\dot{X}=A(t) X+B(t) u \\ y=C(t) X\end{array} \quad\right.$, given $t_{\alpha}>t_{0} \in J \quad$. if the initial valve X_{0} can be uniquely determined accor ding the measured valve $y(t)$ of $\left[t_{0}, t_{\alpha}\right]$. Then the system is observable.

If a state affect the output, system is observable. A system is unobservable if any state variable does not appear in output equation. Obersvability studies the relation of state and output, That is , the identification of initial state.

Example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{\mathbf{x}}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
0 & -5
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u} \\
& y=\left[\begin{array}{ll}
0 & -6
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]
\end{aligned}\left\{\begin{array}{l}
\dot{x}_{1}=4 x_{1}+u \\
\dot{x}_{2}=-5 x_{2}+2 u \\
y=-6 x_{2}
\end{array}\right.
$$

State variables all associated with u, so the system is complete controllable. y reflect only x_{2}, not x_{1}. so x_{2} is observable, x_{1} is unobservable .

4.2 Criteria of Controllability

4.2.1 First form of state controllability Criteria

Theorem1. System $\quad \sum=(A, B)$ or

$$
\dot{\mathrm{x}}=A \mathrm{x}+B u
$$

$$
y=C \mathrm{x}+D u
$$

the necessary and sufficient condition of system being comp
lete controllable is that the controllablity matrix

$$
Q_{k}=\left[B \vdots A B \vdots A^{2} B \vdots \cdots: A^{n-1} B\right] \text { has full-rank }
$$

or

$$
\operatorname{rank}_{Q_{k}}=\operatorname{rank}\left[B \vdots A B \vdots A^{2} B \vdots \cdots \vdots A^{n-1} B\right]=n
$$

A MIVIG

Deduction of Theorem1:

The case of single input The complete controllable necessary and sufficient condition is that the controllability matrix

$$
Q_{k}=\left[B \vdots A B \vdots A^{2} B \vdots \vdots A^{n-1} B\right]
$$

is regular matrix (nonsingular matrix), or the inverse matrix of Q_{k} exist ($\left|Q_{k}\right| \neq 0$)

The case of multi-input Q_{k} is not square matrix

$$
\operatorname{rank} Q_{k}=\operatorname{rank} Q_{k} \cdot Q_{k}^{T}
$$

$$
\left|Q_{k} Q_{k}^{T}\right| \neq 0 \quad \text { is controllability criteria }
$$

Example 1: study the controllability of following system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] u
$$

Analysis:

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}-2 x_{2}-2 x_{3}+2 u \\
& \dot{x}_{2}=-x_{2}+x_{3} \\
& \dot{x}_{3}=x_{1}-x_{3}+u
\end{aligned}
$$

From appearances, x_{1} and x_{3} involve with control action u , x_{2} do not associate with u visually, system looks like not complete controllable. But x 3 associate with u , so system is complete controllable.

Sol:

$$
\begin{aligned}
& B=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], A B=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right] \\
& A^{2} B=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-5
\end{array}\right] \\
& \operatorname{rank} Q_{r}=\operatorname{rank}\left[\begin{array}{ccc}
2 & -4 & 0 \\
0 & 1 & 0 \\
1 & 1 & 5
\end{array}\right]=3
\end{aligned}
$$

So that system is complete controllable.

MMIA

Example 2: Given system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 2 & 0 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{cc}
2 & 1 \\
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Judge the controllability.
Sol :

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{lll}
B & A B & A B^{2}
\end{array}\right] & =\operatorname{rank}\left[\begin{array}{cccccc}
2 & 1 & 3 & 2 & 5 & 4 \\
1 & 1 & 2 & 2 & 4 & 4 \\
-1 & -1 & -2 & -2 & -4 & -4
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{cccccc}
2 & 1 & 3 & 2 & 5 & 4 \\
1 & 1 & 2 & 2 & 4 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=2<3
\end{aligned}
$$

So system has no controllability, or not complete controllable.

1 Ml|lala

If the number of row is less than the number of column, the following calculations are more convenient:

$$
\begin{aligned}
& \operatorname{rank}\left[B \vdots A B \vdots \cdots \vdots A^{n-1} B\right]=\operatorname{rank}\left[\left(B \vdots A B \vdots \cdots \vdots A^{n-1} B\right)\left(B \vdots A B \vdots \cdots \vdots A^{n-1} B\right)^{T}\right] \\
& =\operatorname{rank}\left(\left[\begin{array}{ccccc}
2 & 1 & 3 & 2 & 5 \\
1 & 1 & 2 & 2 & 4 \\
-1 & -1 & -2 & -2 & -4 \\
-4
\end{array}\right]\left[\begin{array}{cccc}
2 & 1 & 3 & 2 \\
5 & 4 \\
1 & 1 & 2 & 2 \\
-1 & -1 & -2 & -2
\end{array} 4^{T}\right)\right. \\
& =\operatorname{rank}\left[\begin{array}{ccc}
59 & 49 & 49 \\
49 & 42 & 42 \\
-49 & -42 & -42
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
59 & 49 & 49 \\
49 & 42 & 42 \\
0 & 0 & 0
\end{array}\right]=2<3
\end{aligned}
$$

alliath

Example 3: Given system

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Judge the controllability.
Sol :

$$
\operatorname{rank}\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{llllll}
1 & 0 & 1 & 2 & 0 & 4 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 4 & 2
\end{array}\right]=3
$$

So system has controllability, or complete controllable.

