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Abstract

Using the Laffont, Rey and Tirole (1998) framework, a model of competition between
vertically integrated telecommunications networks in a deregulated environment is
developed. Two local operators compete in linear and non linear tariffs (i.e. two-part tariffs)
in the subscribers market. In addition, they are integrated downstream in a potentially
competitive sector (i.e. long distance sector) where they face competition of other firms
which require (one way) access to local networks as an “essential facility”. The purpose of
the paper is to introduce a “downstream” competition in the usual framework of network
competition and to focus on how the one way access charges are set in an oligopolistic
market. In a mature phase of the industry, the presence of competition in both local and long
distance sectors leads to lower local and long distance tariffs. The strategic role of the two-
way and one-way access charges is pointed out, with particular reference to the effect that
the reciprocal (two-way) access charge has on competition in the complementary sector.
Finally, in case of competition in two-part tariffs, the paper investigates: 1) the asymmetric
case in which only one network is integrated; 2) the entry process when the two local
networks have different coverage. The results show how the level of the two-way and one-
way access charges affects the “level playing field” between networks.
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1. Introduction

In the past, it was generally accepted that the telecommunications industry was
characterized by the existence of one essential part of the production process which
couldn’t be reasonably duplicated (the local loop). Since all the competitive services (i.e.
long distance calls, mobile calls, value added services, Internet services, … ) had to pass
through the same bottleneck, the local network controlled by a monopolistic firm,
regulation was therefore necessary. Recently, the forces of technological development
and the convergence of wireline telecommunications, video distribution and computer
technologies are creating opportunities for new suppliers in the local market long
dominated by monopolistic operators. The development of more sophisticated
technologies and the difficulty in regulating access to a single bottleneck is pushing many
governments to promote competition among networks in the local area. However, since
customers of different operators want to get in touch with each other, network operators
need to be interconnected, so they need to subscribe an agreement on mutual provision
of access. We thus face with a two way access problem in which each competitor owns a
bottleneck facility, its subscriber base.

In this context, can competition perfectly replace regulation? In other words, is
competition a better substitute for regulation? In general, this statement is clearly true
when markets approximate some ideal conditions, but careful discussion is needed in the
presence of imperfectly competitive firms. In fact, it seems unlikely that free entry and
price-taking behavior represent the way network utilities will be working in the near
future; on the contrary it is rather more realistic to think of oligopolies made by a limited
number of firms. In a two way bottleneck problem, since network externalities require
interconnection between local operators, the provision of mutual access asks for some
form of cooperation among competitors, who need to reach an agreement on modes of
operation and on the access price. The presence of a limited number of firms raises the
natural question of whether, in a mature phase of the industry, established networks
could use their interconnection agreements to enforce collusive behaviour.

Recently, economic literature has focused on this problem (Armstrong, 1998; Laffont,
Rey and Tirole, 1998). However, in these models of “pure network competition”, the
problem of undestanding how the (one way) access charge to local network for firms
competing on complementary segment (i.e. long distance, mobile sectors, Internet,
etc… ) is set, is completely neglected. In fact, the traditional two way access models are
characterised by an horizontal competition between two local operators. Nevertheless,
they completely neglect the effects deriving from the activities carried out by network
firms in other potentially competitive sectors, which are vertically related to the local
segment. In fact, due to the several acquisitions and mergers which are emerging
worldwide, many local operators – now competing in the subscribers market - are also
vertically integrated in other potentially competitive sectors.

The aim of this paper is to introduce “downstream” competition in the usual
framework of network competition and to focus on how the one way access charges are
set in an oligopolistic market. Using the LRT framework, we develop a model of
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competition between vertically integrated telecommunications networks in a deregulated
environment. Two local operators compete both in linear and non linear tariffs (i.e. two-
part tariffs) in the subscribers market. In addition, they are integrated downstream in a
potentially competitive sector – i.e. long distance market – where they face competition
of other firms which require (one way) access to local networks as an “essential facility”.
Thus, a combination between a two way and a one way access problem is analysed here.
Customers may only subscribe to one of the two networks after having observed local
tariffs supplied by the two network operators, but they cannot change their subscription
decision after having observed prices for long distance calls. As a result, after their
subscription decision to the local network customers are “captive”. For this reason, our
model can be considered a mix between the LRT model and the one suggested by
Economides et al. (1996).

This paper focuses on the effect of competition in both local and long distance
markets in terms of retail tariffs in a mature phase of the industry. In addition, the
strategic role of the two-way and one-way access charges is pointed out. In particular,
the effect of the reciprocal (two-way) access charge on the level of the downstream
(one-way) access charge is shown. Finally, in case of local competition in two-part
tariffs, the paper investigates two special cases: first, the asymmetric case in which only
one network is integrated; second, the entry process when the two local networks have
different coverage. It is shown that in this asymmetric context the level of the two-way
and one-way access charges affects the “level playing field” between networks. Thus,
while in the mature phase of the industry competition between networks (especially in
two-part tariff) leads to “true competition”, in the entry process regulation is still
necessary to protect new entrants.

The model presented here is based on an our previous paper (Cambini, 1999)
wherewe propose a simplified version of this model with some stronger assumptions on
the functional form of the demand function in the local market. Here, the analysis is
more general and, in particular, more suitable to be compared with the results obtained
in Laffont et al. (1998).

The rest of the paper is organized as follows. In section 2 defines the “network
competition” model between vertically integrated operators. Section 3 analyses the
subgame concerning competition in the downstream market, which is supposed to be the
long distance market. Section 4 investigates competition in linear tariffs between
integrated, and then separated, network firms. In Section 5 analyses competition in two-
part tariffs between network operators and we compare the results obtained under the
two different market structures (integration  and separation). The asymmetric cases in
which only one network is integrated and networks have different coverage are also
analysed. Section 6 concludes.
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2. The model

Consider a telecommunications industry structurally divided in two vertically related
sectors: a local sector – the upstream segment of the industry – where two network
operators compete with each other for customers (as in LRT), and a complementary
sector – the downstream segment – where n firms, which need the access to the network
as an essential input, offer telecommunications services in a competitive environment. To
simplify, we consider the complementary sector as the long distance market, but the
analysis can also be extended to other sectors where the access to local network is an
“essential input”.

In the local sector, as in LRT, the two telecommunications operators have an
identical cost structure and are horizontally differentiated à la Hotelling. We consider a
mature phase of the industry in which each operator control a full coverage network
which is interconnected to the other so that subscribing to one operator allows to call
subscribers from the rival network. The two operators compete for customers but at the
same time they have to agree on a mutual (two way) access condition for cross-networks
communications. In addition, suppose that the two network operators are vertically
integrated with the downstream sector (directly or through a subsidiary) so that they can
provide not only local calls but also long distance calls to the customers of its own
network and of the rival network.

