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Abstract. For k ≥ 2 and k ≥ i ≥ 1, let Bk,i(n) denote the number of partitions of n such
that part 1 appears at most i − 1 times, two consecutive integers l and l + 1 appear at most
k − 1 times and if l and l + 1 appear exactly k − 1 times then the sum of the parts l and l + 1
is congruent to i − 1 modulo 2. Let Ak,i(n) denote the number of partitions with parts not
congruent to i, 2k − i and 2k modulo 2k. Bressoud’s theorem states that Ak,i(n) = Bk,i(n).
Corteel, Lovejoy, and Mallet found an overpartition analogue of Bressoud’s theorem for i = 1,
that is, for partitions not containing non-overlined part 1. We obtain an overpartition analogue
of Bressoud’s theorem in the general case. For k ≥ 2 and k ≥ i ≥ 1, let Dk,i(n) denote the
number of overpartitions of n such that the non-overlined part 1 appears at most i − 1 times,
for any integer l, l and non-overlined l + 1 appear at most k − 1 times and if the parts l and
the non-overlined part l + 1 together appear exactly k − 1 times then the sum of the parts l
and non-overlined parts l + 1 has the same parity as the number of overlined parts that are
less than l + 1 plus i − 1. Let Ck,i(n) denote the number of overpartitions of n with the non-
overlined parts not congruent to ±i and 2k−1 modulo 2k−1. We show that Ck,i(n) = Dk,i(n).
Note that this relation can also be considered as a Rogers-Ramanujan-Gordon type theorem
for overpartitions.
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1 Introduction

The Rogers-Ramanujan-Gordon theorem is a combinatorial generalization of the Rogers-Ramanujan
identities [15, 16], see Gordon [10]. It establishes the equality between the number of parti-
tions of n with parts satisfying certain residue conditions and the number of partitions of
n with certain difference conditions. Gordon found an involution for an equivalent form of
the generating function identity for this relation. An algebraic proof was given by Andrews
[1] by using a recursive approach. It should be noted that the Rogers-Ramanujan-Gordon
theorem is concerned only with odd moduli. Bressoud [4] succeeded in finding a theorem of
Rogers-Ramanujan-Gordon type for even moduli by using an algebraic approach in the spirit
of Andrews [1].

The objective of this paper is to give an overpartition analogue of Bressoud’s theorem.
We derive the equality between the number of overpartitions of n such that the non-overlined
parts belong to certain residue classes modulo an odd positive integer and the number of
overpartitions of n with parts satisfying certain difference conditions. A special case of this
relation has been discovered by Corteel, Lovejoy, and Mallet [8].

An overpartition analogue of the Rogers-Ramanujan-Gordon theorem was obtained by
Chen, Sang and Shi [6], which states that the number of overpartitions of n with non-overlined
parts belonging to certain residue classes modulo an even positive integer equals the number of
overpartitions of n with parts satisfying certain difference conditions. However, as will be seen,
the proof of the overpartition analogue of the Rogers-Ramanujan-Gordon theorem does not
seem to be directly applicable to the case for the overpartition analogue of Bressoud’s theorem.

Let us give an overview of some definitions. A partition λ of a positive integer n is a non-
increasing sequence of positive integers λ1 ≥ · · · ≥ λs > 0 such that n = λ1 + · · · + λs. The
partition of zero is defined to be the partition with no parts. An overpartition λ of a positive
integer n is also a non-increasing sequence of positive integers λ1 ≥ · · · ≥ λs > 0 such that
n = λ1 + · · · + λs and the first occurrence of each integer may be overlined. For example,
(7, 7, 6, 5, 2, 1) is an overpartition of 28. Many q-series identities have combinatorial interpre-
tations in terms of overpartitions, see, for example, Corteel and Lovejoy [7]. Furthermore,
overpartitions possess many analogous properties to ordinary partitions, see Lovejoy [11, 13].
For example, various overpartition theorems of the Rogers-Ramanujan-Gordon type have been
obtained by Corteel and Lovejoy [9], Corteel, Lovejoy and Mallet [8] and Lovejoy [11, 12, 14].
For a partition or an overpartition λ and for any integer l, let fl(λ)(fl(λ)) denote the number
of occurrences of a non-overlined part l (an overlined part l) in λ. Let Vλ(l) denote the number
of overlined parts in λ that are less than or equal to l.

