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Chapter 4 1M1 4
Controllability and Observablllty




4.1 Concept of Controllability and Observability

4.1.1 Definition of Controllability

For linear system x=4@®x+B#)« , given the initial va
lve X(0) at instant t, , if there exist ¢, >1,r,eJ (Jis
definition domain ) ,and a admissible control u(t),
such that make x(t, )=0, then the system is controll
able at [£,,,]
explanation:
(1) If a state is affected by input , it is controllable. A
system is uncontrollable if any state variable is unaff
4 ected by input.

\ (2) X(0) is non—zero finite dot and X(t,) is origin of st
ate space.
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(3) u(t) must satisfy condition of solution’s uniqueness.
(4) definition domain is a finite interval [¢,,¢,].

(5) Controllability is concept reflecting the ability of a syst
em reaching any given state.

4.1.2 Definition of Observability

X = A)X + B(t)u
y=C(tX
if the initial valve X, can be uniquely determined accor

A ding the measured valve y(t) of [%%,]1. Then the system
| is observable.

For linear system { ,givent,>t,eJ




If a state affect the output , system is observable. A
system is unobservable if any state variable does not
appear in output equation. Obersvability studies the
relation of state and output, That is , the identification

of initial state.
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X, =—5x, +2u

Y= —6x,

tate variables all associated with u, so the system 1s complete

ontrollable. y reflect only x, , not x,. so x, is observable , x, is

lobservable :
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4.2 Criteria of Controllability

4.2.1 First form of state controllability Criteria
Theoreml. System » =(4,B) or

X = AX + Bu

y=Cx+Du .
the necessary and sufficient condition of system being comp

lete controllable 1s that the controllablity matrix

O, =[B:AB:A*B:---:A""'B] has full-rank

or  rankQ, =rank|B:AB:A’B:---: A" B]l=n




Deduction of Theorem1 :
The case of single input The complete controllable necessary

and sufficient condition 1s that the controllability matrix

O, =[B:AB: A’B:---: A" B]
1s regular matrix (nonsingular matrix), or the inverse matrix of Q,
exist (0,20 )

The case of multi—input & 1s not square matrix
rankQ, =rankQ, - QkT

‘QkaT ‘ #0 is controllability criteria




Example 1: study the controllability of following system

X, -1 -2 =2||x 2
X5|=10 -1 1 ||[x,|+]|0]|u
X, 1 0 -1]x 1

X, =—Xx,—2x,—2x;+2u

Analysis:

Xy ==X, + X3

X, =X, —x;tu

From appearances , x,and x; involve with control action u,
X, do not associate with u visually , system looks like not
complete controllable. But x3 associate with u , so system
1s complete controllable.




Sol- 2 —1 -2 -27[2] [-4

—1 -2 —2][-4] [0

10 1] 1] [-5]
(2 -4 0]
rankQ, =rank|0 1 0(=3
11 5]

So that system i1s complete controllable.




Example 2: Given system . 4 1Te1 T2 17
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Sol : 2 1 3 2 5 4
rank[B AB AB*l=vrank| 1 1 2 2 4 4
-1 -1 -2 -2 -4 -4]
(2 1 3 2 5 4]
=rank|1 1 2 2 4 4|=2<3
00 0 0 0 0

So system has no controllability, or not complete controllable.




If the number of row is less than the number of column, the following

calculations are more convenient:

rank[B:AB:---: A" B]=rank[(B:AB:---:A""'B)(B:AB:---:A""'B)"]

= rank

= rank

.

2 1 3 2 5 40[2 1 3 2 5 4
1 1 2 2 4 4|1 1 2 2 4 4
-1 -1 -2 -2 -4 —4||-1 -1 -2 -2 -4 -4
59 49 49 | (59 49 49

49 42 42 |=rank|49 42 42|=2<3

—49 —-42 -42 0 0 0]




Example 3: Givensystem .7 r T T o

X, 1 2 X, 1 0

u
X, [=[0 1 x2+01L1}
%] |1 0 3| x| |0 0"

Judge the controllability.