In the long distance sector there are also some independent operators that can supply
long distance calls to all customers. They have no local infrastructures so that they have
to pay a one way access charge for having access to customers as an essential input. This
one way access is set freely and non-cooperatively by each network. Competition in this
sector is à la Cournot.1 The possibility of bypassing the local access bottleneck in
supplying long distance calls is excluded. Each customer, whatever the local network she
chooses, represents a “bottleneck” for long distance operators. Then, the long distance
market may be considered as if it was ideally made by two distinct submarkets, one for
customers connected with network i and the other for customers connected with
network j.

As in LRT, the model is based on two main assumptions, that we will maintain
throughout the following sections: reciprocal access pricing for the two-way
interconnection and balanced calling pattern.2

                                               
 1 We imagine a situation in which long distance firms, or other telecommunications firms operating in

complementary sectors (for instance, mobile operators), could face some capacity limitations due to the amount of
fiber cables or to the available spectrum of radio frequencies; then, quantity competition can be reasonably
assumed. However, since the development of more sophisticated technologies allows a more efficient use of the
existing resources, in the future price competition should be closer to reality. See, for example, Valletti (1999).

2 Balanced calling pattern requires that, for equal prices, the percentage of “on-net calls” (calls originating on a
network and completed on the same network) is equal to the fraction of customers subscribing to this network. If
customers are homogeneous in their taste, this implies that flows in and out of the network are always balanced.
However, this is not necessarily true if customers are heterogeneous. For more details, see Dessein (1999b).
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Cost structure and retail tariffs. The cost structure in the local area is the same of LRT.
Both networks have full coverage. Coverage is defined as the fraction of customers who
can but are not necessarily served by the network. Serving a customer involves a fixed
cost f of connection and billing, a marginal cost c0 per call at the originating and
terminating ends of a local call and a marginal cost c1 in between. The total marginal cost
for a local call is thus cloc = 2c0 + c1. Networks pay each other an exogenous negotiated
two-way access charge, denoted by a, for terminating each others calls.

Providing long distance services involves no fixed costs and a constant marginal cost,
besides the one way access charge to connect to the network to which the consumer has
subscribed to. We assume that the long distance technology used by the network
operators and its long distance rivals may be different. Let c and  ̃c  be the marginal cost
of transporting the call and terminating it for the n-2 long distance operators and the
network operators i and j, respectively. Let ∆c =  ̃c − c  be the difference in this marginal
cost. The n long distance operators compete in quantity simultaneously. Because of the
integration with the local sector, the network's subsidiary pays only the marginal cost c0

of access while its rivals must pay the entire one way access charge. Denote with  ̃a i
(resp.  ̃a j ) the non cooperative one-way access charge set by network i (resp. j). I
consider first the case when networks compete in linear tariffs. Customers of network i
pay a usage fee pi

loc per minute for local calls and a usage fee pi
ld per minute for long

distance calls.

Demand structure. As in LRT, in the local sector the two networks are differentiated à
la Hotelling. Consumers are uniformly located on the segment [0,1] while the network
operators are located at the two extremities. Consumers have a constant elasticity
demand for local calls, q = (ploc)-η  where η is the demand elasticity of local calls. The

variable gross surplus for local calls, denoted by u(q), is given by u(q) = q1− 1 η

1 − 1 η
. Thus,

under uniform pricing, the consumers’ variable net surplus is:

v(ploc ) = max
q

u(q) − plocq{ }= p loc− (η− 1)

η − 1

In the downstream sector, the total quantity of long distance calls provided to a
customers of network i is denoted by Qi. We assume that customers have a quadratic

utility function defined on long distance minutes, uld Qi( )≡ β
2

Qi
2 , which, for a given

quantity Qi  offered to each customer of network i, yields a linear demand function:

pi
ld ≡ pi

ld Qi( )= γ− βQi
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where γ, β are positive and constant and pi
ld is the clearing market price in the long

distance sector. We suppose that equilibrium in the long distance sector always exists.3

Due to the assumptions on the timing of the game (discussed below), this demand
function has the same functional form of the aggregate demand function for all the
subscribers of a network; for this reason, Qi will be interpreted hereafter as the global
demand of long distance calls for all the customers connected to network i.

Each long distance operator k, k = 1,..., n-2, decides what quantities qki  and qkj  of
long distance minutes to offer to customers connected to networks i and j; similarly,
network operator i decides the quantities  ̃q ii  and  ̃q ij  to supply to its customers and to
customers of network j. The global quantity of long distance calls supplied to all

network i’s subscribers isQi ≡ qki +  ̃q ii +  ̃q ji
k=1

n − 2

∑ . Similarly for network j.

Given income y, the generic local telephone consumption q and the generic long
distance telephone consumption Q, a consumer located at x and joining network i
derives utility y + v0 – tx – xh + uloc(q) + uld(Q), where v0 represents a fixed surplus
from being connected to either network and is assumed to be large enough so that all
customers always choose to be connected to a network, tx – xh denotes the cost of
being connected to a network with address xh (h = i,j), and t represents the cost of
transportation. Note that we assume that the consumption of long distance calls Q has
no influence on the consumption of the local services q of the network operators.
Market shares are defined as in Hotelling’s model. Thus, the consumer indifferent
between the two networks is located at x = α where:

α = α (pi
loc, pj

loc ,  ̃a i ,  ̃a j ) = 1
2

+ σ wi − w j[ ]

wτ = v(pτ
loc) + v ld( pτ

ld (Qτ (  ̃a τ )),  τ = i, j , is the net surplus of a consumer connected to
one network and consuming long distance calls, and σ ≡ 1 2t  is an index of
substitutability between networks. The market shares of the two networks are thus αi =
α and αj = 1 – α. Then, market shares depend both on local prices, as in LRT, and on
one-way access charges; in particular, it results:

∂α
∂pi

loc = − σq(pi
loc )

 

∂α
∂pi

ld = − σQi( pi
ld )

 

∂α
∂̃  a i

= σβQi
∂Qi

∂̃  a i

In addition, denote with ηα = ∂α
∂Qi

Qi

α
 the elasticity of the market share with respect

to the global quantity of long distance minutes; this term shows the impact of a variation
in the quantity Qi on the market share. Let assume that, in equilibrium, ηα > 1 . For any

                                               
3  This implies that the coefficient γ in the demand function is greater than the marginal cost supported by the

long distance operators (both the independent and integrated ones) in providing the long distance services to
customers.
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fixed values of the price variables, this assumption is needed to assure the concavity of
the profit function of network operator i with respect to  ̃a i .

Timing of the Game. The timing of the model is the following:

Step 1. The two-way access charges, as in LRT, is exogenously fixed by a
negotiation between the networks.

Step 2. Network operators i compete with each other and set both local calls prices,
pi

loc and pj
loc, and the one-way access charges,  ̃a i  and  ̃a j , that maximize non-

cooperatively their own profits.
Step 3. Customers decide what networks they want to be connected to; this defines

the market share of each network in the upstream (local) sector.
Step 4. Long distance operators, network i and network j decide simultaneously

quantities offered to customers of network i and j.

3. Competition in the downstream market

Solving backwards, we first determine the equilibrium in the long distance market for
customers of network i, given  ̃a i  and α, both in case of integration and separation of
local operators in the downstream market.