We shall adopt the common notation as used in Andrews [3]. Let

(a)∞ = (a; q)∞ =
∞∏

i=0

(1 − aqi),

and

(a)n = (a; q)n =
(a)∞

(aqn)∞
.

We also write
(a1, . . . , ak; q)∞ = (a1; q)∞ · · · (ak; q)∞.
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The Rogers-Ramanujan-Gordon theorem reads as follows.

Theorem 1.1 (Rogers-Ramanujan-Gordon) For k ≥ 2 and k ≥ i ≥ 1, let Fk,i(n) denote the
number of partitions of n of the form λ1 + λ2 + · · · + λs, where λj ≥ λj+1, λj − λj+k−1 ≥ 2
and part 1 appears at most i − 1 times. Let Ek,i(n) denote the number of partitions of n into
parts 6≡ 0,±i (mod 2k + 1). Then for any n ≥ 0, we have

Ek,i(n) = Fk,i(n). (1.1)

In the algebraic proof of the above relation, Andrews [1, 3] introduced a hypergeometric
function Jk,i(a;x; q) as given by

Jk,i(a;x; q) = Hk,i(a;xq; q) − axqHk,i−1(a;xq; q), (1.2)

where

Hk,i(a;x; q) =
∞∑

n=0

xknqkn2+n−inan(1 − xiq2ni)(axqn+1)∞(1/a)n

(q)n(xqn)∞
. (1.3)

To prove (1.1), Andrews considered a refinement of Fk,i(n), that is, the number of parti-
tions enumerated by Fk,i(n) with exactly m parts, denoted by Fk,i(m,n), and he showed that
Jk,i(0;x; q) and the generating function of Fk,i(m,n) satisfy the same recurrence relation with
the same initial values. Setting x = 1 and using Jacobi’s triple product identity, Andrews de-
duced that Jk,i(0; 1; q) equals the generating function for Ek,i(n). This yields Ek,i(n) = Fk,i(n).

The following Rogers-Ramanujan-Gordon type theorem for even moduli is due to Bressoud
[4].

Theorem 1.2 For k ≥ 2 and k ≥ i ≥ 1, let Bk,i(n) denote the number of partitions of n of
the form λ = λ1 + λ2 + · · · + λs such that

(i) f1(λ) ≤ i − 1,

(ii) fl(λ) + fl+1(λ) ≤ k − 1,

(iii) if fl(λ) + fl+1(λ) = k − 1, then lfl(λ) + (l + 1)fl+1(λ) ≡ i − 1 (mod 2).

Let Ak,i(n) denote the number of partitions of n with parts not congruent to 0,±i modulo 2k.
Then we have

Ak,i(n) = Bk,i(n). (1.4)

In the proof of Bressoud, he also used the hypergeometric function Jk,i(a;x; q) and used a
recurrence relation for (−xq)∞J(k−1)/2,i/2(a;x2; q2).

Lovejoy [11] found the following overpartition analogues of Rogers-Ramanujan-Gordon the-
orem for the cases i = 1 and i = k.

Theorem 1.3 For k ≥ 2, let Bk(n) denote the number of overpartitions of n of the form
λ1 + λ2 + · · · + λs such that λj − λj+k−1 ≥ 1 if λj is overlined and λj − λj+k−1 ≥ 2 otherwise.
Let Ak(n) denote the number of overpartitions of n into parts not divisible by k. Then we have

Ak(n) = Bk(n). (1.5)
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Theorem 1.4 For k ≥ 2, let Dk(n) denote the number of overpartitions of n of the form
λ1 + λ2 + · · · + λs such that 1 cannot occur as a non-overlined part, and λj − λj+k−1 ≥ 1 if λj

is overlined and λj − λj+k−1 ≥ 2 otherwise. Let Ck(n) denote the number of overpartitions of
n whose non-overlined parts are not congruent to 0,±1 modulo 2k. Then we have

Ck(n) = Dk(n). (1.6)

Chen, Sang and Shi [6] obtained an overpartition analogue of the Rogers-Ramanujan-
Gordon theorem in the general case.