A Mríah

Specially point out: when controllability matrix has full-rank, complete controllability matrix calculation is not needed.

$$
\operatorname{rank}\left[\begin{array}{ll}
B & A B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=3
$$

M Mrluah

4.2.2 Second form of state controllability Criteria

Theorem 2:

Suppose system has distinct eigenvalues $\lambda_{1} \lambda_{2} \cdots \cdots \lambda_{n}$, the necessary and sufficient condition of system being complete controllable is :
\hat{B} do not contain row with all 0 element in diagonal canonical form of state equation obtained by nonsingular transform

$$
\dot{\hat{X}}=\left[\begin{array}{llll}
\lambda_{1} & & & \mathbf{0} \\
& \lambda_{2} & & \\
& & \ddots & \\
\mathbf{0} & & & \lambda_{n}
\end{array}\right] \hat{X}+\hat{B} u
$$

alrinalin

Example: Study systems controllability

$$
\begin{array}{ll}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-7 & 0 & \mathbf{0} \\
\mathbf{0} & -5 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{- 1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
\mathbf{5} \\
7
\end{array}\right]} & \text { complete controllable } \\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-7 & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & -\mathbf{5} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
\mathbf{0} \\
9
\end{array}\right]} & \begin{array}{ll}
\text { Not complete controllable, } \\
\mathbf{X}_{2} \text { is not controllable }
\end{array} \\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-7 & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & -5 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
4 & \mathbf{0} \\
7 & 5
\end{array}\right] u} & \text { complete controllable }
\end{array}
$$

A Alriath

Theorem 3:

Suppose that system has repeated eigenvalue $\lambda_{1}\left(m_{1}\right.$-repeated $)$,

$$
\lambda_{2}\left(m_{2}-\text { repeated }\right) \cdots \cdots \lambda_{k}\left(m_{k}-\text { repeated }\right), \sum_{i=1}^{k} m_{i}=n, \lambda_{i} \neq \lambda_{j}(i \neq j)
$$

the Jordan canonical form of state equation obtained by nonsi ngular transform is

$$
\dot{\hat{X}}=\left[\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & 0 \\
& & \ddots & \\
0 & & & J_{k}
\end{array}\right] \hat{X}+\hat{B} u
$$

The necessary and sufficient condition of system being complet e controllable is the row elements of \hat{B} which correspond to th e last row of each Jordan block are not all 0

alrinalin

Example: Study systems controllability

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 1 & 0 \\
0 & -4 & 0 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
4 \\
3
\end{array}\right] u}
\end{aligned} \quad \text { complete controllable }
$$

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\mathbf{4} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{4} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{4} & \mathbf{2} \\
\mathbf{0} & \mathbf{0} \\
\mathbf{3} & \mathbf{0}
\end{array}\right] u \quad \begin{aligned}
& \text { Not complete controllable } \\
& \mathrm{x}_{2} \text { is not controllable }
\end{aligned}
$$

MMITA

4.2.3 Third form of state controllability Criteria

4.2.3.1 Determining transfer function by
state space descripation
For SISO system, system equation is $\left\{\begin{array}{l}\dot{\mathbf{x}}=A \mathbf{x}+B u \\ y=C \mathbf{x}+D u\end{array}\right.$
Doing Laplace transform, suppose initial condition is 0

$$
\begin{gathered}
\left\{\begin{array}{l}
s X(s)=A X(s)+B U(s) \\
Y(s)=C X(s)+D U(s)
\end{array}\right. \\
W(s)=\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D \\
=C \frac{\operatorname{adj}(s I-A)}{|s I-A|} B+D
\end{gathered}
$$

A M1 lialn

$$
\begin{aligned}
D=0, \quad W(s) & =C \frac{\operatorname{adj}(s I-A)}{\operatorname{det}(s I-A)} B \\
& =\frac{b_{1} s^{n-1}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
\end{aligned}
$$

Define state-input transfer function

$$
(s I-A)^{-1} B
$$

Define state-output transfer function

$$
C(s I-A)^{-1}
$$

A Mllina

Remark:

(1)The denominator polynomial of transfer function equal to the char acteristic polynomial of matrix A,
(2)The poles of transfer function are eigenvalues of matrix A ,
(3)The necessary and sufficient condition of system stability is that ei genvalues of matrix A have negative real part.
4.2.3.2 Criteria 3 of controllability

For SISO system, the necessary and sufficient condition of syste m being complete controllable is that state-input transfer function

$$
(s I-A)^{-1} B
$$

do not exist cancellation factor, or do not exist zero-pole cancellatio nphenomenon.

4.3 Criteria of Observability

4.3.1 First form of state observability Criteria

Theorem 1. System $\sum=(A, C)$ or

$$
\begin{aligned}
& \dot{\mathrm{x}}=A \mathrm{x}+B u \\
& y=C \mathrm{x}+D u
\end{aligned}
$$

the necessary and sufficient condition of system being comp lete observables is that the observability matrix

$$
\begin{aligned}
& Q_{g}=\left[C^{T}: A^{T} C^{T}: \cdots:\left(A^{T}\right)^{n-1} C^{T}\right] \text { has full-rank } \\
& \text { or } \quad Q_{g}^{T}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] \quad \text { has full-rank }
\end{aligned}
$$

The rank of observability matrix means the number of obse rvable state.

Observability is identification of initial state in essence .

