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1. INTRODUCTION

Numerous distribution-free goodness-of-�t and symmetry tests are based

on U- and V-statistics. The examples of them are the Wilcoxon one-sample

test, the Maesono test [14], the Hollander-Proshan test of exponentiality [12],

the Cram�er { von Mises and Watson tests, and others.

To compare the statistical tests in large samples one commonly uses the

concept of asymptotic eÆciency. The eÆciency of many concrete tests includ-

ing those based on U- and V-statistics was intensively studied during last 40

years and most of these results are taken together in [16]. U- and V-statistics

with non-degenerate kernels are asymptotically normal under null-hypothesis

and alternative and their eÆciency is calculated using the well-known Pit-

man approach. However many important statistics like the Cram�er { von

Mises or Watson statistics have degenerate kernels with non-normal limiting

distributions and Pitman eÆciency (PE) is not appropriate. Therefore one

uses for such statistics the exact or the approximate Bahadur eÆciency (BE).

The concepts of PE and BE are rather close. On one hand [4, App.2] for

asymptotically normal statistics PE usually coincides with the local approx-

imate BE as well as with local exact BE. On the other hand [25],[9] even for

statistics with non-normal limiting distribution the local approximate BE is

equal under mild conditions to the limiting PE. The development of large

deviation theory which is the key tool for the calculation of exact BE ensured

the use of this kind of eÆciency for the comparison of tests and now PE and

BE of most known statistics are known [16].

Next step in the investigation of BE and PE is the study of local asymp-

totic optimality (LAO) conditions . We are interested for which distributions

of observations under the null-hypothesis and alternative the given sequence

of statistics attains the maximum of eÆciency. First remarks on the im-

portance of this "inverse" problem are found in [5] and [23] but the detailed

study was initiated in [15] and exposed later in [16]. The basic result consists

in the description of the domain of LAO using the leading functions which

are proper for every sequence of statistics.

All these results were obtained for many particular statistics but not

for large classes of them like U- and V-statistics with more or less general

kernels. The cause of that was the lack of information on Cherno� type

large deviations for U- and V-statistics. General large deviation principle

obtained in [8] is not suÆcient for statistical applications. For some time it
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was believed the problem has been solved in [7] but later some mistakes were

found in the proofs and even the result of [7] appeared to be false.

In recent papers [17], [18] the result of [7] was corrected for bounded non-

degenerate and weakly degenerate (in other terms, of rank 1 and 2) kernels.

Note that just bounded kernels are typical for distribution-free tests based on

U- and V-statistics. For reader's convenience main results of [17] are quoted

in Section 2. Using them we �nd new formulas for local exact BE ( in Section

3) and describe the LAO domains ( in Section 4) of tests based on U- and

V-statistics with almost arbitrary non-degenerate or weakly degenerate m-

variate bounded kernels. This generalizes and uni�es sparse issues known so

far only for particular kernels. We present also some examples of calculations

for concrete statistics and alternatives.

For asymptotically normal statistics this program can be carried out also

for PE using [21], the results are similar di�ering only in regularity conditions.

2. LARGE DEVIATIONS OF U- AND V-STATISTICS

Let X1; X2; ::: be a sequence of i.i.d. r.v.'s with known continuous dis-

tribution function (d.f.) F: Let �(x1; :::; xm) be a real symmetric kernel of

degree m and denote by

Un =

 
n

m

!
�1 X

1�i1<:::<im�n

�(Xi1
; :::; Xim)

the Hoe�ding's U- statistic with the kernel �: The von Mises functional or

V-statistic Vn with the kernel � is de�ned in a similar way, namely

Vn = n
�m

X
1�i1;:::;im�n

�(Xi1
; :::; Xim):

See [13] for main de�nitions and classical results in the theory of U- and

V-statistics. We are interested in the rough large deviation asymptotics of

the statistics Un and Vn.

Over the whole paper we suppose that the kernel � is bounded and that

E� = 0: For most distribution-free statistics the kernel is a combination of

indicators and hence bounded. We can always replace any r.v. of the form

�(X1; :::; Xm) by the r.v.

~�(U1; :::; Um) = �(F�1(U1); :::; F
�1(Um)); (1)
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where U1; U2; ::: are independent uniform r.v.'s on [0,1] and ~� is the "reduced"

kernel. Hence if necessary we can assume the initial r.v.'s to be uniform on

[0,1] owing to the complication of the kernel.