Theorem 1.5 For k ≥ 2 and k ≥ i ≥ 1, let Pk,i(n) denote the number of overpartitions of
n of the form λ = λ1 + λ2 + · · · + λs such that part 1 occurs as a non-overlined part at most
i − 1 times, and λj − λj+k−1 ≥ 1 if λj is overlined and λj − λj+k−1 ≥ 2 otherwise. For k ≥ 2
and k > i ≥ 1, let Qk,i(n) denote the number of overpartitions of n whose non-overlined parts
are not congruent to 0,±i modulo 2k and let Qk,k(n) denote the number of overpartitions of n
with parts not divisible by k. Then we have

Pk,i(n) = Qk,i(n). (1.7)

As an overpartition analogue of Bressoud’s theorem for the case i = 1, Corteel, Lovejoy,
and Mallet [8] obtained the following overpartition theorem.

Theorem 1.6 For k ≥ 2, let A
3
k(n) denote the number of overpartitions whose non-overlined

parts are not congruent to 0,±1 modulo 2k−1. Let B
3
k(n) denote the number of overpartitions

λ of n such that

(i) f1(λ) = 0,

(ii) fl(λ) + fl(λ) + fl+1(λ) ≤ k − 1,

(iii) if fl(λ) + fl(λ) + fl+1(λ) = k − 1, then lfl(λ) + lfl(λ) + (l + 1)fl+1(λ) ≡ Vλ(l) (mod 2).

Then we have
A

3
k(n) = B

3
k(n). (1.8)

In this paper, we give an overpartition analogue of the Bressoud’s theorem in the general
case.

2 The Main Result

The main result of this paper can be stated as follows.

Theorem 2.1 For k ≥ 2 and k ≥ i ≥ 1, let Dk,i(n) denote the number of overpartitions of n
of the form λ = λ1 + λ2 + · · · + λs such that
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(i) f1(λ) ≤ i − 1;

(ii) fl(λ) + fl(λ) + fl+1(λ) ≤ k − 1;

(iii) if fl(λ)+fl(λ)+fl+1(λ) = k−1, then lfl(λ)+lfl(λ)+(l+1)fl+1(λ) ≡ Vλ(l)+i−1 (mod 2).

Let Ck,i(n) denote the number of overpartitions of n whose non-overlined parts are not congru-
ent to 0,±i modulo 2k − 1. Then we have

Ck,i(n) = Dk,i(n). (2.9)

Instead of using the function J̃k,i(a;x; q) as in the proof of Theorem 1.6 given by Corteel,

Lovejoy, and Mallet [8], we find that the function H̃k,i(a;x; q), also introduced by Corteel,
Lovejoy, and Mallet [8], is related to the generating functions of the numbers Ck,i(n) and
Dk,i(n). Recall that

J̃k,i(a;x; q) = H̃k,i(a;xq; q) + axqH̃k,i−1(a;xq; q), (2.10)

where

H̃k,i(a;x; q) =
∑

n≥0

(−a)nqkn2−(n

2)+n−inx(k−1)n(1 − xiq2ni)(−x,−1/a)n(−axqn+1)∞
(q2; q2)n(xqn)∞

. (2.11)

It should be noticed that the function J̃k,i(a;x; q) can be expressed as F1,k,i(−q,∞;−1/a; q) in

the notation of Bressoud [5], and the function (−q)∞H̃k,i(a;x; q) can be written as Hk,i(−1/a,−x;x; q)2
in the notation of Andrews [2].

Let B̃3
k(m,n) denote the number of overpartitions enumerated by B̃3

k(n) with exactly m

parts. Corteel, Lovejoy and Mallet [8] have shown that the coefficients of xmqn in J̃k,1(1/q;x; q)

and B̃3
k(m,n) satisfy the same recurrence relation with the same initial values. Moreover, they

proved that the generating function of B̃3
k(m,n) also equals J̃k,1(1/q;x; q), that is,

∑

m,n≥0

B
3
k(m,n)xmqn = J̃k,1(−1/q;x; q). (2.12)

Setting a = 1/q, x = 1 and using Jacobi’s triple product identity, the function J̃k,i(a;x; q)
can be expressed as an infinite product, namely,

J̃k,1(1/q; 1; q) =
(q, q2k−2, q2k−1; q2k−1)∞(−q)∞

(q)∞
.