The deduction of theorem 1:

The case of single output The necessary and sufficient condition of system being complete observable is that the observability matrix

$$
Q_{g}=\left[C^{T}: A^{T} C^{T}: \cdots:\left(A^{T}\right)^{n-1} C^{T}\right]
$$

is regular matrix (nonsingular matrix), or the inverse matrix of $\mathrm{Q}_{\mathrm{k}} \quad \operatorname{exist}\left(\left|Q_{g}\right| \neq o\right)$
The case of multi-output $\quad Q_{g} \quad$ is not square matrix. $\operatorname{rank} Q_{g}=\operatorname{rank} Q_{g} Q_{g}^{T} \quad\left|Q_{g} Q_{g}^{T}\right| \neq 0 \quad$ is obversability criteria

dallian

Example 1: Given system equation

$$
\left\{\begin{array}{l}
\dot{X}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right] X+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{lll}
4 & 5 & 1
\end{array}\right] X
\end{array}\right.
$$

Judge the observability
Sol:

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
4 & 5 & 1
\end{array}\right] \\
& C A=\left[\begin{array}{lll}
4 & 5 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right]=\left[\begin{array}{lll}
-6 & -7 & -1
\end{array}\right] \\
& C A^{2}=\left[\begin{array}{lll}
-6 & -7 & -1
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right]=\left[\begin{array}{lll}
6 & 5 & -1
\end{array}\right] \\
& Q_{k}^{T}=\left[\begin{array}{ccc}
4 & 5 & 1 \\
-6 & -7 & -1 \\
6 & 5 & -1
\end{array}\right]
\end{aligned}
$$

allian

$$
\operatorname{rank} Q_{g}^{T}=\operatorname{rank}\left[\begin{array}{ccc}
4 & 5 & 1 \\
-6 & -7 & -1 \\
6 & 5 & -1
\end{array}\right]=2<3
$$

(Rank is determined by column vector)
\therefore system is not complete observable

Example 2: Given system equation

$$
\begin{aligned}
& \dot{X}=\left[\begin{array}{ll}
2 & -1 \\
1 & -3
\end{array}\right] X+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right] X
\end{aligned}
$$

Judge the observability..

dalliah

Sol:

$$
\begin{aligned}
& C A=\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
1 & -3
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-2 & 1
\end{array}\right] \\
& Q_{g}^{T}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
2 & -1 \\
-2 & 1
\end{array}\right] \quad, \quad \text { rank } Q_{g}^{T}=2
\end{aligned}
$$

(Rank is determined by column vector)
\therefore system is complete observable.

Mallian

Example 3: Given system block diagram as follow:

Judge the controllability and observability

mallifan

Sol:

$$
\begin{aligned}
& s X_{1}(s)=X_{2}(s)+u \\
& {\left[-X_{1}(s)-U(s)\right] \frac{1}{s+2}=X_{2}(s)} \\
& Y_{1}(s)=X_{1}(s) \\
& Y_{2}(s)=X_{1}(s)+X_{2}(s) \\
& \left\{\begin{array}{l}
\dot{x}_{1}=x_{2}+u \\
\dot{x}_{2}=-x_{1}-2 x_{2}-u
\end{array}\right. \\
& \left\{\begin{array}{l}
y_{1}=x_{1} \\
y_{2}=x_{1}+x_{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right] x+\left[\begin{array}{c}
1 \\
-1
\end{array}\right] u \\
y=\left[\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right] x \\
Q_{k}=[B \vdots A B]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \text { rank } Q_{k}=1<2
\end{array}\right.
\end{aligned}
$$

\therefore system is not complete controllable

$$
Q_{g}^{T}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
0 & 1 \\
-1 & -1
\end{array}\right]
$$

$\operatorname{rank} Q_{g}^{T}=2$
\therefore system is complete observable.

M Mrlualn

4.3.2 Second form of state observability Criteria

Theorem 2:

Suppose system has distinct eigenvalues $\lambda_{1} \lambda_{2} \cdots \cdots \lambda_{n}$, the necessary and sufficient condition of system being complete observable is :
\widehat{C} do not contain column with all 0 element in diagonal canonical form of state equation obtained by nonsingular transform

$$
\begin{aligned}
& \dot{\hat{X}}=\left[\begin{array}{llll}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right] \hat{X}+\hat{B} u \\
& y=\hat{C} X
\end{aligned}
$$

dallifan

Example: Study the observability of systems:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{lll}
\dot{X} & =\left[\begin{array}{lll}
-7 & & 0 \\
& -5 & \\
0 & & -1
\end{array}\right] \hat{X} \\
y=\left[\begin{array}{lll}
0 & 4 & 5
\end{array}\right] \hat{X} & \text { system states are not complete observable } \\
\dot{\hat{X}}=\left[\begin{array}{lll}
-7 & & 0 \\
& -5 & \\
0 & & -1
\end{array}\right] \hat{X} \\
y=\left[\begin{array}{lll}
3 & 2 & 0 \\
0 & 3 & 1
\end{array}\right] \hat{X} & \text { system states are complete observable }
\end{array}\right.
\end{array}\right.
$$

MMITA

Theorem 3:

Suppose system has repeated eigenvalues $\lambda_{1}\left(m_{1}-\right.$ repeated $)$

$$
\lambda_{2}\left(m_{2}-\text { repeated }\right) \cdots \cdots \lambda_{k}\left(m_{k}-\text { repeated }\right), \sum_{i=1}^{k} m_{i}=n, \lambda_{i} \neq \lambda_{j}(i \neq j)
$$

the Jordan canonical form of state equation obtained by nonsingular transition is

$$
\begin{aligned}
& \dot{\hat{X}}=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & 0 \\
& & \ddots & \\
0 & & & J_{k}
\end{array}\right] \hat{X}+\hat{B} u \\
& y=\hat{C} \hat{X}
\end{aligned}
$$

The necessary and sufficient condition of system being complete observable is the column elements of \bar{C} which correspond to the first row of each Jordan block is not all 0 .

