文章编号: 0254-5357(2012)05-0898-08

河北承德铁马哈叭沁超贫铁矿床的成因与成矿时代

李立兴1,李厚民1*,王德忠2,刘明军3,杨秀清3,陈 靖1

(1. 中国地质科学院矿产资源研究所,北京 100037;

2. 河北省地质矿产勘查开发局第四地质大队, 河北 承德 067000; 3. 中国地质大学(北京), 北京 100083)

摘要:河北承德一带基性-超基性岩中的超贫铁矿石(全铁 TFe 含量 <20%)资源在河北的铁精矿产量中占 有重要地位,其中以铁马哈叭沁超贫铁矿床贡献最大。本研究以铁马哈叭沁岩体中的超贫铁矿石即钒钛磁 铁矿化的角闪石岩中的角闪石为研究对象,通过电子探针分析和40 Ar/39 Ar 测年,结合野外地质特征,探讨了 超贫铁矿床的成矿时代及矿床成因。野外和岩相学特征表明,铁马哈叭沁超贫铁矿床为岩浆晚期分异型铁 矿床。电子探针分析表明,角闪石岩中角闪石主量元素变化范围较小,具有富 Ca、富 Mg、富 Na、贫 K 的特 征,属于韭闪石和镁绿钙闪石。角闪石成因矿物学研究表明,角闪石岩主要为幔源成因,并受到了地壳物质 的混染。角闪石岩中角闪石单矿物的40 Ar/39 Ar 年龄为 379~401 Ma,表明成岩成矿时代为泥盆纪,形成于白 乃庙岛弧与华北克拉通北缘发生弧-陆碰撞后的伸展阶段。

关键词:超贫铁矿床;角闪石;⁴⁰Ar/³⁹Ar 定年;铁马哈叭沁;华北克拉通 中图分类号: P597.3; P612 _______________ 文献标识码: A

Ore Genesis and Ore-forming Age of the Tiemahabaqin Ultra-low-grade Iron Deposit in Chengde, Hebei Province, China

LI Li-xing¹, LI Hou-min^{1*}, WANG De-zhong², LIU Ming-jun³, YANG Xiu-qing³, CHEN Jing¹

(1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;

2. The 4th Geological Team, Hebei Geology and Mining Bureau, Chengde 067000, China;

3. China University of Geosciences (Beijing), Beijing 100083, China)

Abstract: The ultra-low-grade Fe ore resource (content of total Fe is lower than 20%) hosted in mafic-ultramafic complexes in Chengde plays an important role in the iron production of Hebei Province, China. In order to investigate the ore-forming age and ore genesis of the Tiemahabaqin ultra-low Fe deposit, which makes a significant contribution to Chengde's iron production, this study presents electron microprobe and 40 Ar/ 39 Ar isotopic data of the hornblendes from iron-bearing hornblendites. The electron microprobe data shows that major elements of the hornblendes from hornblendites of the Tiemahabaqin complex are Ca-rich, Mg-rich, Na-rich and K-poor with limited aviation range, which were attributed to pargasites or magnesiohastingsites. The genetic mineralogy study indicates that the mantle source derived hornblendes were contaminated with crust materials. The 40 Ar/ 39 Ar plateau ages of the hornblende from hornblendites yielded 379 – 401 Ma, which indicates that the ore-forming process was formed in the Devonian period. Tectonically, the iron-bearing hornblendites are probably related to post-collisinoal extension after the arc-continental collision between the Bainaimiao arc belt and the northern margin of the North China craton during the latest Silurian period.

Key words: ultra-low-grade iron deposit; hornblende; 40 Ar/39 Ar dating; Tiemahabaqin; North China Craton

收稿日期: 2012-02-20; 接受日期: 2012-07-24

基金项目:国土资源部公益性行业专项经费项目"我国北方沉积变质型、岩浆型铁矿富矿成矿地质作用研究"(201111002); 中国地质大调查项目(1212011120988)