Clearly, this is the generating function for A
3
k(n). It follows that A

3
k(n) = B

3
k(n).

However, the proof of Corteel, Lovejoy and Mallet does not seem to apply to the general
case, since J̃k,i(1/q;x; q) does not seem to have an infinite product expression for i ≥ 2. Our
strategy goes as follows. For Ck,i(n), we show that the generating function for Ck,i(n) can

be expressed in terms of H̃k,i(a;x; q) with a = 1/q and x = q. For Dk,i(n), let Dk,i(m,n)
denote the number of overpartitions enumerated by Dk,i(n) with exactly m parts. We find a
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combinatorial interpretation of Dk,i(m,n)−Dk,i−1(m,n) from which we can derive a recurrence
relation for Dk,i(m,n). Furthermore, we see that the recurrence relation and initial values of
Dk,i(m,n) coincide with the recurrence relation and the initial values of the coefficients of xmqn

in H̃k,i(1/q;xq; q). Thus we reach the conclusion that the generating function of Dk,i(m,n)

equals H̃k,i(−1/q;xq; q). Setting x = 1, we deduce that the generating function of Dk,i(n)
equals the generating function of Ck,i(n).

For convenience, we write Wk,i(x; q) for H̃k,i(1/q;xq; q), that is,

Wk,i(x; q) =
∑

n≥0

(−1)nq(2k−1)(n+1

2
)−inx(k−1)n(1 − xiq(2n+1)i)(−xq)∞

(q)n(xqn+1)∞
. (2.13)

Recall that Andrews found the following recurrence relation for Hk,i(a;x; q):

Hk,i(a;x; q) − Hk,i−1(a;x; q) = xi−1Hk,k−i+1(a;xq; q) − axiqHk,k−i(a;xq; q). (2.14)

A recurrence relation for Wk,i(x; q) is given below.

Theorem 2.2 For k ≥ 2 and k ≥ i ≥ 1, we have

Wk,i(x; q) − Wk,i−1(x; q) = (1 + xq)(xq)i−1Wk,k−i(xq; q). (2.15)

Proof. Since

q−in − xiq(n+1)i − q(−i+1)n + xi−1q(n+1)(i−1) = q−in(1 − qn) + xi−1q(n+1)(i−1)(1 − xqn+1),

it can be checked that Wk,i(x; q) − Wk,i−1(x; q) can be written as

∞∑

n=1

q−in (−1)nx(k−1)nq(2k−1)(n+1

2 )(−xq)∞
(q)n−1(xqn+1)∞

+
∞∑

n=0

(xqn+1)i−1 (−1)nx(k−1)nq(2k−1)(n+1

2 )(−xq)∞
(q)n(xqn+2)∞

.

(2.16)
Now, replacing n with n + 1, the first sum in (2.16) can be expressed as

∞∑

n=0

q−i(n+1) (−1)(n+1)x(k−1)(n+1)q(2k−1)(n+2

2 )(−xq)∞
(q)n(xqn+2)∞

. (2.17)

Hence Wk,i(x; q) − Wk,i−1(x; q) equals

− (xq)i−1
∞∑

n=0

(−1)n(xq)(k−1)nq(2k−1)(n+1

2 )xk−iq(2k−1)(n+1)−in−2i+1−(k−1)n(−xq)∞
(q)n(xqn+2)∞

+ (xq)i−1
∞∑

n=0

(−1)n(xq)(k−1)nq(2k−1)(n+1

2 )+(i−1)n−(k−1)n(−xq)∞
(q)n(xqn+2)∞

= (1 + xq)(xq)i−1
∑

n≥0

(−1)n(xq)(k−1)nq(2k−1)(n+1

2 )−(k−i)n(1 − xk−iq(2n+2)(k−i))(−xq2)∞
(q)n(xqn+2)∞

= (1 + xq)(xq)i−1Wk,k−i(xq),

as desired.
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The following relation can be considered as a combinatorial interpretation of Dk,i(m,n) −
Dk,i−1(m,n).

