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Chapter 4:

Controllability and Observability

4.1 Concept  of Controllability and  Observability

4.2 Criteria of Controllability

4.3 Criteria of Observability

4.4  Criteria of Controllability and Observability for linear di
screte system

4.5 Controllable Canonical Form and  Observability Canonical 
Form 

4.6 Duality principle of controllability and obersvability



4.1 Concept  of Controllability and Observability

4.1.1 Definition of Controllability4.1.1 Definition of Controllability4.1.1 Definition of Controllability4.1.1 Definition of Controllability

For linear system                    ,  given the initial va
lve X(0) at instant t0 , if there  exist                 (J is        
definition domain   )  ,and a admissible control u(t), 
such  that make  x(ta )=0, then the system is controll
able at         . 

explanation:

(1) If a state is affected by input , it is controllable. A 
system is uncontrollable if any state variable is unaff
ected by input. 

(2) X(0) is non-zero finite dot and X(ta) is origin of st
ate space.

utBtA )()( += xx�

Jttt aa ∈∈∈∈>>>> ,0

],[ 0 αtt



(3) u(t) must satisfy condition of solution’s uniqueness.

(4) definition domain is a finite interval        .

(5) Controllability is concept reflecting the ability of a syst

em reaching any given state.

4.1.2 Definition of 4.1.2 Definition of 4.1.2 Definition of 4.1.2 Definition of ObservabilityObservabilityObservabilityObservability

For linear system                     ,given             .  

if the initial valve X0 can be uniquely determined accor

ding the measured  valve y(t) of        . Then the system   

is observable.
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If a state affect the  output , system  is observable. A 

system is unobservable if any state variable does not   

appear in output equation. Obersvability studies the      

relation of    state and output, That is , the identification 

of  initial state.

Example:Example:Example:Example:
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State variables all associated with u, so the system is  complete  

controllable. y  reflect only x2 , not x1. so x2 is observable , x1 is  

unobservable .
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4.2 Criteria of Controllability

4.2.1 First form of state controllability Criteria

Theorem1.  System ( , )
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the necessary and sufficient condition of system being comp

lete controllable is that the controllablity matrix 

has full-rank

or nBABAABBrankrankQ n
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Deduction of Theorem1 ::::

The case of single input   The complete controllable necessary 

and sufficient condition is that the controllability matrix  

is regular matrix (nonsingular matrix), or the inverse matrix of Qk

exist (            )           

The case of multi-input       is not square matrix
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Example 1:  study the controllability of following system

Analysis:
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From appearances ,  x1and x3 involve with control action u, 

x2 do not associate with u visually , system looks like not  

complete controllable. But x3 associate with u , so system 

is complete controllable. 
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So that system is complete controllable.



Example 2:  Given system 
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Judge the controllability.

Sol :
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So system has no controllability, or not complete controllable.
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If the number of row is less than the number of column, the following 

calculations are more convenient:



Example 3:  Given system 
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Judge the controllability.

Sol :
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rank B AB A B rank

 
 

= = 
  

So system has controllability, or complete controllable.



Specially point out: when controllability matrix has full-rank ,      

complete controllability matrix calculation is not needed.
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4.2.2 Second form of state controllability Criteria

Theorem 2:

Suppose system has distinct eigenvalues , the      

necessary and sufficient condition of  system being complete

controllable is : 

do not contain row with all 0 element  in diagonal canonical     

form of state equation obtained by  nonsingular transform 
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Example: Study systems controllability
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Theorem 3:

Suppose that system has repeated eigenvalue , 

the Jordan canonical   form of state equation obtained by  nonsi

ngular transform is 

The  necessary and sufficient condition of system being complet

e controllable is  the  row elements of      which correspond to th

e last row of each Jordan block are not all 0
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Example: Study systems controllability
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4.2.3 Third form of state controllability Criteria

4.2.3.1 Determining transfer function by 

state space descripation

For SISO system, system equation is

Doing Laplace transform, suppose initial condition is 0
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Define state-input transfer function

1( )sI A B−−

Define state-output transfer function
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Remark:

(1)The denominator polynomial of transfer function equal to the char

acteristic polynomial of matrix A,

(2)The poles of transfer function are eigenvalues of matrix A,

(3)The necessary and sufficient condition of system stability is that ei

genvalues of matrix A have negative real part.