作者简介:李立兴,博士研究生,矿产普查与勘探专业,从事铁矿床研究工作。E-mail: lilixing1984@ sina. com。

通讯作者:李厚民,研究员,从事铁矿床研究工作。E-mail: lihoumin2002@163.com。

在华北克拉通北缘沿东西向红石砬 - 大庙断裂 带分布有多个基性 - 超基性岩杂岩体(图1),如铁 马哈叭沁辉石岩 - 角闪石岩杂岩体、红石砬辉石岩 - 角闪石岩杂岩体和高寺台纯橄岩 - 辉橄岩 - 辉石 岩-角闪石岩杂岩体等。承德地区的基性-超基性 岩体中赋存超贫铁矿,其中全铁(TFe)含量为12% ~20%,资源量达到45.37亿吨^[1],其中又以铁马哈 叭沁超贫铁矿床规模最大。最早认为这些岩体形成 于新元古代^[2]或晚古生代^[3-4],近年来又获得铁马 哈叭沁岩体中异剥钙榴岩 SHRIMP 锆石 U - Pb 年 龄为中泥盆世[5-6],但均未对这些岩体中赋存的超 贫铁矿开展研究工作。本研究选择铁马哈叭沁岩体 中的超贫矿石即钒钛磁铁矿化的角闪石岩中的角闪 石为研究对象,通过电子探针分析和40 Ar/39 Ar 测 年,结合野外地质特征,探讨了钒钛磁铁矿床的矿床 成因及成矿时代。

1 岩体及成矿地质特征

铁马哈叭沁辉石岩 - 角闪石岩杂岩体位于河北 省承德市西北部,华北克拉通北缘东段东西向红石 砬 - 大庙断裂带南侧(图1)。岩体南侧侵入于太古 界单塔子群变质岩系中,东侧侵入于古元古代辉长 岩中,西侧被第四纪沉积物覆盖,北侧被侏罗 - 白垩 纪火山岩覆盖(图2),岩体中可以见到古老片麻岩 和碳酸盐岩的捕掳体。

Fig. 1 Schematic map showing the distribution of the maficultramafic complexes along with the Hongshila-damiao fault

岩体在平面上自中心到边缘可以分为两个相带:中心相为橄榄辉石岩和辉石岩,边部相为角闪石岩,岩体中常有晚期长英质脉穿插。相邻岩相之间为渐变过渡关系,形成角闪辉石岩和辉石角闪石岩, 但常见辉石岩呈包体产于角闪石岩中(图 3a),说明 角闪石岩侵位晚于辉石岩。从中心相带到边部相带,岩石中的铁钛氧化物(钛磁铁矿和钛铁矿)和磷

图 2 铁马哈叭沁辉石岩 – 角闪石岩杂岩体地质简图 (修改自河北地质矿产局^[7])

Fig. 2 Geological maps of the Tiemahabaqin clinopyroxenitehornblendite complex (modified from Hebei Bureau of Geology and Mineral Resources^[7])

灰石逐渐增多,超贫铁矿石赋存于边部相带角闪石 岩中。

橄榄辉石岩为黑绿色,块状构造,中粒结构,网 状结构;岩石主要由透辉石(75%~80%)、橄榄石 (10%~20%)、斜方辉石(<5%)等矿物组成,其中 橄榄石部分已发生蛇纹石化,并伴随少量的磁铁矿 析出(图3b)。辉石岩为灰绿色,块状构造,中粗粒 结构;岩石主要由透辉石(80%~90%)、钛磁铁矿 (3%~5%)、橄榄石(<3%)、斜方辉石(<3%)及 少量的蚀变矿物角闪石、绿帘石和绿泥石组成 (图3c)。

角闪辉石岩(图3d)和辉石角闪石岩(图3e)为 黑绿色,块状构造,中细粒结构,交代残余结构;角闪 辉石岩主要由透辉石(60%~80%)和角闪石(20% ~30%)组成,辉石角闪石岩主要由透辉石(20%~ 30%)和角闪石(60%~80%)组成,其次均含有少 量的铁钛氧化物(5%~10%)及磷灰石(3%~ 5%)。镜下观察发现,角闪石、铁钛氧化物和磷灰 石密切共生,而透辉石主要呈半自形-他形粒状被 角闪石或磁铁矿交代,或蚀变为角闪石和绿泥石呈 残晶状产出,其结晶早于角闪石和磁铁矿。

— 899 —

图 3 铁马哈叭沁超贫铁矿床中岩矿石特征

Fig. 3 Rock types and ore types in the Tiemahabaqin ultra-low-grade iron deposit

a—角闪石岩中的辉石岩捕掳体; b—橄榄辉石岩,正交偏光; c—辉石岩,单偏光; d—角闪辉石岩,单偏光; e—透辉角闪石岩,单偏光; f—角闪石岩,单偏光; g—角闪石岩,反射光; h—块状铁矿脉穿于辉石岩内; i—铁钛磷灰岩,单偏光。Ol—橄榄石; Di—透辉石; Hb—角闪石; Mag—磁铁矿; Ap—磷灰石; Py—黄铁矿。