Theorem 2.3 For k ≥ 2, k ≥ i ≥ 1 and for m,n ≥ 0, let Sk,i(m,n) denote the set of
overpartitions enumerated by Dk,i(m,n) with exactly one overlined part 1 and exactly i − 1
non-overlined part 1. Let Tk,i(m,n) denote the set of overpartitions enumerated by Dk,i(m,n)
with exactly one overlined part 1 and exactly i − 2 non-overlined part 1. Then we have

Dk,i(m,n) − Dk,i−1(m,n) = |Sk,i(m,n)| + |Tk,i(m,n)|. (2.18)

Proof. Let Uk,i(m,n) denote the set of overpartitions enumerated by Dk,i(n) with exactly m
parts. By the definitions of Dk,i(m,n) and Dk,i−1(m,n), it can be easily seen that Uk,i−1(m,n)
is not contained in Uk,i(m,n). To compute Dk,i(m,n)−Dk,i−1(m,n), we wish to construct an
injection ϕ from overpartitions in Uk,i−1(m,n) to overpartitions in Uk,i(m,n). We proceed to
give a characterization of the images of this map, which leads to relation (2.18).

Let λ be an overpartition in Uk,i−1(m,n). If there exists an overlined part of λ with the
smallest underlying part, then we switch this overlined part to a non-overlined part, otherwise
we choose a smallest non-overlined part and switch it to an overlined part. Let λ ′ denote the
resulting overpartition. It can be checked that this map is an injection. It is not difficult to
verify that λ′ ∈ Uk,i(m,n). Hence the number Dk,i(m,n) − Dk,i−1(m,n) can be interpreted as
the number of overpartitions in Uk,i(m,n) which cannot be obtained by using the above map.

By the construction of the map ϕ, we may generate all the overpartitions in Uk,i(m,n) with
no overlined part equal to 1 and all the overpartitions in Uk,i(m,n) with an overlined 1 and with
at most i− 3 non-overlined part 1. Therefore, Dk,i(m,n)−Dk,i−1(m,n) is exactly the number
of overpartitions in Uk,i(m,n) with exactly one overlined part 1 such that the non-overlined
part 1 appears either i − 1 times or i − 2 times. This completes the proof.

Theorem 2.4 For k ≥ 2, k ≥ i ≥ 1,and m,n ≥ 0, we have

|Sk,i(m,n)| = Dk,k−i(m − i, n − m). (2.19)

Proof. We define a bijection φ from Sk,i(m,n) to Uk,k−i(m − i, n − m) which implies (2.19).
Let λ be an overpartition in Sk,i(m,n), the map φ is defined as follows.

Step 1. Remove all the i parts with underlying part 1.

Step 2. Subtract 1 from each part.

Clearly, the resulting overpartition λ′ is an overpartition of n−m with m−i parts. Moreover,
we claim that λ′ ∈ Uk,k−i(m − i, n − m).

We first show that f1(λ
′) ≤ k − i − 1. By the construction of φ, it is easy to see that

f1(λ
′) = f2(λ) and f1(λ) = i − 1. From the condition (ii) in Theorem 2.1, that is, f1(λ) +

f1(λ) + f2(λ) ≤ k − 1, we find that f2(λ) ≤ k − 1 − i.

We still need to verify that if there is an integer l such that

fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k − 1, (2.20)
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then we have

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ Vλ′(l) + k − i − 1 (mod 2). (2.21)

By the construction of φ, it is easily checked that (2.20) implies

fl+1(λ) + fl+1(λ) + fl+2(λ) = k − 1.

Since λ ∈ Sk,i(m,n), we have

(l + 1)fl+1(λ) + (l + 1)fl+1(λ) + (l + 2)fl+2(λ) ≡ Vλ(l + 1) + i − 1 (mod 2),

Clearly, ft(λ
′) = ft+1(λ) and ft(λ

′) = ft+1(λ) for any t ≥ 1. Thus we deduce that

lfl(λ
′) + lfl(λ

′) + (l + 1)fl−1(λ
′) ≡ Vλ(l + 1) + i − 1 − (k − 1) (mod 2).