Example: Study the observability of systems:

$$
\begin{aligned}
& \text { 1) }\left\{\dot{\hat{X}}=\left[\begin{array}{ccccc}
3 & 1 & 0 & & \\
0 & 3 & 1 & 0 & \\
0 & 0 & 3 & & \\
& 0 & & -2 & 1 \\
& & & 0 & -2
\end{array}\right] \hat{X}\right. \\
& y=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right] \hat{X} \\
& \text { 2) }\left\{\begin{array}{l}
\dot{\hat{X}}=\left[\begin{array}{llll}
2 & 1 & & 0 \\
0 & 2 & & \\
& & 3 & 1 \\
0 & & 0 & 3
\end{array}\right] \hat{X} \\
y=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] \hat{X}
\end{array}\right. \\
& \text { system states are } \\
& \text { complete observable } \\
& \text { system states are not } \\
& \text { complete observable } \\
& \hat{x}_{1} \text { is not observable }
\end{aligned}
$$

M Alriath

4.3.3Third form of state observability Criteria

Theorem 3: For single-input single-output system, the neces sary and sufficient condition of system being complete observa ble is that the state-output transfer function

$$
C(S I-A)^{-1}
$$

do not exist cancellation factor, or do not exist zero-pole cancell ation phenomenon.
Theorem4: For single-input single-output system, the necess ary and sufficient condition of system being complete controlla ble and observable is that the input-output transfer function

$$
C(s I-A)^{-1} B
$$

do not exist cancellation factor, or do not exist zero-pole cancell ation phenomenon

A Mbluatin

Comprehension of zero-pole cancellation

- Modern unallowable If exist \rightarrow not controllable and obser vable, no optimum control exist
- Classical allowable If exist, zero-pole located left s-plane -s table, no optimum control system structure simple

4.4 Criteria of Controllability and Observability for linear discrete system In aln

4.4.1 Controllability Criteria of linear discrete system

4.4.1.1 Concept of Discrete System Controllability

For linear discrete system

$$
\left\{\begin{array}{l}
X(k+1)=G X(k)+H u(k) \\
y(k)=C X(k)+D u(k)
\end{array}\right.
$$

given the initial valve $\mathrm{X}(0)$ at instant t_{0}, if there exist a admissible $u(k)$, such that make $x(k)=0$ after finite sampling periods, then the system is controllable .

4.4.1.2 Criteria of Discrete System Controllability

M Mrliah

the necessary and sufficient condition of system $\quad \sum=(G, H)$ being complete controllable is that the controllable matrix

$$
\begin{aligned}
& \left.\quad Q_{k}=\mid H: G H: \cdots \vdots G^{n-1} H\right] \quad \text { has full-rank } \\
& \text { Or } \quad \operatorname{rank}\left[H: G H \vdots \cdots: G^{n-1} H\right]=n
\end{aligned}
$$

Example 1: The state equation is

$$
\left[\begin{array}{l}
x_{1}(k+\mathbf{1}) \\
x_{2}(k+\mathbf{1}) \\
x_{\mathbf{3}}(k+\mathbf{1})
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{2} & -\mathbf{2} \\
-\mathbf{1} & \mathbf{1} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0} \\
\mathbf{1}
\end{array}\right] u(k)
$$

Judge the state controllability of system

mallian

Sol:

$$
\begin{aligned}
& H=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad G H=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -2 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right] \\
& G^{2} H=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -2 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right] \\
& \operatorname{rank}_{k}=\operatorname{rank}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & -2 \\
1 & -1 & -3
\end{array}\right]=3
\end{aligned}
$$

System states are complete controllable

Example 2: The state equation is

$$
\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -2 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k)
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] u(k)
$$

Judge the state controllability of system

Sol:

$$
\begin{aligned}
& H=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad G H=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -2 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
0 & 2 \\
-1 & 1
\end{array}\right] \\
& G^{2} H=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -2 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & 2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 3 \\
2 & 2 \\
-1 & 1
\end{array}\right] \\
& \operatorname{rank} Q_{k}=\operatorname{rank}\left[\begin{array}{cccccc}
1 & 0 & 1 & 1 & 1 & 3 \\
0 & 1 & 0 & 2 & 2 & 2 \\
0 & 0 & -1 & 1 & -1 & 1
\end{array}\right]=3
\end{aligned}
$$

System states are complete controllable

dallian

Example 3: The state equation of continuous system is

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Judge the state controllability of this system and its discrete system.

dalliath

Sol: (1)

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad A B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& Q_{k}=\left[\begin{array}{ll}
A & A B
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \operatorname{rank} \mathrm{Q}_{\mathrm{k}}=2
\end{aligned}
$$