Sol :

rank[B AB A’B]=rank

o O =
-
S =
~ O O
S
Il
w

So system has controllability, or complete controllable.




A = [
[ [ _' J E} '.' = :_ |
Il R A s 5 fod |

Specially point out: when controllability matrix has full-rank ,
complete controllability matrix calculation 1s not needed.

rank[B AB |=rank

o O =
o = O
— O




4.2.2 Second form of state controllability Criteria
Theorem 2:

Suppose system has distinct eigenvalues A, A, -+ A, the

necessary and sufficient condition of system being complete
controllable is :

B do not contain row with all 0 element in diagonal canonical
form of state equation obtained by nonsingular transform




Example: Study systems controllability

(x| [-7 0 o0][x] [-2
X5|=l 0 =5 0 ||x|+| S ju
X, 0 0 -1]|x 7

o 0 -1 9

X3

0 0 -1||x| |7 5

complete controllable

[ X, -7 0 0 ||x 2
562} = { 0 -5 0 {xz} + Mu Not complete controllable,
i X, 1s not controllable

51 -7 0 0][x] [0 1
{xz}{o -5 0} {%{4 O}u complete controllable




Theorem 3:

Suppose that system has repeated eigenvalue A (m, — repeated)
k

A, (m, —repeated)---- - A (m, —repeated),) m; =n, A, # A,(i # j)
i=1

the Jordan canonical form of state equation obtained by nonsi
ngular transform 1s _ _

X = X+ Bu

|0 Tk _
The necessary and sufficient condition of system being complet
e controllable is the row elements of B which correspond to th

_ ._1. e last row of each Jordan block are not all 0




Example: Study systems controllability

S @ N -

S o N

complete controllable

complete controllable

Not complete controllable,
X, 18 not controllable




4.2.3 Third form of state controllability Criteria
4.2.3.1 Determining transfer function by
state space descripation

For SISO system, system equation 1S (x = Ax+ Bu
y=Cx+Du

Doing Laplace transform, suppose 1nitial condition 1s 0

sX(s)=AX(s)+ BU(s)
Y(s)=CX(s)+DU(s)

W(s)= 5((?) =C(sI-A)"'B+D
_c =) gy p

|SI—A|




adj(s] — A) 3
det(s/ — A)
bs"'+--+b s+b

n n—1
s"+as" +-+a,_sta,

D=0, W(s)=C

Define state-input transfer function

(sI—A)"'B

Define state-output transfer function

C(sl — A)”'




Remark:

(1)The denominator polynomial of transfer function equal to the char
acteristic polynomial of matrix A,

(2)The poles of transfer function are eigenvalues of matrix A,

(3)The necessary and sufficient condition of system stability 1s that e1
genvalues of matrix A have negative real part.

4.2.3.2 Criteria 3 of controllability
For SISO system , the necessary and sufficient condition of syste
m being complete controllable is that state-input transfer function

(sI—A)"'B

~ Ido not exist cancellation factor, or do not exist zero-pole cancellatio
~_“mphenomenon.




4.3 Criteria of Observability

4.3.1 First form of state observability Criteria

Theorem 1. System ) =(4,C) or
X = AX + Bu
y=Cx+Du

the necessary and sufficient condition of system being comp
lete observables 1s that the observability matrix

Q, =[CT :4'C 3"-5(AT)”_1CT] has full-rank
S

or 0, = C:A has full-rank

CA"




The rank of observability matrix means the number of obse
rvable state .

Observability is 1dentification of initial state in essence .
The deduction of theorem 1:

The case of single output The necessary and sufficient
condition of system being complete observable 1s that the
observability matrix

0,=|CTid'CTii( 4"y C" |
1s regular matrix (nonsingular matrix), or the inverse matrix
of Q, exist (|Q|#0 )
The case of multi-output ¢, is not square matrix.