The transition from the kernel � to the "reduced" form ~� by (1) is quite

natural for distribution-free statistics and is similar to the transition to a

copula from a multidimensional d.f. In the sequel we will use both forms of

the kernel depending on convenience.

Denote by Im the m-dimensional unit cube and denote the projections of

the kernels according to formulas

~ (u1) =
R
Im�1

~�(u1; :::; um) du2:::dum;

 (x1) =
R
Rm�1 �(x1; :::; xm) dF (x2):::dF (xm);

so that  (x) = ~ (F (x)): An important constant to be used later is

�
2 =

Z 1

0

~ 2(x)dx =
Z
R1

 
2(x)dF (x):

The �rst of main results of [17] is as follows.

Theorem 1. Let the kernel ~� be bounded and has rank 1, that means that

�
2
> 0: Then for any real sequence fng, such that n ! 0, and suÆciently

small a > 0 it is true that

lim
n!1

n
�1 lnPrfUn � a+ ng =

1X
j=2

bja
j
;

where in the right-hand side there is a convergent series with numerical co-

eÆcients bj, moreover b2 = �(2m2
�
2)�1:The same formulation is valid for

V -statistics with kernel ~�:

For weakly degenerate statistics with the kernel of rank 2 we have a

di�erent asymptotics [17]. Weak degeneracy means [13] that a.e.Z
Im�1

~�(s1; s2; :::; sm)ds2:::dsm = 0 ;

while ( for m > 2) Z
Im�2

~�(s1; s2; :::; sm)ds3:::dsm 6= 0:
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For any kernel � of degree m put

��(s1; s2) =
Z
Rm�2

�(s1; :::; sm)dF (s3):::dF (sm); if m > 2;

and ��(s1; s2) = �(s1; s2); if m = 2: The kernel ~�� is de�ned likewise.

Theorem 2. Let the kernel ~� be bounded and weakly degenerate. Let �0
be the smallest of numbers � satisfying the integral equation

x(s1) = �

Z 1

0

~��(s1; s2) x(s2) ds2 (2)

and suppose that �0 is a simple characteristic number of the linear integral

operator with the kernel ~�� acting from L
2[0; 1] into L2[0; 1]. Then for any

real sequence fng, n ! 0, and suÆciently small a > 0 it is true that

lim
n!1

n
�1 lnPrfUn � a + ng =

1X
j=2

cja
j=2
;

where in the right-hand side there is a convergent series with numerical co-

eÆcients cj , moreover c2 = ��0=m(m� 1) : The same relation holds for V-

statistics with kernel ~�:

These results enable us to calculate the local Bahadur eÆciency of tests

based on U- and V-statistics.

3. BAHADUR LOCAL EXACT SLOPES OF TESTS

BASED ON U- AND V-STATISTICS

Let X1; :::; Xn be a sample of i.i.d. univariate observations with den-

sity f(x; �) depending on real parameter � 2 [0; ��]; �� > 0: Denote by

F (x; �) the d.f. corresponding to this density and put for simplicity F (x; 0) =

F (x); F�1(x; 0) = F
�1(x):

We are testing the goodness-of-�t hypothesis H0 : � = 0 against the

alternative H1 : � > 0. Let the test be based on test statistic Un and large

values of it are signi�cant.

Denote by E� the expectation with respect to d.f. F (x; �). We suppose

that b�(�) = E��(X1; :::; Xm) > 0 for all �: This ensures the consistency
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of the test based on Un. By the strong law of large numbers for U- and

V-statistics [13, Ch.3] we have a.s. under H1 that

Un ! b�(�); Vn ! b�(�):

In the same time we assume that b�(�)! 0 as � ! 0:

The measure of BE of the sequence fUng is the exact slope cU(�) describ-
ing the rate of exponential decrease of the attained level. According to the

main theorem of Bahadur theory [6, Th. 7.2], [16, Th. 1.2.2] we can write

out the main parts of exact slopes of test statistics fUng with the kernel �

in the non-degenerate and weakly degenerate case. In the �rst case we have

by Theorem 1 as � ! 0

cU(�) � b
2
�(�)

m2�2
:

In the second case Theorem 2 yields as � ! 0

cU(�) � 2�0b�(�)

m(m� 1)
:

Under some regularity conditions we will simplify the expression for b�(�)

when �! 0. First we need the behavior of the likelihood function

L(�) = L(x1; :::; xm; �) = �m

j=1f(xj; �)

as a function of �. Denote for brevity h� the derivative h
0

�
: Using the Taylor

expansion in Lagrange form we get for some y 2 (0; �)