System states are complete controllable
(2) Discretization, suppose that sampling period is T

$$
\begin{aligned}
G= & e^{A T}=\left.L^{-1}\left[(s I-A)^{-1}\right]\right|_{t=T} \\
& =\left.L^{-1}\left[\begin{array}{cc}
\frac{s}{s^{2}+\omega^{2}} & \frac{1}{s^{2}+\omega^{2}} \\
\frac{-\omega^{2}}{s^{2}+\omega^{2}} & \frac{s}{s^{2}+\omega^{2}}
\end{array}\right]\right|_{t=T}=\left[\begin{array}{cc}
\cos \omega T & \frac{\sin \omega T}{\omega} \\
-\omega \sin \omega T & \cos \omega T
\end{array}\right]
\end{aligned}
$$

dalliath

$$
\begin{aligned}
& H=\int_{0}^{T} e^{A t} B d t=\int_{0}^{T}\left[\begin{array}{cc}
\cos \omega t & \frac{\sin \omega t}{\omega} \\
-\omega \sin \omega t & \cos \omega t
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] d t=\left[\begin{array}{c}
\frac{1-\cos \omega T}{\omega^{2}} \\
\frac{\sin \omega T}{\omega}
\end{array}\right] \\
& G H=\left[\begin{array}{cc}
\cos \omega T & \frac{\sin \omega T}{\omega} \\
-\cos \omega T & \cos \omega T
\end{array}\right]\left[\begin{array}{c}
\frac{1-\cos \omega T}{\omega^{2}} \\
\frac{\sin \omega T}{\omega}
\end{array}\right]=\left[\begin{array}{c}
\frac{\cos \omega T-\cos ^{2} \omega T+\sin ^{2} \omega T}{\omega^{2}} \\
\frac{2 \sin \omega T \cos \omega T-\sin \omega T}{\omega}
\end{array}\right] \\
& Q_{k}=\left[\begin{array}{ll}
H & G H
\end{array}\right]=\left[\begin{array}{cc}
\frac{1-\cos \omega T}{\omega^{2}} & \frac{\cos \omega T-\cos \omega T+\sin ^{2} \omega T}{\omega^{2} \omega T} \\
\frac{\sin \omega T}{\omega} & \frac{2 \sin \omega T \cos \omega T-\sin \omega T}{\omega}
\end{array}\right]
\end{aligned}
$$

mallian

$$
\left|\mathrm{Q}_{\mathrm{k}}\right|=\frac{2}{\omega^{2}} \sin \omega \mathrm{~T}(\cos \omega \mathrm{~T}-1)
$$

In order to make $\left|Q_{k}\right| \neq 0$

$$
T \neq \frac{k \pi}{\omega}(k=0,1,2, \cdots)
$$

If T selected improperly, the complete controllable contin uous system may be not complete controllable after discre tization.

4.4.2 Observability Criteria of linear discrete system

4.4.2.1 Concept of Discrete System Observability

If the arbitrary initial state value X_{0} can be determined uniq uely according to $\mathrm{y}(\mathrm{k})$ measured in finite sampling periods, the discrete system is complete observable.

4.4.2.2 Criteria of Discrete System Observability

For linear time invariant discrete system $\sum=(G, C)$, the necessary and sufficient condition of system being com plete observable is that the observability matrix

A Milualn

$$
\begin{aligned}
& Q_{g}=\left[C^{T}: G^{T} C^{T}: \cdots:\left(G^{T}\right)^{n-1} C^{T}\right] \text { has full-rank } \\
& \text { or } \quad \operatorname{rank} Q_{g}^{T}=\operatorname{rank}\left[\begin{array}{c}
C \\
C G \\
\vdots \\
C G^{n-1}
\end{array}\right]=n
\end{aligned}
$$

Example: linear time invariant discrete system

$$
\left\{\begin{array}{l}
X(k+1)=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & -2 & 0 \\
0 & 1 & 2
\end{array}\right] X(k) \\
y(k)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] X(k)
\end{array}\right.
$$

Judge the system observability

1 Mly Ala

$$
\begin{aligned}
& C G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & -2 & 0 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & -2 & 0
\end{array}\right] \\
& C G^{2}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & -2 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & -2 & 0 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0
\end{array}\right] \\
& \operatorname{rank}\left[\begin{array}{c}
C \\
C G \\
C G^{2}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{2} & \mathbf{0} & \mathbf{0} \\
-\mathbf{1} & -\mathbf{2} & \mathbf{0} \\
\mathbf{4} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{4} & \mathbf{0}
\end{array}\right]=\mathbf{2}
\end{aligned}
$$

System is not complete observable.

4.5 Controllable Canonical Form and

4.5.1.The introduction of problem

For linear time invariant system $\left\{\begin{array}{l}\dot{\mathrm{x}}=A x+B u \\ y=C \mathrm{x}\end{array}\right.$
If system $\quad \sum=(A, B) \quad$ is complete controllable
Then $\quad \operatorname{rank}\left[B \vdots A B \vdots \cdots \vdots A^{n-1} B\right]=$

$$
\operatorname{rank}\left[b_{1} \cdots b_{r} \vdots A b_{1} \cdots A b_{r} \vdots \cdots \vdots A^{n-1} b_{1} \cdots A^{n-1} b_{r}\right]=n
$$

That is, controllable matrix has and only has n column v ectors which are linear irrespective.

If selecting any linear combination of n column vectors , we can obtain another linear irrespective n column vectors. So there exist a basis vector, through nonsingular transform,

M Alrlath

the basis vector is changed to canonical form, this canonical form is called controllable canonical form.