L\ rankQ, = rankQ,0, 0,0/|#0 is obversability criteria




A

Example 1: Given system equation ’X{ 0 1 0 }”H

0 o0 1 0
| |-6 -11 —6| |1
=l 5 1lx

Judge the observability

Sol: c=[4 5 1]

0 1 0
CA=[4 5 1]|0 0 1 |=[-6 -7 -]
-6 —11 -6

-6 -11 -6

4 5 1
o' =|-6 -7 -1
6 5 -l

0 1 0
A’ =[-6 -7 1]{0 0 1][6 5 1]




(4 5 1]
mnkQ; =rank| -6 -7 —-1|=2<3
6 5 -1

( Rank 1s determined by column vector)

". system 1s not complete observable
Example 2: Given system equation

ey D
A2

Judge the observability..




Sol:

1 O
. C -1 0 .
0, = {CA} = 5 1 , rankQ, =2
__2 1 -

( Rank 1s determined by column vector)

". system 1s complete observable.




Example 3: Given system block diagram as follow:

_ +% Y (s)
X, (s) X, !
Us) 1 ) sX,(s) (s)
4 s+ 2 s
*, Y, (s)
) —»

I+

Judge the controllability and observability

| —




Sol:

sX,(s)=X,(s)+tu
1
s+2

[=Xi($)=U(s)]|——==X,(5)

Yi(s) = X, (s)
Y,(s)=X,(s)+X,(5)

(X =x, +u

Xy ==X —2xp —u
(y1=x

(V2 =X+ X




.. system 1s not complete controllable
.

g

; | C
2

mnkQ; =2

.. system 1s complete observable.

CA

. 1 -1
Q,{:_B:AB]z{1 1} rankQ, =1<2
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4.3.2 Second form of state observability Criteria
Theorem 2:

Suppose system has distinct eigenvalues A4, A4, -+ A, the

necessary and sufficient condition of system being complete
observable is :

C do not contain column with all 0 element in diagonal canonical
form of state equation obtained by nonsingular transform

X =




d b

Example: Study the observability of systems:

y=[0 4 5]x system states are not complete observable

3 2 0],
ke :{o ; JX system states are complete observable




Theorem 3:
Suppose system has repeated eigenvalues A, (m, —repeated)

k
A, (m, —repeated)------ A (m, — repeated),Zmi =m, A, #A,(i # j)
i=1

the Jordan canonical form of state equation obtained by non-
singular transition 1s

J|
A J, 0|~ -
X = X + Bu
0 i
y=CX

The necessary and sufficient condition of system being complete
W observableis the column elements of ¢ which correspond to
~ |\ the first row of each Jordan block is not all 0.




b

Example: Study the observability of systems:

310 ]
0 3 0
X={0 0 3 X
1) 91 system states are
0 0 -2 complete observable
1111 0],
- :L 110 o}
S
=] 2 % system states are not
2, (3) complete observable

1
3 n .
X. 1S not observable
011 0]. 1
Ly{ }X




oY g

4.3.3Third form of state observability Criteria

Theorem 3: For single-input single-output system, the neces
sary and sufficient condition of system being complete observa
ble 1s that the state-output transfer function

C(sl—A4)"
do not exist cancellation factor, or do not exist zero-pole cancell
ation phenomenon.

Theorem4: For single-input single-output system, the necess
ary and sufficient condition of system being complete controlla
ble and observable 1s that the input-output transfer function

A C(sI-A)"'B
B _ - do not exist cancellation factor, or do not exist zero-pole cancell
| %\ ation phenomenon




Comprehension of zero-pole cancellation

 Modern unallowable If exist—not controllable and obser
vable , no optimum control exist

 Classical allowable If exist, zero-pole located left s-plane —s
table , no optimum control system structure simple




4.4 Criteria of Controllability and Observal

111ty

L E I

for linear discrete system o AL

4.4.1 Controllability Criteria of linear discrete system
4.4.1.1 Concept of Discrete System Controllability

For linear discrete system X(k+1)=GX (k) + Hu(k)
v(k)=CX(k)+ Du(k)

given the initial valve X(0) at instant t, , if there exist a admissible
u(k) , such that make x(k )=0 after finite sampling periods, then the
system 1s controllable .