3.1. Vertical Integration

The profit of a generic long distance operator k, k = 1,..., n-2, is:

πk
ld = α pi

ld Qi( )−  ̃a i + c( )[ ]qki + 1 − α( ) pj
ld Qj( )−  ̃a j + c( )[ ]qkj    with k =1,..,n - 2

where α is the market share of network i in the "subscription" market, qki  and qkj  the
quantity offered by the long distance operator to the customers connected with network
i and j, respectively. The profit of the network i’s subsidiary in the downstream sector is
(similarly for network j):

 ̃π i ld = α pi
ld Qi( )− c0 +  ̃c ( )[ ]̃ q ii + 1− α( ) p j

ld Qj( )−  ̃a j +  ̃c ( )[ ]̃ q ij

The optimal quantities of long distance calls offered to customers connected with
network i are given by:

 ̃q ii* = γ+ (n − 1)(  ̃a i + c) + ∆c − n(c0 +  ̃c )
β(n + 1) (1)

q ji
* = γ− 2(  ̃a i + c) − n∆c + (c0 +  ̃c )

β(n + 1) (2)
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qi
* = γ− 2(  ̃a i + c) + ∆c + (c0 +  ̃c )

β(n + 1) (3)

The total quantity supplied downstream to all network i’s subscribers is:

Qi
* = nγ− (n − 1)(  ̃a i + c) − ∆c − (c0 +  ̃c )

(n + 1)β (4)

Similar expression can be derived for network j. Notice that the one way access
charge that allows network i to become the only supplier of long distance calls for its
subscribers (so that it results  ̃q ii  = Qi

* ) would be:

 ̃a i
for = pldM

− c − ∆c
n − 1

(5)

where p ldM = [γ+ (c0 +  ̃c )]/ 2  is the monopoly price. It’s possible to compare condition
(5) with the well-known Efficient Component Pricing Rule (ECPR), also known as the
Baumol-Willig rule, the imputation rule or the parity-pricing formula.4 Synthetically, the
ECPR implies that the access charge should be equal to the difference between the final
price and the marginal cost on the competitive segment. Applying this definition in an
unregulated environment, the access charge becomes equal to  ̃a i

ECPR = pldM – c. Then, if
n → ∞  or ∆c → 0  the last term in condition (5) tends to zero; therefore, the access
charge that forecloses the submarket of long distance calls originated by network i’s
subscribers corresponds to the one deriving from the application of the ECPR in an
unregulated environment. More generally, if both network operators set the access
charge according to condition (5) no independent long distance firm will operate in the
market and only the network firms, directly or through a subsidiary, will supply long
distance calls. Eventually, the market is characterized by a duopoly competition, both in
local and long distance sector, between two vertically integrated firms.

3.2. Vertical Separation

Since networks i and j are not integrated downstream, no firm has any cost advantages
as in the previous case. The quantity offered by each of long distance operators to
customers of network i is the usual optimal solution in the Cournot game with n firms.
Thus, the optimal quantity supplied by each operators to customers of network i results

equal to qi
s* = γ− (  ̃a is + c)

(n + 1)β
, where the superscript s stands for “separation case”. The

corresponding global quantity is Qi
s* = γ− (  ̃a is + c)

β
n

n + 1
.

                                               
4 The rule was originally introduced by Willig (1979) and Baumol (1983). More recently, it has been

popularized by Baumol and Sidak (1994a and 1994b) and developed by Armstrong et al. (1996). For a critical
view, see Kahn e Taylor (1994), Economides and White (1995).
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3.3. The benchmark case

Suppose that there is no local competition between networks and let us first determine
the optimal one way access charge that an integrated local network would set in an
unregulated context. We hence turn back to the usual one way bottleneck problem in
which there is only one network – say network i – which controls the only essential
facility necessary to complete a long distance call.

In case of vertical integration, total profit of network i is given by the sum of retail
profit of long distance calls,  ̃π iild = β(  ̃q ii

* )2 , interconnection profit, that is the revenues
deriving from giving rivals access to its network, I(  ̃a i) = (  ̃a i − c0 ) Qi

* −  ̃q ii
*( ) and retail

profit deriving from supplying local calls. However, since this last term does not depend
on access charge  ̃a i , without loss of generality, we can ignore it. In symbols, we have:

 ̃π iT (  ̃a i) = β(  ̃q ii
* )2 + (  ̃a i − c0 ) Qi

* −  ̃q ii
*( ) (6)

The optimal one-way access charge derives from the maximization of (6) with respect
to  ̃a i . When long distance operators face the same marginal costs (∆c = 0), the optimal
solution is the following:

 ̃a i
B = c0 + γ− (c0 + c)

2
= pld M

− c (7)

where the superscript B stands for “benchmark”. As shown before, only the subsidiary of
network operator remains in the market with this access tariff charging customers with a
monopolistic retail tariff. The result is not surprising: in an unregulated environment, an
integrated firm which controls an essential facility always has the incentive to foreclose
potential rivals and extend its market power also to the downstream sector of the
industry. The results change when we consider the case in which independent long
distance operators are more efficient (i.e. ∆c > 0). In this case, the optimal access charge
becomes:

 ̃a i
B =  ̃a i

for − n − 2
n + 3

∆c           (8)

Condition (8) states that optimal access charge is lower than the one which forecloses
the market; in particular, the higher the difference in costs between independent and
integrated long distance operators the lower the one-way access charge.

In case of vertical separation, the total profit of network operator i is only given by
the interconnection profit coming from access services supplied to the long distance
operators, that is  ̃π iT

s (  ̃a i
s ) = (  ̃a i

s − c0 )Qi
s* . The maximization of profit gives the following

condition:
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 ̃a i
sB = c0 + γ− (c0 + c)

2
(9)

which is equal to condition (7) derived in presence of integration. However, in this case
the optimal access tariff does not foreclose the long distance market.5 Since the network
operator is vertically separated, it would have no economic sense to set an access charge
that shuts down all the downstream market.

4. Competition between vertically integrated networks

According to the assumption of the model previously described, the aggregate
expression for the profit of network i is:

πi = α pi
loc − c loc( )q(pi

loc) − f + I(  ̃a i) +  ̃π iild (  ̃a i )[ ]+ α (1 − α ) q(p j
loc ) − q( pi

loc)[ ](a − c0) +

+ 1 − α( )p j
ld Qj (  ̃a j )( )−  ̃a j +  ̃c ( )[ ]̃ q ij (  ̃a j )

(10)
where:

• πi
loc = pi

loc − c loc( )q(pi
loc ) − f  is the retail profit per customer deriving from local calls;

•I(  ̃a i) = (  ̃a i − c0 ) Qi −  ̃q ii( ) is the interconnection profit per customer resulting from
providing the one-way access to the long distance operators;
•  ̃π iild  ̃a i( )=  ̃q ii pi

ld − (c0 +  ̃c )[ ] is the downstream profit per customer deriving from the
provision of long distance calls to own customers;
• α(1 − α) q( pj

loc ) − q( pi
loc )[ ](a − c0)  is the access revenues (or deficit) which depends on

the balancing between off-net and on-net calls;
•  ̃π ijld (  ̃a j ) = pj

ld −  ̃a j +  ̃c ( )[ ]̃ q ij (  ̃a j ) , which does not depend on  ̃a i , is the downstream
profits deriving from supplying long distance calls to customers subscribing to rival
network j.