If system $\quad \Sigma=(A, C) \quad$ is complete observable

$$
\begin{array}{ll}
\text { Then } & \operatorname{rank}\left[C^{T} \vdots A^{T} C^{T} \vdots \cdots:\left(A^{T}\right)^{n-1} C^{T}\right]= \\
& \operatorname{rank}\left[c_{1}^{T} \cdots c_{m}^{T} \vdots A^{T} c_{1}^{T} \cdots A^{T} c_{m}^{T} \vdots \cdots:\left(A^{T}\right)^{n-1} c_{1}^{T} \cdots\left(A^{T}\right)^{n-1} C_{m}^{T}\right]=n
\end{array}
$$

That is, observable matrix has and only has n column vec tors which are linear irrespective.

If selecting any linear combination of n column vectors, we can obtain another linear irrespective n column vectors. So there exist a basis vector, through nonsingular transform,

M Mrlualn

the basis vector is changed to canonical form, this canonical form is called observable canonical form.

For SISO system controllable matrix or observable matrix has only sole linear irrespective vector, so the canonical expression is sole.

But for MIMO system, the basis vector has different selecti on, so the canonical expression is not sole.

4.5.2 The controllable canonical of SISO system

Given the state space description

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x
\end{array}\right. \\
& \text { Where } \mathrm{X}-n \times 1 \\
& \mathrm{~A}-\quad n \times n \\
& \mathrm{~B}-\quad n \times 1 \\
& \mathrm{C}-\quad 1 \times n
\end{aligned}
$$

If the system is complete controllable, that is, the controllable matrix $\left.\quad Q_{k}=\mid B: A B: \cdots: A^{n-1} B\right] \quad$ is nonsingular matrix

Then there exist nonsingular transform

$$
\begin{equation*}
\hat{X}=P X \text { or } X=P^{-1} \hat{X} \tag{1}
\end{equation*}
$$

A Mrfata

the nonsingular transform change the state equation to controllable can onical form

$$
\left\{\begin{array}{l}
\dot{\hat{\mathbf{x}}}=\hat{A} \hat{\mathbf{x}}+\hat{B} u \tag{2}\\
y=\hat{C} \hat{\mathbf{x}}
\end{array}\right.
$$

Where $\hat{A}=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1}\end{array}\right], \quad \hat{B}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right]$
The transform matrix $\quad P=\left[\begin{array}{l}P_{1} \\ P_{1} A \\ P_{1} A^{n-1}\end{array}\right]$
Where $P_{1}=\left[\begin{array}{llll}\mathbf{0} & \cdots & \mathbf{0} & \mathbf{1}\end{array}\right]\left[B \vdots A B \vdots \cdots A^{n-1} B\right]^{-1} \quad \begin{aligned} & \hat{B}=P B \\ & \\ & \\ & \hat{C}=C P^{-1}\end{aligned}$

Proof: Let

$$
\hat{X}=\left[\begin{array}{c}
\hat{x}_{1}(t) \\
\hat{x}_{2}(t) \\
\vdots \\
\hat{x}_{n}(t)
\end{array}\right] \quad P=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\vdots \\
P_{n}
\end{array}\right]
$$

1. The proof of P

From $\hat{X}=P X$, We have

$$
\left[\begin{array}{c}
\hat{x}_{1}(t) \tag{5}\\
\hat{x}_{2}(t) \\
\vdots \\
\hat{x}_{n}(t)
\end{array}\right]=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\vdots \\
P_{n}
\end{array}\right] X(t) \quad \hat{\mathbf{x}}_{1}(t)=P_{1} \mathbf{x}(t)
$$

14 M1 A A

Derivate two sides of (5), and consider (2), (3)

$$
\begin{equation*}
\dot{\hat{x}}_{1}(t)=\hat{x}_{2}(t)=P_{1} \dot{\mathbf{x}}(t)=P_{1} A \mathbf{x}(t)+P_{1} B u(t) \tag{6}
\end{equation*}
$$

Compare (1) and (6)

$$
\therefore P_{1} B=0
$$

(6) turn to

$$
\begin{equation*}
\dot{\hat{x}}_{1}(t)=\hat{x}_{2}(t)=P_{1} A x(t) \tag{7}
\end{equation*}
$$

Derivate two sides of (7), and consider (2), (3)

$$
\begin{array}{cl}
\dot{\hat{x}}_{2}(t)=\hat{x}_{3}(t)=P_{1} A^{2} x(t) & P_{1} A B=0 \\
\vdots & \\
\dot{\hat{x}}_{n-1}(t)=\hat{x}_{n}(t)=P_{1} A^{n-1} x(t) & P_{1} A^{n-2} B=0
\end{array}
$$

Or

$$
\hat{X}(t)=P X(t)=\left[\begin{array}{l}
P_{1} \\
P_{1} A \\
\\
P_{1} A^{n-1}
\end{array}\right] X(t)
$$

$$
P=\left[\begin{array}{c}
P_{1} \tag{8}\\
P_{1} A \\
\\
P_{1} A^{n-1}
\end{array}\right]
$$

$$
\begin{equation*}
P_{1} B=P_{1} A B=\cdots=P A^{n-2} B=0 \tag{9}
\end{equation*}
$$

2. the proof of P_{1}

Derivate $\quad \hat{X}(t)=P X(t) \quad$ two sides

$$
\begin{gathered}
\dot{\hat{\mathrm{x}}}(t)=P \dot{\mathrm{x}}(t)=P A \mathrm{x}(t)+P B \mathrm{u}(t) \\
=P A P^{-1} \hat{\mathrm{x}}+P B \mathrm{u}(t) \\
y=C \mathrm{x}=C P^{-1} \hat{\mathrm{x}} \\
\text { So } \quad \hat{A}=P A P^{-1} \\
\hat{B}=P B \\
\hat{C}=C P^{-1}
\end{gathered}
$$