4.2.3.2 Criteria 3 of controllability

For SISO system , the necessary and sufficient condition of syste

m being  complete controllable is that state-input transfer function
1( )sI A B−−

do not exist cancellation factor, or do not exist zero-pole cancellatio

n phenomenon.
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4.3 Criteria of Observability

4.3.1 First form of state observability Criteria

Theorem 1. System ( , )
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the necessary and sufficient condition of system being comp

lete observables is that the observability matrix 

has full-rank
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The rank of observability matrix means the number of  obse

rvable state . 

Observability is identification of initial state in essence .

The deduction of theorem 1:

The case of single output The  necessary and sufficient  

condition  of system being complete observable is that the      

observability matrix  

is regular matrix (nonsingular matrix), or the inverse matrix   

of Qk exist (            ) 

The case of multi-output is not square matrix.
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Example 1: Given system equation
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∴ system is not complete observable

Example 2: Given system equation
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(  Rank is determined by column  vector)
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Sol:

∴ system is complete observable.

(  Rank is determined by column  vector)



Example 3: Given system block diagram as follow:

Judge the controllability and observability
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∴ system is complete observable.



4.3.2 Second form of state observability Criteria

Theorem 2:

Suppose system has distinct eigenvalues , the        

necessary and sufficient condition of system  being complete

observable is : 

do not contain column with all 0 element  in diagonal canonical     

form of state equation obtained by  nonsingular transform 
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Example: Study the observability of  systems:
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Theorem 3:

Suppose system has repeated eigenvalues

the Jordan canonical   form of state equation obtained by  non-
singular transition is 

The  necessary and sufficient condition of system being complete
observable is  the  column elements of       which   correspond to 
the first row  of each  Jordan block is not all 0.
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Example: Study the observability of  systems:
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4.3.3Third form of state observability Criteria

Theorem 3:  For single-input single-output system,    the  neces
sary and sufficient condition of system  being complete observa
ble   is  that the state-output transfer function 

do not exist cancellation factor, or do not exist zero-pole cancell
ation phenomenon.

Theorem4:  For single-input single-output system,    the  necess
ary and sufficient condition of system  being complete controlla
ble  and observable   is  that the input-output transfer function 

do not exist cancellation factor, or do not exist zero-pole cancell
ation phenomenon

1)( −−−−−−−− AsIC

1( )C sI A B−−



Comprehension of zero-pole cancellation 

• Modern unallowable      If exist→not controllable and obser

vable , no optimum control exist

• Classical  allowable   If exist,  zero-pole located left s-plane –s

table ,  no optimum control    system structure simple

return



4.4  Criteria of Controllability and Observability
for linear discrete system

4.4.1 Controllability Criteria of linear discrete system

4.4.1.1 Concept of Discrete System Controllability    
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given the initial valve X(0) at instant t0 , if there  exist  a admissible   

u(k) , such  that make  x(k )=0 after finite sampling periods, then the  

system is controllable .

For linear discrete system

4.4.1.2 Criteria of Discrete System Controllability
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being complete controllable is that the controllable matrix 

[ ]HGGHHQ n
k

1−= ���� has full-rank

[[[[ ]]]] nHGGHHrank n ====
−−−−1

����Or 

Example 1: The state equation is 

)(

1

0

1

)(

)(

)(

011

220

001

)1(

)1(

)1(

3

2

1

3

2

1

ku

kx

kx

kx

kx

kx

kx

















++++

































−−−−

−−−−====

















++++

++++

++++

Judge the state controllability of system
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System states are complete controllable



Example 2: The state equation is 
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System states are complete controllable



Example 3: The state equation of continuous system is 
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Judge the state controllability of  this system and its discrete system.
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(2)  Discretization ，suppose that sampling period is T
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If T selected improperly, the complete controllable contin

uous system may be not complete controllable after discre

tization.



4.4.2 Observability Criteria of linear discrete system

4.4.2.1 Concept of Discrete System Observability

If the arbitrary initial state value X0 can be determined uniq

uely according to y(k) measured in finite sampling periods,    

the discrete system is complete observable.

4.4.2.2 Criteria of Discrete System Observability

For linear time invariant discrete system                   ,  

the necessary and sufficient condition of system  being com

plete observable is that the observability matrix 
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4.5 Controllable Canonical Form and 

Observability Canonical Form 
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4.5.1.The introduction of problem

For linear time invariant system

If system is complete controllable 
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That is,  controllable matrix has and only has n column v

ectors which are linear irrespective. 

If selecting any linear combination  of n column vectors , 

we    can obtain another linear irrespective n column vectors.

So there exist a basis vector, through nonsingular transform, 



the basis vector is changed to canonical form, this canonical form is 

called controllable canonical form.