We assume that, in equilibrium, ∆  ̃π ld (  ̃a i* ,  ̃a j*) =  ̃π iild (  ̃a i*) −  ̃π ijld (  ̃a j*) ≥ 0 , that is the
downstream profit that network i obtains from providing long distance calls to its
customers is greater than the one it can obtain from providing long distance calls to
customers of the rival network. This assumption is needed for the existence and the
uniqueness of the equilibrium. However, this assumption seems to be reasonable: in a
symmetric equilibrium, if network i wants to offer long distance calls to customers of
network j, it must pay the same marginal cost of terminating and transporting the call as
the one paid by network j, while the latter does not pay the one-way access charge as the
network i does. Then, network i faces cost disadvantages in supplying its services to the

                                               
5  It is easily shown that global quantity Qi

s* derived in the previous section (3.2) is still positive once the
access charge in (9) is applied.
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customers subscribed to network j and so its profits might be lower in this segment of
the downstream market.

4.1. Optimal solutions

Following LRT, we look for a symmetric equilibrium. Network i must maximize πi  with
respect to pi

loc and  ̃a i . At a symmetric equilibrium pi
loc = pj

loc = p*,  ̃a i  =  ̃a j  =  ̃a * , α =
1/2. We have the following:

Proposition 1

a) The only candidate symmetric price for local calls is the one which satisfies the
following condition:

p * − c loc + a − c0

2
 
 

 
 

p *
= 1

η
1 − 2σ πloc* + I * + ∆  ̃π ld*[ ]( ) (11)

which exists only if a and/or σ are not too large.
b) The optimal price for local calls increases with a: the two-way access charge can

be used, as in LRT, as an instrument of tacit collusion.

Proof. See Appendix I.

The main conclusions on the equilibrium price for local calls are qualitatively the
same as in LRT and the collusive effect of the reciprocal two-way access charge is
confirmed. High interconnection charges sustain collusion by making price cutting very
costly: if a firm deviates from collusion and lowers its price, it will induce customers to
originate many calls. This results in a net outflow of calls with corresponding expensive
interconnection payments to the rival network. Then, since lowering the access charge
generates an access deficit at the margin, the incentive to lower the local retail price is
reduced and competition is weakened.

Condition (11) suggests that if there is no competition in the local area (i.e. σ = 0),
the networks set a = c0, in order to avoid problem of double marginalization, and the
upstream price is equal to the monopoly case, i.e. p* = pM, where pM = (η /η − 1)c loc .
Conversely, if there is competition for customers (i.e. σ >  0) the optimal price is lower
than the one in LRT because of the tougher competition for market share related to the
profitability of the downstream sector in terms of interconnection profit and retail profit.
Thus, the presence of downstream competition influences the way local competition is
carried on by network operators: the unit profit per customer is higher in this case
respect to the “pure” two-way situation and this makes local competition more intense.

The next proposition shows how network operators can implement monopoly prices
on network services using the reciprocal access charge a.
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Proposition 2

The monopoly network access charge, denoted with aM, which implements the
monopoly price on local calls pM exceeds the monopoly access charge of a “pure” two-
way bottleneck situation considered in LRT.

Proof. Using the monopoly condition 
pM − c loc

pM = 1
η

, from equation (11) we obtain:

aM − c0

2
= 2σpM

η
πloc M + I * + ∆  ̃π ld*[ ]

where πlocM
 =  (p M - cloc)q(p M) – f is the monopoly profit. Thus, prices grow slower

respect to the “pure” two-way bottleneck situation. n

The higher the interconnection and retail profits on the downstream market, the
greater the mark up on the reciprocal access charge and so the lower the final prices for
local calls. For a given a larger than c0, local prices are thus always lower than in LRT.

4.2. Determination of the one way access charge

Let us focus on the one-way access charges. We have the following:

Proposition 3

a) The symmetric one-way access charge (  ̃a i  =  ̃a j  =  ̃a *) that maximizes the total profit
of network i is the following:

 ̃a i* − c0

pi
ld = 1

2ηld

n + 1
n − 1

+ n − 3
n − 1

 ̃q ii*

Qi
* − 2σ πloc* + I * + ∆  ̃π ld*[ ] 

 
 

 
 
 (12)

where ηld = − ∂Qi

∂pi
ld

pi
ld

Qi
 is the demand elasticity of long distance calls. After

manipulations, condition (12) can be rewritten as:

 ̃a i
* =  ̃a * =  ̃a for − n + 1

n + 3
n − 2
n − 1

∆c + σβQi
* πloc* + I * + ∆  ̃π ld*[ ] 

 
 
 (13)

where  ̃a for  is the one-way access charge that allows network i to foreclose the segment
of downstream market originated by its own subscribers (see condition 8).

b) The optimal one way access charge is inversely related to σ.
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c) An increase in the reciprocal access charge a lowers the downstream one way
access charge  ̃a i .

Proof. See Appendix I.

From the analysis of Proposition 3, we can draw some relevant insights. Firstly, if the
long distance operators and the networks operator are equally efficient (∆c = 0 ) and if
competition in the local area does not exist (σ = 0), the optimal access charge that each
network operator sets is the one corresponding to the benchmark case, that is the one
that forecloses the downstream market. In this case, the market is characterized by a
duopoly competition, both in local and long distance sector, between two vertically
integrated firms. Otherwise, if the independent long distance operators are more efficient
than the networks operators (∆c > 0 ) and if the competition in the subscriber market is
strong enough (σ > 0), then the one-way access charge is lower than the one that could
foreclose the downstream sector, even if the industry is still unregulated. Then, local
competition pushes access prices down without any regulatory intervention.

The above mentioned effects are reinforced when the number of firms in the
downstream sector is large. In fact, for n → ∞ , equation (13) becomes:

 ̃a * =  ̃a for − ∆c + σβQi
* πloc* + I * + ∆  ̃π ld*[ ]( )

In this case the entire difference in efficiency is directly translated into lower access
charge. In addition, the effect of competition in the subscribers’ market is also stronger.

The most important results deriving from Proposition 3 are the relationships between
σ and  ̃a i  and between a and  ̃a i . First of all, the more intense is the local competition
between network operators, the lower is the one-way access charge set by each network
operator. Intuitively, customers will subscribe to the network that can provide both local
and long distance calls (directly or through interconnection agreement with other firms)
at the lowest price. If the local competition is tough, it means that customers can easily
switch from one supplier to the other according to the retail prices offered to them.
Then, since lowering the one way access charge reduces the retail price of long distance
calls, each network operator is induced to set a low one way access charge in order to
attract more customers to its own network. For these reasons, when local competition is
strong (σ > 0), a reduction in the one way access charge has a positive effect on the
subscribers’ market share and it enhances competition also in the long distance sector.
The result formally confirms what suggested in a qualitatively way by Armstrong (1997),
who wrote that “a possible benefit from local competition concerns its potentially
desiderable effect on other vertically related markets, as long distance
telecommunication”. Once a firm controls the point of access of a customer to the
network, it has also the incentive to control, directly or indirectly, other services
consumed by the same customer who generally prefers to receive all services from and
paying a bill to a single supplier, i.e. using the so called one-stop shop. Then, local
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competition enhances competition also in the other vertically related markets, such as the
long distance sector, with substantial benefits for consumers in welfare terms.