4.4.1.2 Criteria of Discrete System Controllability




the necessary and sufficient condition of system ) =(G,H)
being complete controllable 1s that the controllable matrix

0, =|H:GH:-:6G"'H| has full-rank

Or rank|H:GH:- G H|=n
Example 1: The state equation 1s

x,(k+D)] [1 0 0 |[x()] [1
Nk+1) =] 0 2 =2||x,k)|+]|0 [uk)
k+D| -1 1 0 || x| |1

Judge the state controllability of system




Sol:

(1 (1 0 O] (1] [ 1]
H=|0|, GH=|0 2 =-2|]0|=-2
1] -1 1 0[] |[-1
1 0 o[ 1] [1]
G°H=l0 2 —2||-2|=[-2
-1 1 0 ]|-1| |[-3
1 1 1 ]
rankQ, =rank|0 -2 -2|=3
1 -1 -3

System states are complete controllable




Example 2: The state equation is

x(k+D] [1 0 0 ][x(k)] |1
x,(k+)|=] 0 2 =21|]|x,(k)|+|O0
x(k+D)| |[-1 1 0] |xk)]| |0

0
1 \u(k)
0

Judge the state controllability of system




-2

0 2

=3

GH =

0O 2 2 2
-1

1

1_

0 O 1 -1

rankQ, =rank| 0

System states are complete controllable




Example 3: The state equation of continuous system 1s

L o[l

Judge the state controllability of this system and its discrete system.




Sol: (1) A{_Z}z (1)- B:ﬁ} AB:LI)}
o-ta an] )

rankQ,=2

System states are complete controllable

(2) Discretization , suppose that sampling period 1s T

_ AT _ 71 -1
G=e" =L [(s[-4) LzT
_ - |
7! szja)2 s+’ |: cos wl’ % :|
N ~&’ s el
g et | ler wsm ol coswl




B : aArn’ [ 1—coswT |
T r| COS X smar 1 () =
A
H:j edet=j | @ dt=| °
0 0| —wsmat cosax || 1 sinor
B sin@wl’ | _1—CO—SCUT_ i cos Wl —cos> wT +sin’> @T i
GIT — cos Wl SILOL s |_ =
—COS a)T COS a)T sin wl’ 2sin wT cos wT —sin T
| L () _ | [0 _

1—cos wT cos Wl —cos® wT +sin’ T
2 2

=|H GH|=| ° ”
sin T 2sin w1 cos W —sin T
[0 [0




‘Qk‘ == sin®T(cos®T —1)
In order to make |Q,|#0

T#% k=012,

If T selected improperly, the complete controllable contin
uous system may be not complete controllable after discre
tization.




4.4.2 Observability Criteria of linear discrete system
4.4.2.1 Concept of Discrete System Observability
If the arbitrary initial state value X, can be determined uniq

uely according to y(k) measured in finite sampling periods,
the discrete system 1s complete observable.

4.4.2.2 Criteria of Discrete System Observability

For linear time invariant discrete system » =(G,C) ,
the necessary and sufficient condition of system being com
plete observable 1s that the observability matrix




b

Example:

0, =[C":G"C":(G"yC"| has full-rank

.
or mnkQ;,r = rank C,G =n
_CGn_l_
linear time invariant discrete system

( (2 0 O]

X(k+)=|-1 =2 0|X(k)

< 0 1 2]

y(k) {1 O}X(k)

\ 010

Judge the system observability




rank

= rank

== — 2 — I —)

System 1s not complete observable.

€=



4.5 Controllable Canonical Form and

4.5.1.The introduction of problem

X = AX + Bu

For linear time invariant system{
y=CX

[fsystem > =(4,B) is complete controllable

Then mnk[BEABE---fA”‘IB]=
mznk[b1 cob iAb -~ Ab i1 A"'D, “'A”_lb,,]=n

That 1s, controllable matrix has and only has n column v
ectors which are linear 1rrespective.

[f selecting any linear combination of n column vectors ,
we can obtain another linear irrespective n column vectors.
So there exist a basis vector, through nonsingular transform,




the basis vector 1s changed to canonical form, this canonical form is
called controllable canonical form.

