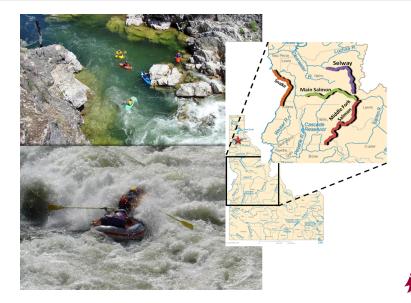
What floats your boat? Preference revelation from lotteries over complex goods

Jonathan Yoder, Washington State University Adrienne Ohler, Illinois State University Hayley Chouinard, Washington State University

27 June 2013

*Funded by USFS contract# 06-JV-1122167-125& the WA Ag. Research Center, proj. # WNP00539.

Idaho's Four Rivers Lottery



Objective and contribution

Basic premise:

• Win rates contain information about preferences over the attributes of the lottery goods.

Objectives:

- We derive a complete vNM utility index map over lottery good attributes based on endogenous win rates.
- We estimate a vNM utility function using 4 Rivers Lottery application data for 2000-2010.

Literature in a nutshell:

- Several papers estimate WTP from lottery-allocated goods based on applicant attributes.
- No one has exploited the information content of win rates to characterize preferences in a lottery structure like this.

Lottery structure

- Applicant pays fee C for the chance to win one discrete complex good x_i among alternatives X.
- A_i applicants for each of Q_i units of good \mathbf{x}_i .
- Probability of winning \mathbf{x}_i is $\pi_i = Q_i/A_i$; not known with certainty at application time.
- \hat{A}_i is the expected number of applicants for \mathbf{x}_i .
- $\hat{\pi}_i \propto Q_i / \hat{A}_i$ is the expected probability of winning good \mathbf{x}_i upon which applicants base their decision.
- Losers receive reservation good x_0 , and C is lost.
- Nonapplicants retain C, receive x_0 with certainty.

Applicant's decision

- Applicant *l's* utility for \mathbf{x}_i is $U_l(\mathbf{x}_i) = U(\mathbf{x}_i)v_{li}$; $v_{li} \sim (1, \sigma^2)$.
- Reservation utility is normalized to zero: $U_l(\mathbf{x}_i) = 0$.
- Applicants choose among N + 1 gambles:

$$g_i \equiv \{\hat{\pi}_i \circ \mathbf{x}_i | i \in (1, \cdots, N)\}$$
$$g_0 \equiv \{(\mathbf{x}_0, C) | i = 0\}$$

- For each good: $E[U_I(\mathbf{x}_i)] = \hat{\pi}_i U_I(\mathbf{x}_i)$.
- Applicant / chooses x_i such that

$$\widehat{EU}_{I}(\mathbf{X}) = \sup\{(\widehat{\pi}_{i}U_{I}(\mathbf{x}_{i}), C) : i = 0, 1, \cdots N\}$$

Lottery equilibrium

Equilibrium conditions for application

- Applicants accept lower odds for more preferred goods.
- *π̂_i* is the *ex ante* predicted win probability based on the
 representative applicant U_l(**x**_i) = U(**x**_i) (E[v_{li}] = 1 for all *i*, *l*).
- In equilibrium, expected probabilities
 ^{*}_i = are such that
 expected utility of the representative applicant equals C.

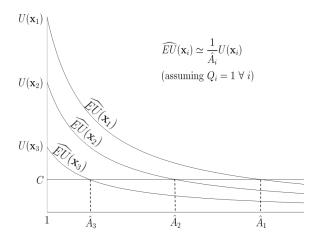
$$\hat{\pi}_i(\mathbf{x}_i, Q_i)U(\mathbf{x}_i) = \hat{\pi}_j(\mathbf{x}_j, Q_j)U(\mathbf{x}_j) = C$$