角闪石岩为黑绿色,块状构造,粒状结构;岩石 主要由角闪石(80%~95%)、铁钛氧化物(5%~ 15%)、磷灰石(5%~8%)、透辉石(<3%)、硫化物 (<3%)组成(图3f)。角闪石呈自形-半自形长柱 状,简单双晶发育,矿物颗粒最长可达15 cm;铁钛 氧化物为钛磁铁矿和钛铁矿,稀疏浸染状分布,钛铁 矿由钛磁铁矿出溶形成,呈条带状或格架状;磷灰石 呈自形长柱状,与铁钛氧化物密切共生;硫化物为黄 铁矿、黄铜矿和磁黄铁矿,他形粒状分布于铁钛氧化 物边部或角闪石颗粒之上(图3g)。

铁马哈叭沁岩体中矿石主要有三种类型,分别 为块状铁矿石(图 3h)、铁钛磷灰岩(图 3i)和超贫 铁矿石,块状铁矿石和铁钛磷灰岩含量较少,分布局 限,不能圈定矿体。块状铁矿石主要为辉石岩或角 闪辉石岩中的铁矿脉,矿石由钛磁铁矿(85%~ 95%)、钛铁矿(5%~10%)、尖晶石(<3%)组成, 其中钛铁矿主要为钛磁铁矿中出溶的片晶,呈带状

分布。钛磁铁矿与钛铁矿颗粒接触处常出溶有尖晶 石。铁钛磷灰岩主要呈团块状产于角闪石岩中,主 要由钛磁铁矿(60%~80%)、磷灰石(15%~ 40%)、钛铁矿(<5%)组成,基本不含硅酸盐矿物。 超贫铁矿石即含铁的角闪石岩,预测资源量超过1.3 亿吨,全铁(TFe)含量为16%~18%,所含V、Ti等 元素可以综合利用^[8]。矿石中金属矿物主要为钛 磁铁矿、钛铁矿,次有黄铁矿、黄铜矿及磁黄铁矿 等,非金属矿物主要有角闪石、磷灰石及绿泥石。 钛磁铁矿为由固溶体分离出来的钛铁晶石和磁铁 矿的矿物集合体,多呈半自形-他形粒状,粒径 0.5~2 mm, 粗大者可达 10~50 mm。钛磁铁矿中 还出溶有尖晶石,他形粒状分布于钛磁铁矿颗粒 内部或者颗粒的边缘。钛铁矿多呈条带状,与钛 磁铁矿接触处常有带状尖晶石出溶。磷灰石与钛 磁铁矿和钛铁矿密切共生,呈无色-灰白色,自形 -半自形粒状。晶体粒径不等,粗大者长4~10 mm,宽2~5 mm。

2 样品采集与分析方法

⁴⁰Ar/³⁹Ar 测年所用样品 TM4 和 HBQ2,均为 新鲜未蚀变的钒钛磁铁矿化的角闪石岩,采样位 置见图 2。TM4 样品呈黑绿色,块状构造,中粗粒 等粒结构,主要由角闪石(90%)、铁钛氧化物 (5%)、磷灰石(5%)组成;HBQ2 样品呈黑绿色, 块状构造,细粒等粒结构,由角闪石(85%)、铁钛 氧化物(10%)、磷灰石(4%)及少量的硫化物 (1%)组成。室内将样品破碎至 0.250~0.420 mm,最后在镜下挑选出 2 g 纯度 >98% 的角闪石 单矿物。

角闪石主量元素分析在中国地质科学院矿产资 源研究所电子探针实验室完成,测试仪器为 JXA 8800R型电子探针,测试加速电压 20 kV,束电 流20 nA,束斑直径5 μm。

TM4 和 HBQ2 两件角闪石样品⁴⁰ Ar/³⁹ Ar 测年 在中国科学院地质与地球物理研究所 Ar – Ar 定年 实验室完成。两个样品的单矿物分别称重后用铝箔 包裹,和国际标准样品 Bern4M 一同送入中国原子 能科学研究院 49-2 反应堆 H8 孔道中进行快中子 照射 47.5 h,中子通量的变化约为 3%/cm。照射后 的样品放置 1~2 个月以使放射性水平降至安全操 作范围,利用超低本底双真空电阻炉使用阶段加热 法萃取气体。纯化后的气体引入 MM 5400 气体质 谱仪进行 Ar 同位素分析。测定结果经过仪器质量 歧视校正、放射性衰变校正和 Ca、K 同位素反应校 正。由于系统本底小于样品信号(⁴⁰ Ar)的 1‰,且 其⁴⁰ Ar/³⁶ Ar 比值近似于大气比值,因此测试数据没 有进行本底校正。年龄误差置信水平为 2σ。详细 实验流程见文献[9]。