L(�) = �m

j=1f(xj; 0) + �
P

m

i=1 f�(xi; 0)�j 6=if(xj; 0)

+1
2
�
2
L��(0) +

1
6
�
3
L���(y):

The exact formula for L��(0) is as follows

L��(0) =
mX
i=1

f��(xi; 0)�j 6=if(xj; 0) +
mX
i 6=j

f�(xi; 0)f�(xj; 0)�k 6=i;jf(xk; 0):

The term L���(y) has more complicated structure but contains only the

terms like f���(x1; y)�j 6=1f(xj; y); f��(x1; y)f�(x2; y)�j 6=1;2f(xj; y) and

�3
i=1f�(xi; y)�j 6=1;2;3f(xj; y) ifm � 3 with y 2 [0; �]: The asymptotics of b�(�)
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as � ! 0 is di�erent in the non-degenerate and weakly degenerate case. In

the �rst case let impose the following conditions.

Conditions ND: there exists such Æ > 0 that for any 0 � � � Æ

R
Rm

�(x1; :::; xm)f��(x1; �)�j 6=1f(xj; �)dx1:::dxm <1;

R
Rm

�(x1; :::; xm)f�(x1; �)f�(x2; �)�k 6=1;2f(xk; �)dx1:::dxm <1:

Using the Taylor expansion under this condition we get easily as � ! 0

b�(�) � m

Z
R1

 (x)f�(x; 0)dx � �: (3)

As � is bounded, the conditions ND are true if for 0 � � � Æ

Z
R1

jf�(x; �)jdx <1;

Z
R1

jf��(x; �)jdx <1: (4)

Conditions (4) are valid for many families of densities.

In the weakly degenerate case the integral in (3) vanishes and the main

term is of order O(�2). To get the required asymptotics we impose another

set of conditions.

Conditions WD: for 0 � � � Æ

R
Rm

�(x1; :::xm)f���(x1; �)�j 6=1f(xj; �)dx1:::dxm <1;

R
Rm

�(x1; :::; xm)f��(x1; �)f�(x2; �) �j 6=1;2f(xj; �)dx1:::dxm <1;

R
Rm

�(x1; :::xm)�
3
i=1f�(xi; �)�j 6=1;2;3f(xj; �)dx1:::dxm <1; m � 3:

Under these conditions we get similarly that as � ! 0

b�(�) � m(m� 1)

2

Z
R2

��(x1; x2)f�(x1; 0)f�(x2; 0)dx1dx2 � �2: (5)

Clearly for the validity of conditions WD it is suÆcient to verify the

assumptions (4) plus the condition:
R
R1 jf���(x; �)jdx < 1 for 0 � � � Æ

which often takes place, too.

The asymptotics (3) and (5) imply the following formulas for the local

exact slopes cU(�):
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THEOREM 3. Suppose that fUng is a sequence of non-degenerate U- or

V-statistics with bounded kernels and conditions ND are true. Then as � ! 0

cU(�) � 1

�2
(
Z
R1

 (x)f�(x; 0)dx)
2 � �2: (6)

THEOREM 4. Suppose that fUng is a sequence of weakly degenerate U-

or V-statistics satisfying conditions of Theorem 2 and conditions WD. Then

as � ! 0

cU(�) � �0

Z
R2

��(x1; x2)f�(x1; 0)f�(x2; 0)dx1dx2 � �2: (7)

To compare these expressions with their potential upper bounds we recall

the Bahadur-Raghavachari inequality [5], [6] according to which for all �

cU(�) � 2K(�); (8)

where K(�) is the Kullback-Leibler information

K(�) =

Z
R1

ln
f(x; �)

f(x; 0)
f(x; �)dx:

It is well-known that in typical cases one has the asymptotics [6], [16]:

2K(�) � I(f) � �2; as � ! 0; (9)

where I(f) =
R
R1 [f 2� (x; 0)=f(x; 0)]dx is the Fisher information. Hence the

local ( absolute) BE e
B

U
(f) can be computed as follows: under conditions of

Theorem 3 and (9)

e
B

U
(f) = (

Z
R1

 (x)f�(x; 0)dx)
2
=�

2
I(f) � 1;

under conditions of Theorem 4 and (9)

e
B

U
(f) = �0

Z
R2

��(x1; x2)f�(x1; 0)f�(x2; 0)dx1dx2=I(f) � 1:

These expressions generalize numerous formulas for eÆciencies of tests

based on U- and V-statistics known in particular cases [16].
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For testing of symmetry we need some modi�cations. Let the null hy-

pothesis H
0

0 be the hypothesis of symmetry with respect to 0 of d.f. F and

the parametric alternative H
0

1 consists in that this d.f. is F (x; �) with the

density f(x; �) which is symmetric with respect to zero only for � = 0. If a

test of symmetry is based on U- or V-statistic with kernel � then the general

formulas (6) and (7) are still valid. But as the null hypothesis is composite,

the inequality (8) looks di�erently, see [11], [16], namely for all �

cU(�) � 2K1(�) = 2
Z
R1

f(x; �) ln
2f(x; �)

f(x; �) + f(�x; �)dx: (10)

In typical cases the function K1(�) in (10) has as � ! 0 the asymptotics

K1(�) � 1

8
I1(f) � �2;

where

I1(f) =

Z
R1

(f�(x; 0)� f�(�x; 0))2
f(x; 0)

dx:

Hence the eÆciency of symmetry tests based on fUng can be calculated

according to formulas (6) and (7) if we replace I(f) by 1
4
I1(f).

We give now two simple examples. Let the observations be normal with

shift alternative so that F (x; �) = N(x� �), where N is the standard normal

d.f. with the density n. Consider the Wilcoxon one-sample statistic Wn

for testing of symmetry which is a U- statistic with the kernel �1(s; t) =

1fs + t > 0g � 1
2
: This kernel is non-degenerate with  (s) = 1

2
� F (s) and

�
2 = 1

12
; and all imposed regularity conditions are true. By Theorem 3 we

obtain integrating by parts as � ! 0

cW (�) � 12(
Z
R1

(N(x)� 1=2)n0(x)dx)2 � �2 = 3

�
� �2:

As 1
4
I1(n) = 1, we get eB

W
(n) = 3

�
� 0:955, a well-known classical result

ascending to Pitman who considered of course the PE.

Another example is the !2 goodness-of-�t statistic which is a V-statistic

of degree 2 with the weakly degenerate kernel [13, Sect.7.5]

~�2(s; t) =
1

2
(s2 + t

2)�max(s; t) +
1

3
: (11)
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The integral equation (2) with the kernel ~�2 can be reduced to the Sturm-

Liouville boundary problem for y(t) =
R
t

0 x(s)ds of the form

y
00(t) + �y(t) = 0; y(0) = y(1) = 0:

Characteristic numbers are �k = k
2
�
2
; k = 1; 2; ::: and the corresponding

eigenfunctions are C sin k�t; k = 1; 2; ::: : The �rst characteristic value �2 is

simple and hence by (7) after some simpli�cations we get as �! 0

c!2(�) � �
2
Z
R1

n
3(x)dx � �2 � �

2
p
3
� �2:

It is known that I(n) = 1, hence eB
!2
(n) � 0:907; which is also a well-known

result [16, Sect. 2.6].

4. CONDITIONS OF LOCAL ASYMPTOTIC OPTIMALITY

FOR TESTS BASED ON U - AND V - STATISTICS

As is known [5],[15] ,[16, Ch.6] the local asymptotic optimality (LAO) in

Bahadur sense of a sequence of statistics means the asymptotic equivalence

of local exact slope and 2K(�) as � ! 0: Denote for a given kernel � by

F(�) the set of densities f(x; �) with d.f.'s F (x; �) for which are satis�ed

the following regularity conditions. For non-degenerate kernels these are

conditions (ND) and (9), for weakly degenerate case we assume conditions

of Theorem 4 and (9). We suppose also that limx!�1 F�(x; 0) = 0 and that

for almost all x one has

Fx�(x; 0) = F�x(x; 0): (12)

For such densities the LAO condition means that for any sequence Un of

U- or V-statistics with bounded kernel one has

(
Z
R1

 (x)f�(x; 0)dx)
2 = �

2
I(f) (13)

in the non-degenerate case, and

�0

Z
R2

��(x1; x2)f�(x1; 0)f�(x2; 0)dx1dx2 = I(f) (14)

in the weakly degenerate case.
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We are interested for which densities f(x; �) from F(�) this is true; such
densities form the domain of LAO in F(�): A useful tool is the leading

function of the sequence of statistics fTng [16, Ch.6]. It is such real function

vT (x) on [0,1], vT (0) = vT (1) = 0 that the condition f(x; �) 2 F(�) is

equivalent to F�(F
�1(x); 0) = CvT (x) for some constant C and almost all x.