Consider (3) and (9) $\quad P B=\left[\begin{array}{c}P_{1} B \\ P_{1} A B \\ \vdots \\ P_{1} A^{n-1} B\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]$

M Mrlina

or $P_{1}\left[B \vdots A B \vdots A^{2} B \vdots \cdots \vdots A^{n-1} B\right]=\left[\begin{array}{llll}0 & 0 \cdots & 0 & 1\end{array}\right]$

$$
P_{1}=\left[\begin{array}{llll}
0 & 0 \cdots & 0 & 1
\end{array}\right]\left[B \vdots A B: \cdots: A^{n-1} B\right]^{-1}=\left[\begin{array}{llll}
0 & 0 \cdots & 0 & 1
\end{array}\right] Q_{k}^{-1}
$$

Example: Given the state space description of linear time invariant system

$$
\begin{aligned}
& \dot{X}(t)=A X(t)+B u(t) \\
& A=\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Turn it to controllable canonical form

1 Miluala

Sol: (1) controllability discrimination

$$
\begin{aligned}
& Q_{k}=[B: A B]=\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right] \\
& \operatorname{rank} Q_{k}=\operatorname{rank}\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]=2
\end{aligned}
$$

System is complete controllable
(2) Find P_{1}

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
B: A B
\end{array}\right]^{-1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]^{-1} \\
&=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
\end{aligned}
$$

(3) Find P

$$
P=\left[\begin{array}{c}
P_{1} \\
P_{1} A
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]
$$

mallifan

(4) Find \hat{A}, \hat{B}

$$
\begin{aligned}
& \hat{B}=P A P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& B=P B=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

(5) Write out canonical form

$$
\dot{\hat{X}}=\hat{A} \hat{X}+\hat{B} u=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \hat{X}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

dalliah

4.5.3 The observable canonical of SISO system

Given the state space description

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x
\end{array}\right.
$$

Where X—vector $n \times 1$

A—	$n \times n$
B—	$n \times 1$
C—	$1 \times n$

If the system is complete observable, that is , the observable matrix

$$
Q_{s}^{T}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] \quad \text { is nonsingular matrix }
$$

Then there exist nonsingular transform $\quad X=T \hat{X}$ or $\hat{X}=T^{-1} X$
the nonsingular transform change the state equation to controllable can onical form

$$
\left\{\begin{array}{l}
\dot{\hat{\mathbf{x}}}=\hat{A} \hat{\mathbf{x}}+\hat{B} u \tag{2}\\
y=\hat{C} \hat{\mathbf{x}}
\end{array}\right.
$$

Where $\quad \hat{A}=\left[\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & -a_{n} \\ \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} & -a_{n-1} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} & -a_{2} \\ \mathbf{0} & \mathbf{0} & & \mathbf{1} & -a_{1}\end{array}\right], \hat{C}=\left[\begin{array}{llll}\mathbf{0} \cdots & \mathbf{0} & \mathbf{1}\end{array}\right]$
The transform matrix $\quad T=\left[\begin{array}{llll}T_{1} & A T_{1} & \cdots & A^{n-1} T_{1}\end{array}\right]$

$$
\begin{align*}
& \hat{A}=T^{-1} A T \tag{4}\\
& \hat{B}=T^{-1} B \\
& \hat{C}=C T
\end{align*}
$$

A M1 A Ala

Where $\quad T_{1}=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]^{-1}\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right]=\left[Q_{g}^{T}\right]^{-1}\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right]$
Example: Given the state space description

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] \mathbf{x}(t) \\
y(t)=\left[\begin{array}{ll}
-1 & -\frac{1}{2}
\end{array}\right] \mathbf{x}(t)
\end{array}\right.
$$

Turn it to observable canonical form

dallian

Sol:

$$
\begin{aligned}
& Q_{g}^{T}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
-1 & -\frac{1}{2} \\
-1 & 0
\end{array}\right] \quad \operatorname{Rank} Q_{g}^{T}=2 \quad \text { system is complete observable } \\
& T_{1}=\left[\begin{array}{cc}
-1 & -\frac{1}{2} \\
-1 & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& T=\left[\begin{array}{ll}
T_{1} & A T_{1}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -3 \\
2 & 4
\end{array}\right] \\
& T^{-1}=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-1 & -\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

alrinan

$$
\begin{aligned}
& \hat{A}=T^{-1} A T=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & -3 \\
2 & 4
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & -3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right] \\
& \hat{C}=C T=\left[\begin{array}{ll}
-1 & \left.-\frac{1}{2}\right]\left[\begin{array}{cc}
-1 & -3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
\therefore \begin{cases}\dot{\mathrm{x}}(\mathrm{t}) & =\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right] \mathrm{x}(\mathrm{t}) \\
y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \mathrm{x}(\mathrm{t})\end{cases}
\end{array} \text { (}{ }^{2}\right.
\end{aligned}
$$

allifan

4.5.4 Determine controllable canonical form and observable c

 anonical form from state variables diagramFrom state state variables diagram we has obtained

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\cdots \\
\dot{x}_{n-1} \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n-1} \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] u
$$

$$
y=\left[\begin{array}{llll}
b_{n} & b_{n-1} & \cdots & b_{2}
\end{array} b_{1}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
$$

1 Mblata

Theorem 1: Suppose the SISO system is complete controllable, the transfer function is

$$
W(s)=\frac{Y(s)}{U(s)}=\frac{b_{1} s^{n-1}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