3 角闪石的主量元素特征和⁴⁰ Ar/³⁹ Ar 年龄

3.1 角闪石的主量元素特征

由表1可以看出,采集于岩体中不同位置的角 闪石岩中角闪石主量元素变化范围不大,总体特征 是富 Ca (CaO 含量 11.64% ~ 12.11%)、富 Mg (MgO 含量 11.02% ~ 12.31%)、富 Na (Na₂O 含量 2.26% ~ 3.06%)、贫 K (K₂O 含量 0~0.01%)。

表 1 铁马哈叭沁岩体角闪石岩中角闪石电子探针分析结果

Table 1	Electron	probe	analyse	s of	hornblendes	from	hornblendites	in	the	Tiemahabagin	complex

 $w_{\rm B}/\%$

样品编号	TM4-1	TM4-2	TM4-3	TM4-4	TM4-5	TM4-6	TM4-7	TM4-8	HD2-2	HD2-3	HD2-4	HBQ4-1	HBQ4-2	HBQ4-3
SiO_2	40.31	40.58	40.64	41.17	40.24	39.95	40.43	40.69	39.70	40.14	39.83	39.06	38.93	39.09
TiO_2	2.46	2.47	2.37	2.33	2.29	2.41	2.39	2.49	1.54	1.47	1.50	1.77	1.76	1.89
Al_2O_3	12.93	12.49	12.53	12.10	12.86	12.42	12.31	12.47	14.44	14.10	14.19	13.98	14.68	14.26
$\operatorname{Cr}_2\operatorname{O}_3$	0.00	0.02	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.05	0.00	0.01
FeO	13.28	13.38	12.90	12.49	13.21	13.29	13.29	13.16	13.63	12.64	12.66	12.57	13.00	13.64
MnO	0.17	0.22	0.17	0.16	0.18	0.20	0.18	0.19	0.12	0.18	0.16	0.20	0.28	0.22
MgO	12.13	11.86	12.30	12.79	11.91	11.96	11.70	12.20	11.02	12.31	12.19	12.14	11.81	11.43
CaO	11.93	11.84	11.76	11.98	12.11	11.96	11.91	11.83	11.64	12.00	11.93	12.08	12.11	12.03
Na_2O	2.68	2.69	2.64	2.73	2.71	2.86	2.64	2.73	2.88	3.06	2.90	2.40	2.26	2.36
$K_2 O$	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
$\rm ZrO_2$	0.00	0.02	0.03	0.02	0.03	0.00	0.00	0.02	0.03	0.03	0.00	0.03	0.03	0.03
Total	95.90	95.57	95.34	95.77	95.54	95.06	94.86	95.77	94.99	95.92	95.36	94.27	94.87	94.96
^{IV} Al	1.96	1.88	1.89	1.84	1.92	1.93	1.85	1.89	1.99	2.00	2.02	2.07	2.14	2.09
^{VI} Al	0.33	0.34	0.33	0.30	0.36	0.30	0.36	0.31	0.59	0.49	0.49	0.42	0.47	0.45
Ti	0.28	0.28	0.27	0.26	0.26	0.28	0.27	0.28	0.18	0.17	0.17	0.20	0.20	0.22
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Fe^{3} +	0.47	0.37	0.46	0.38	0.32	0.33	0.28	0.42	0.42	0.45	0.50	0.60	0.69	0.61
Fe^{2} +	1.20	1.32	1.16	1.19	1.34	1.36	1.41	1.23	1.31	1.13	1.09	0.99	0.95	1.11
Mn	0.02	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.04	0.03
Mg	2.71	2.67	2.76	2.85	2.68	2.71	2.65	2.73	2.49	2.74	2.73	2.75	2.65	2.58
Ca	1.92	1.91	1.89	1.92	1.96	1.95	1.94	1.90	1.89	1.92	1.92	1.96	1.95	1.95
Na _B	0.08	0.09	0.11	0.08	0.04	0.05	0.06	0.10	0.11	0.08	0.08	0.04	0.05	0.05
Na _A	0.69	0.70	0.66	0.71	0.75	0.79	0.72	0.70	0.73	0.81	0.76	0.67	0.61	0.64
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg [#]	69.4	66.9	70.4	70.6	66.6	66.7	65.3	68.9	65.5	70.8	71.5	73.5	73.7	69.8