Secondly, the reciprocal access charge, that can be used by the networks as an
instrument of tacit collusion, influences the level of the downstream (one-way) access
charge. Intuitively, if we fix  ̃a i  =  ̃a * , an increase in the two-way access charge a raises
the retail price of local calls (p*), as shown in Proposition 1. Thus, as long as p* ≤ pM,
the retail profits in the local area increases. As retail profits per customer are now higher,
competition for market share gets tougher. The higher profitability of the local market
leads network operators to lower their downstream access charge in order to attract
more customers. Obviously, this decreases interconnection and retail profit from the
downstream activities, but this reduction will always be smaller than the increase in the
retail profits of the local market due to the larger market share. Eventually, total profits
could reach their maximum value when retail profits in the local market are at their
monopoly level, that is the reciprocal access charge is set at the value shown in
Proposition 2. Thus, downstream access charges could be at their lowest level as the
profitability of the local market increases.

Finally, it is also possible to compare condition (13) with the Efficient Component
Pricing Rule (ECPR). It results that  ̃a i

ECPR ≥  ̃a i
*  if  ∆c > 0  and/or σ > 0. Then, the global

quantity in the downstream market derived here is larger than under the ECPR.

4.3. The separation case

Suppose now that each network is not integrated downstream. Network operator i
maximizes its profit given by:

πi = α pi
loc − c loc( )q(pi

loc) − f + I(  ̃a is)[ ]+ α (1 − α ) q(p j
loc) − q( pi

loc)[ ](a − c0)

where as before I(  ̃a is ) is the interconnection profit. We have the following

Proposition 4

a) In the case of separation, the optimal symmetric local price, is:

p s * − cloc + a − c0

2
 
 

 
 

ps *
= 1

η
1 − 2σ πs loc* + I s *[ ]( ) (14)

b) The optimal symmetric one-way access charge is given by:

 ̃a is* − c0

pi
ld = 1

ηld

n + 1
n

− 2σ πsloc* + I s *[ ]   
   (15)
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and after some manipulations:

 ̃a i
s* =  ̃a s* = γ+ (c0 + c)

2
− c − σβQi

s* πsloc* + I s *[ ] (16)

where {γ + (c0+c)}/2 is the monopoly price in the downstream sector.

Proof. See the Proof for proposition 1 and 3.

The intuition behind Proposition 4 is very similar to the analysis done in the previous
section. Unfortunately, it is difficult to make a comparison between the above optimal
conditions with the optimal solutions derived in the case of integration. Since both the
local tariff and the one-way access charge are endogenous variables in the maximization
problem, the level of one variable influences the optimal value of the other. Fortunately,
a more precise comparison can be carried out in the following sections where we assume
that local competition is in two-part tariffs.

5. Competition in two-part tariffs

Suppose that network operators can offer to customers its services using non linear
tariffs. Since the customers’ demand function is known, networks cannot do better than
offering two-part tariffs:

Tτ(q) = Fτ + pτ
locq,  τ = i,j

where the fixed fee Fτ can be interpreted, as in LRT, as a subscriber line charge and pτ
loc

as the marginal price for a local calls or usage fee.
Using the above notation, the net surplus offered to network’τ consumers is now:

wτ = v(pτ
loc) + v ld( pτ

ld (Qτ (  ̃a τ )) − Fτ  ,  τ = i, j

Thus, network i’s market share is determined by the net surplus:

α i = α (pi
loc, pj

loc ,Fi, Fj ,  ̃a i,  ̃a j ) = 1
2

+ σ w i − w j[ ]

In case of integration, network i’s profit becomes:

πi = α pi
loc − c loc( )q(pi

loc) − f + Fi + I(  ̃a i) +  ̃π iild (  ̃a i )[ ]+ α (1 − α ) q(p j
loc) − q( pi

loc)[ ](a − c0) +

+ 1 − α( ) p j
ld Qj(  ̃a j )( )−  ̃a j +  ̃c ( )[ ]̃ q ij (  ̃a j)

(17)
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In addition, suppose that in the downstream market all the competitive firms are
equally efficient (i.e. ∆c = 0); we have the following:

Proposition 5

a) When the degree of substitutability (σ) or the access markup (a – c0) is not too
high, a symmetric equilibrium exists in non linear tariffs.

b) A network’s optimal usage fee is its perceived marginal cost; for network i we
have pi

loc = cloc + αj(a – c0). So at a symmetric equilibrium:

p* = pi
loc = pj

loc = cloc + a − c0

2
(18)

c) The symmetric equilibrium subscriber fee F* is equal to:

F* = 1
2σ

− q(p*)
a − c0

2
 
 

 
 + f − I(  ̃a *) − ∆  ̃π ld (19)

that is, the “Hotelling markup” (1/2σ) plus the net marginal cost of adding a subscriber

to the local network (f – q(p*)
a − c0

2
) minus the per unit profit deriving from

downstream activities (retail and interconnection).
d) The symmetric one-way access charge is given by:

 ̃a i =  ̃a j =  ̃a * = c0 + 3 γ− (c0 + c)[ ]
n + 7

(20)

e) As in LRT, the symmetric equilibrium profit is independent of the two-way access
charge a and it is equal to:

 π* = 1
4σ

+ 1
2

 ̃π ijld (  ̃a *) = 1
4σ

+ (γ− c0 − c)2

β(n + 7)2 (21)

Proof. See Appendix II.

As in LRT, the equilibrium profit is independent of the two-way access charge. An
increase in the two-way access charge leads to an increase of the retail usage fee, and so
to a decrease in the customers’ level of consumption, but does not affect the operators’
profit. Then, the two-way access charge can no longer be used as an instrument of tacit
collusion as in the linear case. Networks can build market share using the fixed fee and
not the marginal retail tariff. Competition is thus more intense than in the case of linear
tariff. In particular, the symmetric fixed fee is lower than the one suggested in LRT
according to the profitability of the downstream activities (both in the retail and in the
interconnection segment). Intuitively, since networks can offer both local and long
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distance calls, they have an incentive to decrease their fixed fee in order to attract more
customers; as shown before, if a network operator control the access to a customer, it
knows that it could extend its control also to all the other complementary services
consumed by its customers. Thus, local competition is even stronger here than in the
“pure” network competition model. Finally, note that the equilibrium profit is higher than
the one obtained in LRT and, in particular, it is equal to the profit that would be
obtained under unit demands plus a term related to the profit deriving from providing
long distance calls to customers connected with the rival network.