Again, by the construction of φ, we find Vλ(l + 1) = Vλ′(l) + 1. So we arrive at relation (2.21),
which implies λ′ ∈ Uk,k−i(m − i, n − m).

It is not difficult to verify that the above construction is reversible, that is, from any
overpartition in Uk,k−i(m − i, n − m), we can recover an overpartition in Sk,i(m,n). This
completes the proof.

For example, let k = 5 and i = 3, and let λ = (9, 9, 9, 9, 8, 8, 7, 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 3,
3, 2, 2, 1, 1, 1) be an overpartition in S5,3(24, 125). Then we get φ(λ) = (8, 8, 8, 8, 7, 7, 6, 6, 6,
5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1), which is an overpartition in U5,2(21, 101).

Theorem 2.5 For k ≥ 2, k ≥ i ≥ 1,and m,n ≥ 0, we have

|Tk,i(m,n)| = Dk,k−i(m − i + 1, n − m). (2.22)

Proof. We proceed to construct a bijection χ from Tk,i(m,n) to Uk,k−i(m − i + 1, n − m). Let
λ be an overpartition in Tk,i(m,n), the map χ is defined as follows.

Step 1. Remove all i − 1 parts equal to 1.

Step 2. Subtract 1 from each part.

Clearly, the resulting overpartition λ′ is an overpartition of n−m with m− i+1 parts. We
shall show that λ′ ∈ Uk,k−i(m − i + 1, n − m).

We first verify that f1(λ
′) ≤ k − i − 1. It is obvious that f1(λ

′) = f2(λ). So it suffices to
prove that f2(λ) ≤ k − i − 1. Since λ ∈ Tk,i(m,n), we have f1(λ) = i − 2, f1(λ) = 1 and

f1(λ) + f1(λ) + f2(λ) ≤ k − 1. (2.23)

It follows that f2(λ) ≤ k − i.

It remains to show that the non-overlined part 2 cannot occur k − i times. Assume to the
contrary that f2(λ) = k − i. Then the equality in (2.23) holds, that is,

f1(λ) + f1(λ) + f2(λ) = k − 1.
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We proceed to derive a contradiction to the condition (iii) in Theorem 2.1. By the facts
f1(λ) = i − 2 and f1(λ) = 1, we find

1f1(λ) + 1f1(λ) + 2f2(λ) = 2k − i − 1. (2.24)

Since Vλ(1) = 1, from (2.24) it follows that

1f1(λ) + 1f1(λ) + 2f2(λ) 6≡ Vλ(1) + i − 1 (mod 2),

which is a contradiction to assumption that the non-overlined 2 occurs k − i times. Thus we
reach the conclusion that the non-overlined part 2 occurs at most k − i − 1 times in λ, or
equivalently, the non-overlined part 1 occurs at most k − i − 1 times in λ′.

Next, we check condition (ii) in Theorem 2.1 for λ′. For any l ≥ 1, we see that

fl+1(λ) = fl(λ
′) and fl+1(λ) = fl(λ

′). (2.25)

From condition (ii) for λ, we get

fl(λ
′) + fl(λ

′) + fl+1(λ
′) ≤ k − 1.

Finally, we verify the condition that if there is an integer l such that

fl(λ
′) + fl(λ

′) + fl+1(λ
′) = k − 1, (2.26)

then we have

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ Vλ′(l) + k − i − 1 (mod 2). (2.27)

Notice that (2.26) implies

fl+1(λ) + fl+1(λ) + fl+2(λ) = k − 1. (2.28)

Since λ ∈ Tk,i(m,n), by condition (iii) for λ, we have

(l + 1)fl+1(λ) + (l + 1)fl+1(λ) + (l + 2)fl+2(λ) ≡ Vλ(l + 1) + i − 1 (mod 2). (2.29)

Substituting (2.25) into (2.29), we obtain

lfl(λ
′) + lfl(λ

′) + (l + 1)fl+1(λ
′) ≡ Vλ(l + 1) + i − 1 − (k − 1) (mod 2). (2.30)

Observing that Vλ(l + 1) = Vλ′(l) + 1, (2.30) can be rewritten as (2.27). This leads to the
conclusion that λ′ ∈ Uk,k−i(m − i + 1, n − m).