角闪石的结构式根据四面体阳离子数与八面体 阳离子数总和等于 13 及电价平衡计算获得^[10]。其 中 FeO/Fe₂O₃校正根据 Droop^[11], Mg# = 100Mg/(Mg + Fe²⁺)。根据角闪石命名原则^[12], 铁马哈叭沁角 闪石岩中角闪石(Ca + Na)_B介于 1.89~1.96 之间, 属于钙质角闪石。角闪石结构组分中(Na + K)_A 介于0.66~0.81 之间, Ti 为 0.17~0.28, Mg/(Mg + Fe²⁺)为 0.65~0.74, Si 为 5.87~6.16。根据钙质 角闪石的进一步命名, 在 Mg/(Mg + Fe²⁺) – Si 图上 定名为 韭闪石(^N Al ≥ Fe³⁺)和镁绿钙闪石 (^NAl < Fe³⁺), 见图 4。

3.2 角闪石的⁴⁰ Ar/³⁹ Ar 年龄

两件角闪石样品(TM4 和 HBQ2)阶段加热 ⁴⁰Ar/³⁹Ar数据见表2和表3,共14个阶段,加热温度 区间为800~1350℃,阶段升温年龄图谱及坪年龄 见图5。

角闪石单矿物样品(TM4)在高温加热阶段释出 Ar 的数据波动较大。该样品在 1220 ~ 1280℃的两 个高温加热区间内得到一近似的年龄坪,包括了 59.37%的³⁹Ar 释放量,坪年龄为(401±8) Ma。

角闪石单矿物样品(HBQ2)在高温加热阶段 1180~1280℃的三个阶段高温加热区间内得到一年 龄坪,包括了 66.05%的³⁹Ar 释放量,坪年龄为(379 ±4) Ma,对应的等时线年龄为(371±11) Ma (MSWD = 1.59),反等时线年龄为(371±11) Ma (MSWD = 0.34)。构成坪年龄的数据点仅有 3 个, 且放射性⁴⁰Ar 较高,未得出有效的⁴⁰Ar/³⁶Ar 初始比 值,但三个年龄值比较接近,仍为有效年龄值。

图 4 钙质角闪石成分变化与定名图^[12]

Fig. 4 Classification of the calcic hornblendes from hornblendites in the Tiemahabaqin complex $^{[12]}$

 $Ca_B \ge 1.50$, (Na + K) $_A \ge 0.50$, Ti < 0.50 $_{\circ}$

4 超贫铁矿床的形成时代及成因

4.1 成岩成矿时代

铁马哈叭沁岩体中角闪石岩的角闪石单矿物 ⁴⁰Ar/³⁹Ar测年结果表明(图 5):角闪石样品 TM4 在 1220~1280℃两个加热阶段包括 59.37%的³⁹Ar 释放 量的坪年龄为(401±8) Ma,与前人测定的铁马哈叭 沁岩体中异剥钙榴岩的 SHRIMP 锆石 U – Pb 年龄 (397±6) Ma 和(392±5) Ma^[5-6]在误差范围内基本 一致;角闪石样品 HBQ2 在 1180~1280℃三个加热阶 段包括了 66.05%的³⁹Ar 释放量的坪年龄(379±4) Ma,与前人获得的红石砬 – 大庙断裂带东端红石砬 辉石岩 – 角闪石岩的 SHRIMP 锆石 U – Pb 年龄值 (381±7) Ma^[6]基本一致。红石砬和二道沟两个辉 石岩 – 角闪石岩杂岩体还有 SHRIMP锆石 U – Pb年

表 2 铁马岩体角闪石岩中角闪石(TM4)的40 Ar/39 Ar 同位素测定结果

Table 2	The ⁴	40 Ar/ 3	⁹ Ar isotope	data age	e of hornbler	de (TM4)) from the hornblendi	te in the	Tiemahabaqin	complex
---------	------------------	--------------------	-------------------------	----------	---------------	----------	-----------------------	-----------	--------------	---------