The controllable canonical form is

$$
\begin{aligned}
& \hat{A}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1}
\end{array}\right], \hat{B}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
& \hat{C}=\left[\begin{array}{llll}
b_{n} & b_{n-1} & \cdots & b_{1}
\end{array}\right]
\end{aligned}
$$

M Millialn

Theorem 2: Suppose the SISO system is complete observable, the transfer function is

$$
W(s)=\frac{Y(s)}{U(s)}=\frac{b_{1} s^{n-1}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

The controllable canonical form is

$$
\begin{aligned}
& \hat{A}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{n} \\
1 & 0 & \cdots & 0 & -a_{n-1} \\
0 & 1 & \cdots & 0 & -a_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{1}
\end{array}\right], \hat{B}=\left[\begin{array}{c}
b_{n} \\
b_{n-1} \\
b_{n-2} \\
\vdots \\
b_{1}
\end{array}\right] \\
& \hat{C}=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1
\end{array}\right]
\end{aligned}
$$

4.6 Duality principle of controllability and oberspluility

$$
\begin{aligned}
& \Sigma_{1} \quad \begin{cases}\dot{\mathrm{x}}=A \mathrm{x}+B u & \mathrm{x}-\mathrm{n} \text {-dimension state vector } \\
y=C \mathrm{x}\end{cases} \\
& \begin{array}{l}
\mathrm{u}-\mathrm{r} \text {-dimension control vector } \\
\mathrm{y}-\mathrm{m} \text {-dimension output vector }
\end{array} \\
& \sum_{2} \quad \begin{cases}\dot{\mathrm{z}}=A^{T} \mathrm{z}+C^{T} v & \mathrm{z}-\mathrm{n} \text {-dimension state vector } \\
w=B^{T} \mathrm{z} & \mathrm{v}-\mathrm{m} \text {-dimension control vector }\end{cases} \\
&
\end{aligned}
$$

1 The necessary and sufficient condition of systems being complete controllable

$$
\begin{array}{ll}
\Sigma_{1} & \operatorname{rank} Q_{k}=\operatorname{rank}\left[B \vdots A B \vdots \cdots \vdots A^{n-1} B\right]=n \\
\Sigma_{2} & \operatorname{rank} Q_{k}=\operatorname{rank}\left[C^{T}: A^{T} C^{T}: \cdots:\left(A^{T}\right)^{n-1} C^{T}\right]=n
\end{array}
$$

M Mrluah

2 The necessary and sufficient condition of systems being complete observable

$$
\begin{array}{ll}
\Sigma_{1} & \operatorname{rank} Q_{g}=\operatorname{rank}\left[C^{T} \vdots A^{T} C^{T} \vdots \cdots:\left(A^{T}\right)^{n-1} C^{T}\right]=n \\
\Sigma_{2} & \operatorname{rank} Q_{g}=\operatorname{rank}\left[B \vdots A B \vdots \cdots \vdots A^{n-1} B\right]=n
\end{array}
$$

So $\quad \Sigma_{1}$ Complete controllable condition=
Σ_{2} Complete observable condition
Σ_{1} Complete observable condition= Σ_{2} Complete controllable condition

Controllability and observability have duality

Try to determine the relation of a and b.
4.9 Turn the state equation to controllable canonical form

$$
\dot{\mathbf{x}}=\left[\begin{array}{cc}
-1 & 0 \\
1 & -2
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
1 \\
-1
\end{array}\right] u
$$

$4.11 \quad \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}, y=C \mathbf{x}$

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -1 \\
0 & -2 & 0 \\
1 & -4 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]
$$

(1) Discriminate controllability and observability,
(2) Find transfer function.
4.14 $\quad \Sigma_{1}$ and \sum_{2} are complete controllable and complete observable

$$
\begin{aligned}
& \Sigma_{1}: \dot{\mathbf{x}}_{1}=A_{1} \mathbf{x}_{1}+B_{1} u, \quad y_{1}=C \mathbf{x}_{1} \\
& \Sigma_{2}: \dot{\mathbf{x}}_{2}=A_{2} \mathbf{x}_{2}+B_{2} u, \quad y_{2}=C \mathbf{x}_{2}
\end{aligned}
$$

dallifan

where $\quad A_{1}=\left[\begin{array}{cc}\mathbf{0} & 1 \\ -3 & -4\end{array}\right], \quad B_{1}=\left[\begin{array}{l}\mathbf{0} \\ \mathbf{1}\end{array}\right], \quad C_{1}=\left[\begin{array}{ll}\mathbf{2} & 1\end{array}\right]$

$$
A_{\mathbf{2}}=\mathbf{- 1}, \quad B_{2}=\mathbf{1}, \quad C_{2}=\mathbf{1}
$$

(1) deduce the state equation of parallel system

(2) Discriminate controllability and observability
(3) Find transfer function

dallifan

4.17 Given the transfer function of SISO system

$$
\frac{U(s)}{Y(s)}=\frac{K}{(s+a)^{2}(s+c)(s+d)}
$$

Where a, b and c are different. Find the state equation, and discuss controllability.

callifath

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\cdots \\
\dot{x}_{n-1} \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{n-1} \\
x_{n}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]} \\
y=\left[\begin{array}{lllll}
b_{n} b_{n-1} & \cdots & b_{2} & b_{1}
\end{array}\right] \\
\cdots \\
x_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots
\end{array}\right.
$$