It is routine to verify that the above procedure is reversible, that is, from any overpartition
in Uk,k−i(m− i + 1, n−m), one can recover an overpartition in Tk,i(m,n). This completes the
proof.

By relations (2.18), (2.19) and (2.22), we obtain a recurrence relation of Dk,i(m,n).

Theorem 2.6 For k ≥ 2, k ≥ i ≥ 1 and for m,n ≥ 0, we have

Dk,i(m,n) − Dk,i−1(m,n) = Dk,k−i(m − i, n − m) + Dk,k−i(m − i + 1, n − m). (2.31)
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By Theorem 2.2 and Theorem 2.6, we obtain a combinatorial interpretation of Wk,i(x; q)
in terms of overpartitions.

Theorem 2.7 For k ≥ 2, k ≥ i ≥ 1, we have

Wk,i(x; q) =
∑

m,n≥0

Dk,i(m,n)xmqn. (2.32)

Proof. For m,n ≥ 0, and for k ≥ 2 and k ≥ i ≥ 1, let wk,i(m,n) denote the coefficient of xmqn

in Wk,i(x; q), that is,

Wk,i(x; q) =
∑

m,n≥0

wk,i(m,n)xmqn. (2.33)

We proceed to show that Dk,i(m,n) and wk,i(m,n) satisfy the same recurrence relation with
the same initial values.

Clearly, we have wk,i(0, 0) = 1 for k ≥ 2 and k ≥ i ≥ 1, and wk,0(m,n) = 0 for k ≥
2,m, n ≥ 0. Moreover, we have wk,i(m,n) = 0 if m or n is zero but not both. By Theorem 2.2,
we find that

wk,i(m,n) − wk,i−1(m,n) = wk,k−i(m − i, n − m) + wk,k−i(m − i + 1, n − m), (2.34)

which is the same recurrence relation as Dk,i(m,n) as given in Theorem 2.6.

It is clear that Dk,i(0, 0) = 1 for k ≥ 2 and k ≥ i ≥ 1, and Dk,0(m,n) = 0 for k ≥ 2 and
m,n ≥ 0. Moreover, Dk,i(m,n) = 0 if m or n is zero but not both. Now, we see that Dk,i(m,n)
and wk,i(m,n) have the same recurrence relation and the same initial values. This completes
the proof.

We are now ready to finish the proof of Theorem 2.1.

Proof of Theorem 2.1. Setting x = 1 in (2.32), we find that the generating function for Dk,i(n)
equals Wk,i(1; q). In other words,

∑

n≥0

Dk,i(n)qn =
∞∑

n=0

(−1)nq(2k−1)(n+1

2 )−in(1 − q(2n+1)i)(−q)∞
(q)n(qn+1)∞

. (2.35)

The right hand side of (2.35) can be expressed as

(−q)∞
(q)∞

∞∑

n=0

(−1)nq(2k−1)(n+1

2 )−in +
(−q)∞
(q)∞

∞∑

n=0

(−1)nq(2k−1)(n+1

2 )+i(n+1). (2.36)

By substituting n with −(n + 1) in the second sum of (2.36), we get

(−q)∞
(q)∞

∞∑

n=−∞

(−1)nq(2k−1)(n+1

2
)−in.

In view of Jacobi’s triple product identity, we obtain

∑

n≥0

Dk,i(n)qn =
(qi, q2k−1−i, q2k−1; q2k−1)∞(−q)∞

(q)∞
. (2.37)

10



By the definition of Ck,i(n), it is easily seen that

∞∑

n=0

Ck,i(n)qn =
(qi, q2k−1−i, q2k−1; q2k−1)∞(−q)∞

(q)∞
. (2.38)

Comparing (2.37) and (2.38) we deduce that Ck,i(n) = Dk,i(n) for k ≥ 2, k ≥ i ≥ 1 and n ≥ 0.
This completes the proof.
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