温度	40 • (39 •	37 . (39 .	36 . (39 .	40 * /39 *	$w_{\rm B}$	/%		
θ∕℃	¹⁰ Ar/ ³⁵ Ar	Ar/ Ar	³⁰ Ar/ ³⁷ Ar	$Ar / Ar_k -$	$^{40}{ m Ar}^{*}$	$^{39}\mathrm{Ar}_{\mathrm{k}}$	(牛陸 ± 20)/ Ma	
800	11388.0458	1.7226	36.3636	641.5290	5.64	0.02	2914.1 ± 1054.2	
900	44912.4561	92.2177	132.7451	6179.0919	12.68	0.05	6653.7 ± 3573.6	
950	256.2870	4.9652	0.6383	68.3669	26.56	0.39	643.4 ± 44.8	
1000	116.3248	0.8319	0.2698	36.6838	31.51	0.77	373.3 ± 21.5	
1050	55.5295	1.0841	0.0804	31.8870	57.37	1.38	328.7 ± 7.9	
1080	49.6243	2.8160	0.0525	34.4112	69.18	1.11	352.3 ± 5.6	
1100	45.8568	2.8548	0.0314	36.8917	80.25	1.21	375.2 ± 5.9	
1120	43.7337	2.4634	0.0225	37.3724	85.28	1.82	379.7 ±9.5	
1140	40.8692	3.1156	0.0106	38.0835	92.94	4.31	386.2 ± 3.5	
1160	40.3256	3.0365	0.0060	38.9033	96.22	6.60	393.6 ± 3.1	
1180	42.9463	3.0055	0.0056	41.6441	96.72	22.30	418.4 ± 2.7	
1220	39.7741	2.9533	0.0029	39.2500	98.43	48.29	396.8 ± 2.6	
1280	41.2721	3.7370	0.0056	40.0431	96.71	11.08	404.0 ± 2.5	
1350	41.7862	3.0993	0.0224	35.5162	84.77	0.66	362.6 ± 5.5	

表 3 哈叭沁岩体角闪石岩中角闪石(HBQ2)的40 Ar/³⁹ Ar 同位素测定结果

Table 3 The ⁴⁰Ar/³⁹Ar isotope data of hornblende (HBQ2) from the hornblendite in the Tiemahabaqin complex

温度	40 • (39 •	37 . (30 .	36 . (30 .	40 • * 39 •	$w_{\rm B}$	/%	
<i>θ</i> ∕°C	⁴⁰ Ar/ ⁵⁷ Ar	³⁷ Ar/ ³⁷ Ar	⁵⁰ Ar/ ⁵⁷ Ar	$Ar / Ar_k =$	$^{40}{ m Ar}^{*}$	$^{39}\mathrm{Ar}_{\mathrm{k}}$	- (年龄 $\pm 2\sigma$)/Ma
800	9633.2945	1.3284	30.7304	553.1875	5.74	0.03	2707.1 ±1456.8
900	2174.1072	1.3252	6.5390	242.2111	11.13	0.81	1670.4 ± 324.1
950	311.3437	2.8452	0.7351	94.5713	30.30	0.04	841.9 ± 390.5
1000	80.1099	0.5264	0.1865	25.0548	31.26	0.92	263.9 ± 14.4
1050	45.7595	0.8477	0.0698	25.2108	55.05	1.72	265.4 ± 5.7
1080	36.2601	2.4300	0.0309	27.3889	75.38	2.50	286.6 ± 4.1
1100	33.9221	2.3656	0.0143	29.9451	88.10	3.09	311.1 ± 3.0
1120	34.5018	1.9962	0.0074	32.5239	94.11	4.17	335.6 ± 2.6
1140	35.7913	2.1030	0.0048	34.5915	96.47	7.48	355.0 ± 3.0
1160	36.8170	2.2127	0.0037	35.9771	97.53	11.19	367.8 ± 3.4
1180	37.9985	2.1323	0.0033	37.2466	97.84	31.03	379.5 ± 3.2
1220	37.2536	2.1784	0.0024	36.7845	98.56	17.22	375.3 ± 5.1
1280	38.2627	2.7490	0.0042	37.3399	97.36	17.80	380.4 ± 2.7
1350	37.7178	3.2633	0.0118	34.5853	91.44	2.01	354.9 ± 3.7

龄分别为(393 ±4) Ma 和(395 ±11) Ma^[6],成岩时 代为中泥盆世。野外和岩相学特征表明,角闪石与 辉石岩为侵入接触关系,亦即角闪石岩是在辉石岩 固结后侵入的,说明铁马哈叭沁超基性岩杂岩体的 形成有可能延续了较长一段时间,时差可达 20 Ma。 成岩与钒钛磁铁矿成矿同期,因此成矿时代可从早 泥盆世延续到晚泥盆世。

志留纪末期,白乃庙岛弧与华北克拉通北缘发 生弧 - 陆碰撞,对应岛弧岩带结束于 420 Ma 左 右^[13]。泥盆纪期间,这些辉石岩 - 角闪石岩杂岩体 形成于该弧 - 陆碰撞后的伸展阶段^[6,14-15]。