The optimal one-way access charge, given by condition (20), does no longer depend
on the level of substitutability σ as in the linear case. However, tougher competition in
the local area has a relevant impact on the way the downstream access charge is set. In
order to illustrate this statement, let us compare condition (20) with condition (7) which
defines the optimal unregulated one way access charge that the local network operator
would set in absence of local competition. We obtain:

 ̃a * −  ̃a iB = − 1
2

(n + 1)(γ− (c0 + c))
n + 7

< 0 (22)

From condition (22) it results that the optimal one way access charge derived in a
contest of competition between networks is always lower than the one way access
charge that an unregulated network operator sets in absence of local competition. Thus,
in presence of competition in the local area, the access charge is lower than the
foreclosure level, even if the industry is not regulated.

5.1. The separation case

In case of separation, network i’s profit becomes:

πi = α pi
loc − c loc( )q(pi

loc) − f − Fi
s + I(  ̃a is )[ ]+ α (1− α ) q( p j

loc) − q(pi
loc)[ ](a − c0 )

The maximization of the above condition leads to the following:

Proposition 6

The equilibrium, which always exists when the degree of substitutability (σ) or the
access markup (a – c0) are not too high, is given by the following set of equations:

- for the optimal usage fee:

pS* = pi
loc = pj

loc = cloc + a − c0

2
(23)
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- for the optimal subscriber fee F* :

F s* = 1
2σ

− q(p*)
a − c0

2
 
 

 
 + f − I(  ̃a s*) (24)

- for the optimal one-way access charge:

 ̃a is =  ̃a js =  ̃a s* = c0 + γ− (c0 + c)
n + 2

(25)

Thus, the symmetric equilibrium profit is equal to πs* = 1
4σ

.

Proof. See the Proof for Proposition 5.

The main intuitions are identical to the one drawn in the integration case and for these
reasons we don’t go further into details. However, notice that the equilibrium profit is
lower than the one that can be obtained by a vertically integrated local operator. Besides,
comparing the optimal one way access charge in (25) with the access charge in (9)
obtained in absence of local competition between network operators, we have:

 ̃a s* −  ̃a i
sB = − n

2(n + 2)
(γ− c0 − c) < 0 (26)

as in case of integration, the optimal access charge in presence of competition in local
area is lower that the interconnection tariff in absence of local competition.

5.2. Integration versus separation: a welfare comparison

It is now possible to make a welfare comparison among the two different configurations
of the market in order to investigate what is the best market structure from a social point
of view. Firstly, let’s compare the level of the optimal one-way access charges in (20)
and (25) obtained in case of integration and separation, respectively. In symbols, it
results:

 ̃a * −  ̃a s* = (2n − 1)(γ− c0 − c)
(n + 7)(n + 2)

> 0 (27)

Then, the one way access charge in case of integration is always higher than the one
derived in case of separation. The result is related to the competitive advantage of an
integrated operator that faces competition of non integrated firms. In an unregulated
environment, an integrated network operators always tend to raise rivals’ costs and put
them at a disadvantage in order to extend their market power to the downstream
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competitive sector. For these reasons, fear of possible abuses of the vertically integrated
local network asks for regulatory interventions in the telecommunications market even if
the market is more competitive.

Concerning the level of the fixed fees, after the necessary manipulations, we obtain:

F* − F s* = − (γ− c0 − c)2

β
2n3 + 10n2 + 11n + 48

(n + 2)2(n + 7)2
 
  

 
  

< 0 (28)

The optimal fixed fee in case of integration is always lower than in case of separation.
This implies that local competition is stronger if network operators are vertically
integrated since they can directly provide customers with not only local but also long
distance calls or some other complementary services. The reduction in the fixed fee is
completely passed on to customers who benefit most from the growing competition in
the local segment. However, the difference in fixed fee depends on the number of
competitors in the downstream sector: when the number of long distance operators is
small, and so network operators have a strong incentive to extend their market power
downstream, the difference is remarkable and local competition is more intense; on the
contrary, when n →  ∞ , that is when the downstream market is perfectly competitive, the
fixed fees turn out to be identical since the retail downstream profit per customers tends
to zero and the downstream profits are only given, both in case of separation and
integration, by the interconnection profits. Finally, note that the usage fees are always
equal to the perceived marginal cost and so they remain the same in both the different
market structures; then, there is no distortion on consumers’ consumption of local calls.

The difference in the one-way access charge shown in (27) implies that the retail
prices in the long distance market also change accordingly to the different market
structure. In particular, since the downstream access charge is higher in case of
integration, we have:

p ld(  ̃a *) − pld s*
(  ̃a s*) = 2(γ− c0 − c)(n − 3)

(n + 2)(n + 7)
> 0 (29)

when n ≥ 3 the retail price in case of integration is equal or higher than the one in case of
separation.6 Thus, since the demand function of long distance calls is supposed to be
linear, the loss in consumers’ surplus in long distance market is given by:

∆CSD = CS ld − CSld s* = 2(γ− c0 − c)2(n − 3)2

β(n + 2)2 (n + 7)2 (30)

Adding condition (28) and (30), it results that the global change in consumers’ surplus
is:

                                               
6  Notice that n = 2 means that only the networks’ subsidiaries operate in the downstream sector. Then, long

distance tariffs in case of integration are lower since the double marginalization problem is avoided.



20

∆CS = (γ− c0 − c)2

β(n + 2)2(n + 7)2 2n3 + 8n2 + 23n + 30[ ]> 0

The reduction in fixed fee related to the more intense competition in the local
segment is higher than the increase in the retail long distance tariff and so consumers’
surplus is greater in case of integration than in case of separation.

In addition, since π* > πs*, global welfare is higher in case of integration. Local
competition between vertically integrated networks leads to both higher benefits for
customers and higher profits for network operators and so it results socially preferable
respect to the separation case even if competition in the downstream market might be
partially softened.

5.3 The asymmetric cases

By now we have taken into consideration situations which presented two full coverage
network operators both vertically integrated or separated. The results show that, in case
of competition in two-part tariffs, in a mature phase of the industry there is no need to
regulate the two-way access charge since it can no longer be used as a collusive device
by network operators. However, these conclusions could change if the competition
between networks is no more symmetric because not all local operators are vertically
integrated or, in the entry phase, one network has a smaller coverage than the incumbent
network. Let us focus on these asymmetric cases and analyse how the level of the two-
way and one-way access charges affects the “level playing field” between networks.