Equilibrium expected application demands

$$\hat{\mathbf{A}}(\mathbf{X},\mathbf{Q}) = \begin{bmatrix} \hat{A}_1(\mathbf{x}_1,Q_1) & \hat{A}_2(\mathbf{x}_2,Q_2) & \cdots & \hat{A}_N(\mathbf{x}_N,Q_N) \end{bmatrix}$$

Equilibrium Tradeoffs

Lottery equilibrium



Utility tradeoffs: attributes and odds of winning

- Recast applicant decision as a choice over continuous $\mathbf{x} \in \mathbf{X}$.
- Q set by lottery authority, can vary over x.
- Define Q(x), known at application time.
- Allow **Q** to affect U directly: e.g. congestion.
- Application demands A(x, Q(x)).

Applicant decision revisited

$$C = \frac{\mathbf{Q}(\mathbf{x})}{\mathbf{A}(\mathbf{x}, \mathbf{Q}(\mathbf{x}))} U(\mathbf{x}, \mathbf{Q}(\mathbf{x})).$$

Equilibrium Tradeoffs

MU and MRS

define
$$u = \ln(U)$$
, $a = \ln(A)$, and $q = \ln(Q)$.

First-order conditions provide MU:

$$\partial u(\mathbf{x})/\partial x^j = \partial a(\mathbf{x})/\partial x^j$$

 $\partial u(\mathbf{x})/\partial q = \partial a(\mathbf{x})/\partial q - 1$

MRS follows directly:

$$\mathsf{MRS}^{jk} = \frac{\partial a(\mathbf{x})/\partial x^j}{\partial a(\mathbf{x})/\partial x^k}; \qquad \mathsf{MRS}^{jq} = \frac{\partial a(\mathbf{x})/\partial x^j}{\partial a(\mathbf{x})/\partial q - 1} \qquad j \neq q.$$

All elements recoverable from estimable regression for application demand $\boldsymbol{\mathsf{A}}(\boldsymbol{\mathsf{X}},\boldsymbol{\mathsf{Q}}).$

• Assuming the vNM Utility Theorem holds, vNM utility index can be derived from equilibrium win rates.

vNM utility

$$U(\mathbf{x}_i) = \frac{\pi(\mathbf{x}_1)}{\pi(\mathbf{x}_i)} = \frac{A(\mathbf{x}_i)}{A(\mathbf{x}_1)} \frac{Q_1}{Q_i},$$

where \mathbf{x}_1 is the most preferred alternative identified by the lowest probability of success.

• This value is estimable and therefore mappable over the characteristics in **x**.

Empirical strategy

Applicants apply based on expectations about river characteristics.

Two-stage estimation approach Stage 1: Estimate model(s) of river/weather characteristics over the permit season based on information available at application time.

Stage 2: Use predicted values from these models as proxies for expectations in an application demand model.

Data

- River flows and temperature by river/day of year, and a January forecast based on snowpack.
- Application and permit numbers by river/day, 2000-2010 seasons.

Data descriptions

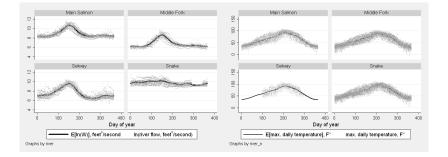
$$w \qquad \ln(flow) \equiv \ln(\text{feet}^3/\text{second}).$$

- t Daily Maximum temperature, (F°) .
- f January 1 flow forecast % of average for April-July.
- A; a # applicants by river/date; $a = \ln(A)$.
- Q; q # of available permits by river/date; $q = \ln(Q)$.
- d Day of year.
- y Year.

Data Estimation

First stage: Water and weather

Trigonometric regression used for flexibility.



Second Stage: model of application rates

- Application numbers (by river/day) are count data.
- Negative binomial regression used to account for empirical overdispersion: Contagion due to group coordination of applications?
- Implied regression relationship: $\ln(A) = \mathbf{X}\beta + \varepsilon$.
- $\mathbf{x}\boldsymbol{\beta} =$ quadratic in \hat{w} and \hat{t} to allow second-order curvature; river dummies, and q.