If system 3 =(4,C) is complete observable

Then rank|CTiA"C"i 34Ty C" )=

ranklc) ---c iA"cl - A"c! (A7) e/ ---(AT)”_IC,Z;]= n

That 1s, observable matrix has and only has n column vec
tors which are linear irrespective.

[f selecting any linear combination of n column vectors ,
we can obtain another linear irrespective n column vectors.
So there exist a basis vector, through nonsingular transform,




the basis vector 1s changed to canonical form, this canonical form is
called observable canonical form.

For SISO system controllable matrix or observable matrix
has only sole linear irrespective vector, so the canonical
expression 1s sole.

But for MIMO system, the basis vector has different selecti
on, so the canonical expression 1s not sole.




4.5.2 The controllable canonical of SISO system

Given the state space description

X =Ax+ Bu
{y=Cx
Where X— nx1
A— nXn
B— nxl
C— Ixn

If the system i1s complete controllable, that is , the controllable
matrix O, =|Bi4Bi--4""'B| is nonsingular matrix

Then there exist nonsingular transform
X =PX or X =P 'X (1)




b

the nonsingular transform change the state equation to controllable can
onical form {

X = AX+ Bu

AI\ 2
y=Cx (2)
[ 0 1 0 0 | (0
n 0 0 1 o 0 R :
Where 4=| . _ .|, B=l
: : : . 0 (3)
__an _an 1 _an—2 _al_ _1_
p
The transform matrix ~ p_| 4 (4)
| RAT A=PAP"!

\ Where 7,=[0 - 0 1][BidBiia™'B]'  B=




Proof: Let

%0 ] l§
X = )%2@ P= Pz
| X, (1) K

1. The proof of P

From %_px . We have

X0 A

0| _| b

X, (1) = Bx(¢)
= . X :

)

20| |P X (1)=Px(1)




Derivate two sides of (5), and consider (2), (3)
%,(1)=3,(1) = Bx(t) = BAX(1)+ P,Bu(t)

Compare (1) and (6) . PB=0
(6) turn to X1 (1) =%, (t) = P, Ax(¢)
Derivate two sides of (7), and consider (2), (3)
5(=%)=BALx()  RAB=0

(=% @)=PA'x(t) PA"*B=0

P

1

Or X©O=PX@)=| " X (@)

(6)

(7)




T

| B4 (8)
_PlAn_l_

PB=PBAB=--=PA" *B=0 (9)

2. the proof of P,

Derivate X(r)=Px(r) two sides




X(¢) = Px(1) = PAx(t)+ PBu(?)
= PAP”'X + PBu(¢)

y=Cx=CP'}
So A= PAP”
B=PB
C=Cp’
P ] [0

Consider (3) and (9) PB = —




b

or  B|BiAB:A’Bi--id"'B|=[0 0--- 0 1]
B=[0 0- 0 1][Bi4B:i4"'B] =[0 0 0 1]Q;

Example: Given the state space description of linear time invariant
system

X(t) = AX(t)+ Bu(t)
A ju— B pu—
0 -1 1

Turn 1t to controllable canonical form




Sol: (1) controllability discrimination

0, =[B§AB]=B _OJ

1 0
rankQ, = rank L J =2

System 1s complete controllable

(2) Find P, P=[0 1] [Bi4B] " =[0 1] B _OJI




(4) Find 4. 2 L {1 —1} {1 —1} {1 —1}1
A= PAP™ =
1 0] |0 =1/[1 0
1 o][o 1] [o 1
L —1} {—1 1}{1 0}
Lol
B=PB= _
1 0 |1] |1

(5) Write out canonical form

A A A A 0O 1] A 0
X:AX+Bu:1 OX+ U




b

4.5.3 The observable canonical of SISO system

Given the state space description

X = Ax+ Bu
y=Cx
Where X—vector nxl
A— nxn
B— nxl
C— Ixn
If the system i1s complete observable, that is , the observable
matrix - C ]

CA . . .
0, =| . 1S nonsingular matrix




b

Then there exist nonsingular transform x =7X or X =7'x (1)

the nonsingular transform change the state equation to controllable can

onical form X = A%+ Bu )
y=é§(
0 0 - 0 —-a,
Where A R =
A= o o0 v c=lo 0 1] 3)
0 0 . 0 -—g
0 0 1 -a |
The transform matrix 7T=|7, 47, AT (4)
A=T"AT
B=T"B




Where T =

C
CA

——1r .