5.3.1. Competition between integrated and non-integrated networks

Assume that only one network, say network i, is integrated whereas the other one (say
network j) isn’t and let us analyse the equilibrium of the game between the two networks
in case of competition in two-part tariffs. In addition, suppose that there is no difference
in efficiency between long distance operators (∆c = 0). Competition in quantity between
long distance operators gives the following optimal conditions:

 ̃q ii
* = γ+ (n − 1)  ̃a i − nc0 − c

β(n + 1)  
, qi

* = γ− 2  ̃a i − c + c0

β(n + 1)  
, q j

* = γ− (  ̃a i + c)
(n + 1)β

The global quantities supplied to customers of network i and j are respectively:

Qi
* = nγ− (n − 1)  ̃a i − (c0 + nc)

(n + 1)β   
and

  
Qj

* =
γ− (  ̃a j + c)

β
n

n + 1

According to the above assumptions, the total profits of network operators are:
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πi = α i pi
loc − c loc( )q( pi

loc ) − f + Fi + I(  ̃a i) +  ̃π iild(  ̃a i )[ ]+ α iα j q( p j
loc ) − q(pi

loc )( )(a − c0)

           + α j  ̃π ijld (  ̃a j )
(31)

πj = α j p j
loc − c loc( )q( pj

loc) − f + Fj + I(  ̃a j )[ ]+ α iα j q(pi
loc ) − q( pj

loc)( )(a − c0) (32)

where α i = 1 2 + σ v( pi
loc ) − Fi + vld (  ̃a i ) − v( p j

loc) + Fi − vld (  ̃a j )[ ] and αj =1 - αi.
Denoting with Ai = (a – c0)(q(pj

loc) – q(pi
loc)) and Aj = (a – c0)(q(pi

loc) – q(pj
loc)) = -

Ai, the asymmetric equilibrium game is given by the following conditions. For the
vertically integrated network i we have:

pi
loc*= cloc + (1-αi)(a – c0) (33)

Fi
* = α i

σ
− ( pi

loc * − c loc)q( pi
loc*) − (1 − 2α i)Ai + f − I(  ̃a i*) − ∆  ̃π ld (  ̃a i* ,  ̃a i*) (34)

 ̃a i* = c0 + 3 γ− c0 − c( )
n + 7

(35)

leading to the following profit:

 πi
* = (α i )2

σ
+ (α i )2 Ai +  ̃π ijld(  ̃a j*)

For the network j it results:

pj
loc*= cloc + αi(a – c0) (36)

Fj
* =

α j

σ
− (p j

loc * − c loc)q(p j
loc*) − (1 − 2α j )Aj + f − I(  ̃a j*) (37)

 ̃a j* = c0 + (γ− c0 − c)
n + 2

(38)

while the profit is equal to:

 πj
* =

(α j )
2

σ
+ (α j )2 A j =

(α j )
2

σ
− (α j )2 Ai

The above conditions show that the equilibrium of the game is not symmetric because
of the different vertical organization of both operators. The two local operators set
different local and long distance tariffs and different one-way access charges. In
particular, the usage fees are set both equal to the perceived marginal cost as before but
now market shares are not the same. Finally, the one-way access charges are equal to the
ones derived in the previous sections; thus, as shown in condition (27), the integrated
local operators set an higher one way access charge with respect to the separated
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operator. This leads to a higher retail price for long distance calls for customers of
network i (i.e pi

ld > pj
ld) and less minutes consumed.

The most interesting implications derive from the analysis of the equilibrium market
shares which emerges in this context. The following proposition shows how the
equilibrium is affected by the level of the two-way access charge.

Proposition 7

Denoting gross utility minus cost of local calls provided by network i and network j with
si and sj, respectively, (i.e. si = v(pi

loc*)+(pi
loc*-cloc)q(pi

loc*) and sj = v(pj
loc*)+(pj

loc*-
cloc)q(pj

loc*)), the asymmetric equilibrium market share is given by:

α i = 1
2

+ σ
3

si − s j[ ]+ σ
3

(γ− c0 − c)2(4n2 + 41n + 66)
β(n + 2)2(n + 7)2

 
  

 
  

(39)

Thus,

1) if a = c0, and so si = sj, the subscription market share of the integrated network is
higher than the one of the separated operator. The difference depends on the
substitutability between networks, σ, and on the number n of firms in the downstream
sector.

2) If a > c0, si > sj, then the two-way access charge influence the equilibrium market
share and hence the equilibrium profit of each network. In particular, the higher is the
mark-up on the two-way access charge the higher results the market share of the
integrated operator.

Proof. See Appendix II.

Proposition 7 states that if network operators don’t have the same vertical
organization in the market, competition can be influenced both by the level of the two-
way access charge and the profitability of the downstream activities.

Firstly, consider the case that the two-way access charge is fixed at its lowest level,
that is at the marginal cost (a = c0). Even in this case, the equilibrium is no longer
symmetric. Condition (39) shows that the difference in market shares depends on two
main factors: the substitutability between networks, i.e. σ, and the number n of firms in
the downstream sector. When customers can easily switch from one network to the
other, that is σ is high, the difference in market share is higher. Intuitively, subscribers
may place a large premium on receiving all services from and paying a bill to a single
supplier which might naturally be considered to be the chosen local network. Thus, when
competition in the local area is tough, the integrated network could have a competitive
advantage with respect to the non-integrated firm. For this reason, the former one sets a
lower fixed fee in order to attract many customers who remain “captive” once the
subscription decision has been taken. Besides, the last term in (39) tends to zero when n
tends to infinity. Then, when competition in the downstream sector is approximately



23

perfect there is no difference between integrated and separated network behaviour, for a
= c0. Thus, equilibrium becomes symmetric once again, for a = c0, even if the two
networks have a different vertical structure. On the contrary, the less intense competition
in the long distance sector is, the higher results the value of the third term in (39) and
therefore the difference in subscription market share.

If a > c0, the two-way access charge essentially changes the level playing field
between the two networks. An increase in the mark up on the reciprocal access charge
raises the market share and so the profit of the integrated network. Then, it is in the
interest of the integrated network to insist on a high access charge.7 Even if ex post it
leads to an increase in the usage fee, and so in a reduction in the consumption level of
local calls, ex ante the possibility to raise the two-way access charge may also deter the
entry of potential rival especially if the connection of an additional customers to the
network requires substantial fixed investment (Dessein, 1999a). Thus, contrary to the
symmetric case, the level of the two-way access charge matters when the competitors
are no more symmetric and it can hardly alter the playing field of network operators.

The possible abuses of the integrated network towards the rival separated network or
other potential entrants through the use of acces tariffs were recently analysed by Mini
(1999). Mini compares (two way) access arrangements with the RBOCs (which are
vertically separated) and GTE (a vertically integrated rival company) of the AT&T
attempting to enter local markets in 22 states in which both GTE and a RBOC are
present. Mini shows that access arrangments are more likely to be reached and to be
reached more quickly under vertical separation. As of March 1999, AT&T had failed to
obtain interconnection arrangments with the Bells in only 2 of the 22 sample states, but
failed with GTE in 10 of these states. In addition, the arrangments were reached first
with Bell 11 times and only once with GTE. The average delay in reaching agreement is
70% longer with GTE and the pricing request of GTE on interconnection are
consistently “tougher” than the one of the RBOCs.

These results confirms the difficulty of obtaining access and reaching a fair
interconnection agreement in presence of a vertical integrated network. The regulatory
Authority has to take into consideration the possible anticompetitive behaviour of the
integrated network trying to soften competition both in local and log distance segments
and so regulation turns out to be still necessary to protect new entrants.