Data Estimation

Second Stage Regression results

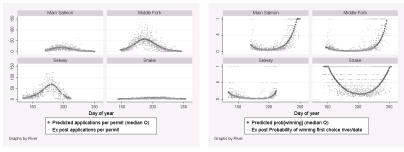
var	β
q	0.26***
ŵ	13.30***
ŵ∙ MF	0.98
ŵ∙ SE	-0.22
ŵ∙ SN	-18.51**
ŵ²∙ MN	-0.65***
ŵ²∙ MF	-0.81***
$\hat{w}^2 \cdot SE$	-0.65***
$\hat{w}^2 \cdot SN$	0.38
î	0.90***
\hat{t}^2	-0.01***
constant	-110.5***
*10%;**5%;***1%.	

Notes

- Negative binomial regression; Dep. var. = A.
- *N* = 3,458. Dispersion param. sig. at < 1%.
- Base Case: y = 2000, r = Main Salmon.
- Annual dummies & non-interacting river dummies omitted for space.

Data Estimation

Application & win rates (2007 prediction)



(c) A/Q; \hat{A}_i/Q (2007).

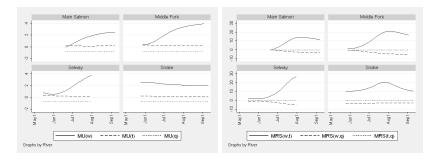
(d) π, π̂ (2007).

Three perspectives on preferences

- Marginal utility.
- Marginal rates of substitution.
- vNM utility maps.

MU and MRS

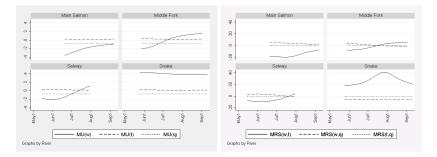
Figure : MU and MRS between w, t, and q. 2007 base.



- MU(w) positive and increasing through the season.
- MU(q) negative: signs of congestion effects.
- MRS(w,t) driven largely by w.

MU and MRS: high water year

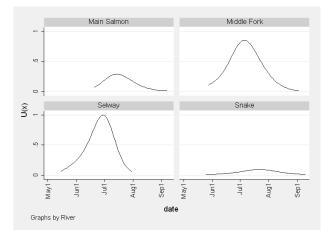
Figure : MU and MRS between w, t, and q. Jan. forecast 125% normal.



 increase expected water levels — MU(w) becomes negative for the early season.

Intro Theory Empirics Preferences Conclusion

vNM utility. example 2007

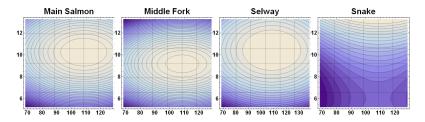


• Selway around July 1 is the most preferred for 2007.

Yoder,Ohler,Chouinard What floats your boat?

Utility maps

Figure : vNM utility index in w, t space based on median Q for each river.



- There can be too much water and too much heat.
- Snake river shows little empirical variation and results are odd and weak (curvature not statistically significant).

Conclusions and extensions

- Win rates provide sufficient information to fully characterize vNM utility index for the set of available alternatives.
- They provide a mechanism for estimation MRS as well as implicit hedonic prices over the characteristics of the goods.
- Can be useful for estimating the benefits of policy changes over available goods.

Contribution to literature in more detail

- Big literature on choice and equilibrium under uncertainty, but essentially all assumes exogenous outcomes.
- Exception: endogenous lottery probabilities: Rapoport (2002).
- Empirical: Scrogin (2005), Scrogin & Berrens (2003) and others; WTP and welfare estimation.
 - S & SB: π̂_t = f(π_{t-1}); use π̂_t in RUM to estimate U(x). Problematic if lottery goods or structure changes.
 - Nickerson (1990) estimates application demand $a(\mathbf{x})$ attributes.
- Nutshell: we extend Nickerson and Scrogin papers to more fully utilize information content of application rates.