0 0
]
o7
_1_ _1_

Example: Given the state space description

X(1) =

y(t) =

1 -1 "
o 2 ¢

-1 - %}x(t)

Turn 1t to observable canonical form




1
cl |-1 —= .
0, { }= 2 RankQ, =2  system is complete observable




i 0=" 7%
X(t) = |3 X(t)
v =[0 1]x()

N




4.5.4 Determine controllable canonical form and observable ¢
anonical form from state variables diagram

From state state variables diagram we has obtained

X ) 1 0 - o [*% 1[0
X, 0 0 1 0| |* 0
A e ' e
o 0 0 0 - 1 X, 0
xn __ an - an—l - an—2 - al | xn _1 |
_xl _
X
Y :[bn bn—l bz bl] i




b

Theorem 1:  Suppose the SISO system 1s complete controllable,
the transfer function 1s
Y (s) _ bs"'+---4+b _s+b,
U(s) s"+as" ' +--+a, ,s+a,

W (s)

The controllable canonical form is

0 1 0 - 0 0
. 0 0 1 S (N A
A=] . : : : . B =
; 0
| =4y Tdp1 T Ap-2 —dp R




b

Theorem 2:  Suppose the SISO system 1s complete observable,
the transfer function 1s
Y (s) _ bs"'+---4+b _s+b,
U(s) s"+as" ' +--+a, ,s+a,

W (s)

The controllable canonical form is

00 - 0 -a b,

1 0 - 0 —-qg bn_1
A=|0 1 - 0 —a_,|,B=|b_,

_O 0o --- 1 —a, | _bl_
C=[0 0 0 1




4.6 Duality principle of controllability and ?Eeri;,

X n-dimension state vector
21 {X = Ax + Bu u r -dimension control vector
y=Cx y——m-dimension output vector

5= A"7+Cy y4 n -dimension state vector
22 we By \% m -dimension control vector
W r -dimension output vector

1 The necessary and sufficient condition of systems being complete
controllable

rankQ, = rank[B: AB:---:A""B]=n

rankQ, =rank[C" :A"C"i---:(A")""'C" 1=n




2 The necessary and sufficient condition of systems being complete
observable

Y, rankQ, =rank[C" A"C" (4" C" ]=n
Y, rankQ, =rank[B:AB:- A" B]=n

So 21 Complete controllable condition=
>, Complete observable condition

>, Complete observable condition=
2> Complete controllable condition

Controllability and observability have duality l




Exercise / 1 .
ui VAT ﬁm

4.4 System x:[a (1}:|X+|:bi|u has complete controllability.

Try to determine the relation of a and b.

4.9 Turn the state equation to controllable canonical form
-1 0 1
7 0
411 X = Ax+Bu, y = Cx A= , B=H, c=t -1 1]
1
(1) Discriminate controllability and observability,

(2) Find transfer function.
. 14 >, and ) are complete controllable and complete observable

-2 2 -1
0o -2 0
1 -4 0

2, X, =AX,+Bu, y, =Cx,
2, X, =4x,+B,u, y,=0Cx,




(1) deduce the state equation of parallel system

u

iy > N
-

(2) Discriminate controllability and observability

(3) Find transfer function




4.17 Given the transfer function of SISO system

U(s) K
Y(s) (s+a) (s+c)(s+d)

Where a, b and ¢ are different. Find the state equation , and discuss
controllability.







R 0 o] % ||
Xy 0 0 1 0 X, 0
= s 2 +1
» 0 0 0 ] o
X, | a, —d,, —d4d,, —4 _ _Xn ] _1 1
e
Xy
y = [bn bn—l b2 bl]