4.2 超贫铁矿成因

采于岩体不同位置铁马哈叭沁岩体角闪石岩中 的角闪石主量元素变化范围较小,具有富 Ca、富 Mg、富 Na、贫 K 的特征,角闪石定名为韭闪石和镁 绿钙闪石。姜常义等[16] 通过对国内外不同成因火 成岩中钙质角闪石总结研究,认为 Al - Si 图解、 $(Na + K) - ^{N} Al 图解能够有效地区分幔源角闪石和$ 壳源角闪石。在Al-Si图解上,镁绿钙闪石和非闪 石投点略呈负相关线性关系,但均落入幔源成因角 闪石区(图 6a);同样在(Na + K) - ^N Al 图解上,所 有角闪石投点集中落在幔源成因角闪石区,说明角 闪石岩可能为幔源成因(图 6b)。然而野外观察发 现,岩体中存在大量古老片麻岩和碳酸盐岩捕掳体, 另外角闪石岩中发育大量的 1.7 Ga 和 2.5 Ga 碎屑 锆石(未发表数据),说明岩体在侵位过程中受到了 地壳物质的混染。文献报道,岩体中角闪石岩 Sr -Nd 同位素和异剥钙榴岩中锆石 Hf 同位素研究表 明^[6],岩石主要来源于富集岩石圈地幔的部分熔 融,但有地壳物质的混染,本文与之认识一致。

野外和镜下观察发现,铁马哈叭沁岩体不同岩

图 6 铁马哈叭沁角闪石岩中韭闪石和镁绿钙闪石 Al – Si 和(Na + K) – ^N Al 图解^[16]

Fig. 6 Al-Si and (Na + K)-^N Al diagrams of pargasites and magnesiohastingsites of hornblendites from the Tiemahabaqin complex^[16]

相之间为渐变过渡关系,分异良好,岩石的演化序列 由早到晚为橄榄辉石岩/辉石岩 - 角闪辉石岩/辉石 角闪石岩 - 角闪石岩,钒钛磁铁矿化主要发育在晚 期侵位的角闪石岩相中,而早期的橄榄辉石岩/辉石 岩相中无矿化或矿化较弱。因此,铁马哈叭沁超贫 铁矿床应为岩浆晚期分异型铁矿床,结合角闪石成 因矿物学分析,其成矿物质主要来自于富集的岩石 圈地幔。

承德地区钒钛磁铁矿床有两种类型,均与深断 裂控制的基性 - 超基性岩体密切相关:一种类型是 钒钛磁铁矿化的角闪石岩,属于岩浆晚期分异型铁 矿床,如铁马哈叭沁超贫铁矿床;特征是岩体分异良 好,但矿床规模较小,矿化较贫,呈带状分布于红石 砬 - 大庙断裂带两侧,形成的构造环境为弧 - 陆碰 撞后的伸展阶段,成矿时代为泥盆纪,含矿岩浆起源 于富集的岩石圈地幔^[5-6];另一种类型是产于大庙 斜长岩杂岩体中的岩浆晚期贯入型铁矿床,如黑山 铁矿床;特征是矿床规模较大,品位较富,岩体位于 红石砬 - 大庙断裂带北侧,形成于板内裂谷环境,成 矿时代为中元古代^[17-22],含矿岩浆起源于富集的岩 石圈地幔^[23-24]或古老的下地壳^[25]。

5 结语

铁马哈叭沁超基性岩杂岩体中的超贫铁矿化虽 然主要发育在晚期侵位的角闪石岩相中,而早期的 橄榄辉石岩/辉石岩相中无矿化或矿化较弱,但是野 外地质观察、岩石学、矿物学和矿床学研究表明,其 不是后期热液作用的产物,而是岩浆晚期分异型铁 矿床,这一认识为区域上进一步找矿勘查指明了方 向。角闪岩中角闪石的⁴⁰ Ar/³⁹ Ar 同位素定年成果 表明,成岩成矿持续时间较长,从早泥盆世到晚泥盆 世,为区域超基性杂岩体的成岩时代提供了新证据。 结合前人定年成果,本文研究表明区域上超基性杂 岩体的形成时代除大庙杂岩体为元古代外,多数为 泥盆纪,为进一步研究华北克拉通的地质构造演化 提供了基础资料。

致谢:衷心感谢中国地质科学院矿产资源研究所陈 振宇博士、陈晓丹硕士在电子探针测试,中国科学院 地质与地球物理研究所杨列坤博士和苏菲博士在 ⁴⁰Ar/³⁹Ar测试中提供的帮助与指导。