The analysis of (13) is quite easy. By Cauchy-Schwarz inequality

(
Z
R1

 (x)f�(x; 0)dx)
2 �

Z
R1

 
2(x)f(x; 0)dx � I(f) = �

2
I(f)

with equality i� for some constant C1 and almost all x one has

f�(x; 0) = C1 (x)f(x; 0); (15)

or equivalently

d ln f(x; �)

d�
j�=0 = C1 (x) = C1

~ (F (x)): (16)

The equation (15) may be also rewritten in the form

F�(x; 0) = C1

Z
x

�1

 (x)dF (x)

which is equivalent to

vU(x) := F�(F
�1(x); 0) = C1

Z
x

0
 (F�1(u))du = C1

Z
x

0

~ (u)du =: C1
~	(x):

Hence the leading function of the sequence of statistics fUng is equal to
~	(x) =

R
x

0
~ (u)du: We can formulate the obtained result as follows.

THEOREM 5. The domain of LAO in F(�) for non-degenerate U- and

V-statistics satisfying the conditions of Theorem 1 is de�ned by (15) or (16),

and the leading function is ~	(x).

In the weakly degenerate case put g(x) = f�(F
�1(x); 0)=f(F�1(x); 0).

Then we may rewrite (14) in the form

�0

Z
I2

~��(x1; x2)g(x1)g(x2)dx1dx2 =
Z 1

0
g
2(x)dx: (17)

The integral operator with the kernel ~�� in (17) is the symmetric compact

operator from L
2[0; 1]) into L2[0; 1]. Denote it by K and by (� ; �) the scalar
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product in L2[0; 1]. The left-hand side of (17) is the quadratic form �0(Kg; g).
According to the Rayleigh principle its maximum under condition (g; g) = 1

is equal to 1 and is attained on the eigenfunction ~'0 corresponding to �0 [22,

Sect. 93]. Hence the condition of LAO takes the form

f�(x; 0) = C2 ~'0(F (x))f(x; 0); (18)

or, equivalently, by (12)

F�(x; 0) = C2

Z
F (x)

0
~'0(u)du =: C2

~�0(F (x)):

Thus the leading function of the sequence of weakly degenerate statistics

fUng is ~�0(x) =
R F (x)
0 ~'0(u)du: This result is in conformity with [9] where

approximate BE was used instead of exact BE.

THEOREM 6. The domain of LAO in F(�) for weakly degenerate U- and
V-statistics satisfying the conditions of Theorem 2 is de�ned by (18), and the

leading function is ~�0(x).

As an example consider again the classical !2 - test with the kernel (11).

We found the eigenfunction C cos �t corresponding to the �rst characteristic

value �2: Hence the leading function is C sin�t that agrees with [15], [16].

If the initial family of densities is the location family so that f(x; �) =

f(x � �) then the condition of LAO (18) reads F 0(x) = C sin�F (x). The

solution of this equation is [16, Ch.6] the hyperbolic cosine distribution with

the density (� cosh x)�1; x 2 R
1 to the scale factor. Hence the domain of

LAO consists of such distributions. If we replace the location family by scale

family on R+ we get [16] the right-sided Cauchy distribution.

Another interesting one-parameter family of alternatives is the skew fam-

ily which was introduced and studied in [1], [2], [3], [10], and [20], among

others. This alternative is asymmetric that can be more realistic in practi-

cal studies. The skew family of densities for any symmetric density h with

d.f. H is given by the formula f(x; �) = 2h(x)H(�x); � � 0. Suppose that

the density h is such that all regularity conditions stated above are ful�lled.

Careful analysis shows that it is suÆcient to assume that h is positive within

its support, has bounded second derivative and �nite absolute moment of any

order larger than 2. In that case the equation determining the LAO domain

reads Z
x

�1

uf(u)du = �C3 sin(�F (x)); C3 > 0
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which is equivalent to

xf(x) = �C4f(x) cos(�F (x)); C4 > 0: (19)

The solution of (19) on the set where f 6= 0 is

F (x) = �
�1 arcsin(x=C4) + 1=2; �C4 � x � C4;

with the density

f(x) =

�
�

q
C2
4 � x2

�
�1

1f�C4 � x � C4g:

It can be shown that this arcsine density satis�es all required regularity

conditions. Note that we got a new characterization in the class F(~�2) of

the symmetric arcsine density by the LAO property of !2 - statistic under

skew alternative. The characterizations of this density exist [19], [24] but are

very rare.
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