If system ∑∑∑∑ ==== ),( CA is complete observable 

Then [[[[ ]]]]
[[[[ ]]]] nCAcAcAcAccrank

CACACrank

T

m

nTTnTT

m

TTTT

m

T

TnTTTT

====

====

−−−−−−−−

−−−−

1

1

1

1

1

)()(

)(

1 �������

����

That is,  observable matrix has and only has n column vec

tors which are linear irrespective. 

If selecting any linear combination  of n column vectors , 

we    can obtain another linear irrespective n column vectors.

So there exist a basis vector, through nonsingular transform, 



the basis vector is changed to canonical form, this canonical form is 

called  observable canonical form.

For SISO system controllable matrix or observable matrix 

has only sole linear irrespective vector, so the canonical 

expression is sole. 

But for MIMO system, the basis vector has different selecti

on, so the canonical expression is not sole. 



4.5.2 The controllable canonical of SISO system
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Given the state space description

Where X—

A—

B—

C—

If the system is complete controllable, that is , the controllable 

matrix [ ]BAABBQ n
k

1−= ���� is nonsingular matrix

Then there exist nonsingular transform 
1ˆ ˆX P X X P X−= =o r  (1)

1 n×



the nonsingular transform change the state equation to controllable can

onical form
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The transform matrix 

[[[[ ]]]] [[[[ ]]]] 11

1 100
−−−−−−−−==== BAABBP n

�����Where 

(2)

(3)

(4)

review

1

1

ˆ

ˆ

ˆ

A PAP

B PB

C CP

−

−

=

=

=



Proof: Let



















=



















=

nn P

P

P

P

tx

tx

tx

X
��

2

1

2

1

)(ˆ

)(ˆ

)(ˆ

ˆ

PXX =ˆFrom ,  We have

)()(ˆ

)()(ˆ
11

tPt

tPt

nn xx

xx

=

=

� (5)

1. The proof of P

)(

)(ˆ

)(ˆ

)(ˆ

2

1

2

1

tX

P

P

P

tx

tx

tx

nn



















=



















��



Derivate two sides of (5), and consider (2), (3)

)()(x)(x)(ˆ)(ˆ 11121 tBuPtAPtPtxtx ++++============ �� (6)

Compare (1) and (6) 1 0PB∴ =
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Derivate two sides of (7), and consider (2), (3) 
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So

Consider (3) and (9)
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Example:  Given the state space description of linear time invariant 

system
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Turn it to controllable canonical form



Sol:
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System is complete controllable
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(4) Find ˆ ˆ,A B

(5) Write out canonical form



4.5.3 The observable canonical of SISO system
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If the system is complete observable, that is , the observable 

matrix 
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is nonsingular matrix

1 n×



the nonsingular transform change the state equation to controllable can

onical form
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Example: Given the state space description 
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Turn it to observable canonical form
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4.5.4 Determine controllable canonical form and observable c

anonical form from state variables diagram
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From state state variables diagram we has obtained 



Theorem 1: Suppose the SISO system is complete controllable,

the transfer function is
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The controllable canonical form is 
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Theorem 2: Suppose the SISO system is complete observable,

the transfer function is
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The controllable canonical form is 
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4.6 Duality principle of controllability and obersvability

∑1 x x

x

A Bu

y C

= +


=

�

∑2

z——n -dimension state vector 

v——m -dimension control vector

w——r -dimension output vector

x——n-dimension state vector                           

u——r -dimension control vector

y——m-dimension output vector

z z

z

T T

T

A C v

w B

 = +


=

�

1 The necessary and sufficient condition of systems being complete

controllable

∑1

1[ ]n

krankQ rank B AB A B n−= =� ���

∑2
1[ ( ) ]T T T T n T

krankQ rank C A C A C n−= =� ���



2 The necessary and sufficient condition of systems being complete

observable

∑1

∑2

1[ ( ) ]T T T T n T

grankQ rank C A C A C n−= =� ���

1[ ]n

grankQ rank B AB A B n−= =� ���

So ∑1 Complete   controllable condition=

∑1

∑2 Complete   observable condition

Complete   observable condition=

Complete   controllable condition∑2

Controllability and observability have duality
return
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4.4  System has complete controllability. 

Try to determine the relation of a and b.

4.9   Turn the state equation to controllable canonical form
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(1) Discriminate controllability and observability,

(2) Find transfer function.

4.14 are complete controllable and complete observable
1 2∑ ∑ and 
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(1) deduce the state equation of parallel system

(2) Discriminate controllability and observability

(3) Find transfer function
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Where a, b and c are different。Find the state equation , and discuss 

controllability.

4.17  Given the transfer function of SISO system
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