6 参考文献

- [1] 李厚民,王瑞江,肖克炎,张晓华,刘亚玲,孙莉.中国 超贫磁铁矿资源的特征、利用现状及勘查开发建议
 [J].地质通报,2009,28(1):85-90.
- [2] 河北地质矿产局.波罗诺幅、石人沟幅、红旗幅1:50000区域地质图[M].1988.
- [3] 河北地质矿产局.承德幅 1:200000 区域地质图 [M].1974.
- [4] 河北省地质矿产局.河北省北京市天津市区域地质志[M].北京:地质出版社,1989:1-741.
- [5] 倪志耀.冀北退变榴辉岩、易剥钙榴岩和变质橄榄岩 及其地质意义[R].北京:中国科学院地质与地球物 理研究所博士后出站报告. 2002.
- [6] Zhang S H, Zhao Y, Liu X C, Liu D Y, Chen F K, Xie L W, Chen H H. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle [J]. Lithos, 2009, 110(1-4): 229-246.
- [7] 河北地质矿产局.大庙幅 1:50000 区域地质图[M]. 1993.
- [8] 承德市三原地质矿产有限责任公司.河北省滦平县哈

— 904 —

叭沁西沟至铁马沟超贫磁铁矿地质普查报告[R]. 2002.

- [9] 王非,贺怀宇,朱日祥,桑海清,王英兰,杨列坤.⁴⁰Ar
 -³⁹Ar年代学国际国内标准样品的对比标定[J].
 中国科学:D辑,2005, 35(7):617-626.
- [10] Jarrar G. Mineral chemistry in dioritic homblendites from Wadi Araba, Southwest Jordan [J]. Journal of African Earth Sciences, 1998, 26: 285 – 295.
- [11] Droop G T R. A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria
 [J]. Mineralogical Magazine, 1987, 51: 431 435.
- [12] IMA CNMMN角闪石专业委员会.王立本,译.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[J].岩石矿物学杂志,2001,21(1):84-100.
- [13] 李锦轶,张进,杨天南,李亚萍,孙桂华,朱志新,王励 嘉.北亚造山区南部及其毗邻地区地壳构造分区与 构造演化[J]. 吉林大学学报:地球科学版,2009, 39(4):584-605.
- [14] 张拴宏,赵越,刘建民,胡健民,宋彪,刘健,吴海.
 华北地块北缘晚古生代 早中生代岩浆活动期次、
 特征及构造背景[J]. 岩石矿物学杂志,2011,
 29(6): 824-842.
- [15] 赵越,陈斌,张拴宏,刘建民,胡健民,刘健,裴军令.
 华北克拉通北缘及邻区前燕山期主要地质事件[J].
 中国地质,2010,37(4):900-915.
- [16] 姜常义,安三元.论火成岩中钙质角闪石的化学组成 特征及其岩石学意义[J].矿物岩石,1984(3): 1-9.

- [17] 翟裕生.某斜长岩的岩石特征及成因[J].地质论评, 1965,23(3):186-195.
- [18] 解广轰,王俊文.大庙斜长岩杂岩体侵位年龄的初步 研究[J].地球化学,1988,(1):13-17.
- [19] 胡世玲, 王松山, 桑海清. 大庙斜长岩同位素地质 年龄、稀土地球化学及其地质意义[J]. 地质科学, 1990(4): 332-343.
- [20] 赵太平,陈福坤,翟明国,夏斌.河北大庙斜长岩杂岩 体锆石 U - Pb 年龄及其地质意义[J].岩石学报, 2004, 20:685-690.
- [21] 任康绪,阎国翰,蔡剑辉,牟保磊,李凤棠,储著银.
 华北克拉通北部古-中元古代富碱侵入岩的 Nd、Sr、
 Pb 同位素地球化学:岩石圈地幔富集的证据[J].
 岩石学报,2006,22(2):377-386.
- [22] 赵太平,陈伟,卢兵. 斜长岩体中 Fe Ti P 矿床的 特征与成因[J]. 地学前缘,2010, 17(2): 106 117.
- [23] 解广轰.大庙斜长岩和密云环斑花岗岩的岩石学和 地球化学:兼论全球岩体型斜长岩和环斑花岗岩类 的时空分布及其意义[M].北京:科学出版社,2005: 92-172.
- [24] Zhang S H, Liu S W, Zhao Y, Yang J H, Song B, Liu X C. The 1. 75 - 1. 68 Ga anorthosite-mangeritealkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a paleoproterozoic orogen [J]. Precambrian Research, 2007, 155: 287 - 312.
- [25] Zhao T P, Chen W, Zhou M F. Geochemical and Nd-Hf isotopic constraints on the origin of the ~ 1. 74 Ga Damiao anorthosite complex, North China Craton [J]. Lithos, 2009, 113: 673 - 690.