5.3.2. Entry process

Suppose that one network operator, say network j, initially has a limited coverage, that
is, in an entry phase of the industry, it cannot provide its services to all the subscribers
market. However, it has to face competition in the subscriber market of the full coverage
incumbent operator. In addition, both the network operators are vertically integrated
downstream. Denote with µ ∈ [0,1] the coverage chosen by network j when it decides to
enter the local market. Market shares are thus given by α i = 1 − µ(1 − α )  and
α j = µ(1 − α ), whereα = 1 2 + σ w i − w j[ ]

 
is the market share that network i commands

                                               
7 See also Dessein (1999a) for further considerations.
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among those consumers that can be served by both networks and wτ, τ = i,j, is the
variable net surplus offered by network τ to its customers.

Network i’s profit becomes:

πi = α i pi
loc − c loc( )q( pi

loc) − f − Fi + I(  ̃a i) +  ̃π iild(  ̃a i )[ ]+ α iα j q(p j
loc ) − q( pi

loc )[ ](a − c0) +

+ α j  ̃π ij (  ̃a j)

and similarly for network j.
The maximization of the above function leads to the following optimal conditions:

pi
loc*= cloc + (1-αi)(a – c0)  ,  pj

loc*= cloc + αi(a – c0)

Fi
* = α i

µσ
− ( pi

loc * − c loc )q(pi
loc*) + (1 − 2µ(1 − α ))Ai + f − I(  ̃a *) − ∆  ̃π ld (  ̃a *)

Fj
* =

α j

µσ
− ( pj

loc * − c loc )q(p j
loc*) − (1 − 2µ(1 − α ))Aj + f − I(  ̃a *) − ∆  ̃π ld (  ̃a *)

 ̃a i
* =  ̃a j

* =  ̃a * = c0 + 3 γ− c0 − c( )
n + 7

Notice that the coverage level in the subscriber market does not influence the optimal
level of the downstream (one-way) access charge that remains the same as in the
symmetric case. The global profits of each network operator become:

 πi
* = (α i)2

µσ
+ (α i )

2 Ai    ,  πj
* =

(α j)
2

µσ
+ (α j)

2 A j =
(α j )

2

µσ
− (α j )

2 Ai

plus a fixed term regarding the retail downstream profit, which can be ignored, without
any loss of generality. The asymmetric equilibrium market share is given by:

α i = 1
2

+ 1 − µ
3

+ µσ
3

si − sj[ ] (40)

where si and sj are the gross utility minus cost of local calls provided by network i and
network j, respectively. The above result is equivalent to the one derived in Dessein
(1999a), who firstly showed the effect of the two-way access charge in case of a “pure”
horizontal competition in non-linear tariffs between two network firms with different
coverage. If µ < 1, even if a is set at marginal cost (i.e. si = sj), market share of the full
coverage network is higher than the one of the new entrant; in addition, the difference in
market share raises as the mark up of two-way access charge a on marginal cost of
access increases. Then, the two-way access charge increase profits of the full coverage
network and lowers profits of the other. If the bargaining power is unequally distributed
among network operators, the two-way access charge can be used by the full coverage
network to obtain a competitive advantage. Thus, in an entry phase of the industry, the
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regulatory Authority has to intervene in order to level the playing field of networks and
yield an efficient bargaining outcome among local operators.8

6. Concluding remarks

In this paper we have developed a model of network competition between two vertically
integrated telecommunications operators. These operators control a local network and
operate also in a long distance sector facing competition from other independent non-
integrated firms, which need the (one way) access to local network as an essential
facility. The analysis has been carried out in a game structure consistent with the
assumption that customers’ choice of long distance supplier is less flexible than their
subscription decision. Once having decided which local network they want to subscribe
to, they become “captive” and they cannot change their subscription decision after
having observed the prices per minutes of long distance calls. We believe that this
assumption might be realistic in a contest of network competition between
telecommunications operators especially when customers face high switching costs if
they decide to change their local providers. The main results can be summarized as
follows. In a mature phase of the industry, the game between two vertically integrated
networks leads to a symmetric equilibrium, where network operators share each other
the subscriber market and set the same retail (local and long distance) and
interconnection  tariffs. In particular, the optimal one way access charge set by the
integrated networks is lower than the one that could enable them to impede the entry of
potential rivals in the downstream sector even if the market is assumed to be
unregulated. Then, local competition pushes access prices down without any regulatory
intervention and it enhances competition also in the long distance market lowering retail
prices. However, the optimal one way access charge in case of integration is higher than
the optimal one in case of separation. Thus, the regulatory intervention on access prices
could still be required in order to prevent the vertically integrated networks from
softening competition in the long distance. As in LRT, the two-way access charges can
still be used as a collusive device only if competition is in linear tariffs but not if
competition is in two-part tariffs. However, also in this case, if network operators are
not symmetric, two-way access charge still play a crucial role in the market. In fact, the
level playing field among networks can be altered in favor of an integrated firm or of a
network with higher coverage which would have an incentive to raise the access charge
in order to increase the rival’s cost and put the rival at a disadvantage. Thus, in the entry
phase of the industry, regulation of the (two-way and one-way) access charges is still
necessary in order to avoid abuses and to create a more competitive environment.

                                               
8 For further considerations and a formal proof, see Dessein (1999a).
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APPENDIX I

Proof of Proposition 1 and Proposition 3

Explanation of condition (8)

Using the same Proposition 1 from LRT it can be shown that no equilibrium exists
for σ large, just replace f by f ' = f − I * + ∆  ̃π ld*[ ]. Differentiating global profit with

respect to pi
loc, we have:

∂πi

∂pi
loc = α q( pi

loc) + pi
loc − c loc( )∂q

∂pi
loc

 
  

 
  
− σq( pi

loc) πloc + I + ∆  ̃π ld[ ]
− α(1 − α ) a − c0( ) ∂q

∂pi
loc + (1 − 2α) ∂α

∂pi
loc q( pj

loc) − q(pi
loc )[ ](a − c0) = 0 (I.1)

In a symmetric equilibrium, pi
loc = pj

loc = p*,  ̃a i  =  ̃a j  =  ̃a * , α = 1/2 and
d α (1 − α )[ ]/ dα = 0; thus, the above condition can be rewritten:

∂πi

∂pi
loc pi

loc = p j
loc = p*

 ̃a i =  ̃a j =  ̃a *

= 1
2

q(pi
loc ) + pi

loc − c loc( )∂q
∂pi

loc
 
  

 
  
− σq(pi

loc ) πloc* + I * + ∆  ̃π ld*[ ]
− 1

4
a − c0( ) ∂q

∂pi
loc = 0

 (I.2)

or, denoting with η = − ∂q
∂pi

loc
pi

loc

q
 the demand elasticity of local calls:

∂πi

∂pi
loc pi

loc = pj
loc = p*

 ̃a i =  ̃a j =  ̃a *

= 1
2

q( p*)
p *

(η − 1)
η

η − 1
cloc − p *

 
 
  

 + η a − c0

2
 
 
 

− 2σp * πloc* + I * + ∆  ̃π ld*[ ]}= 0

      (I.3)

After manipulations, we obtain condition (8). n

Relation between p* and a

Since in a symmetric equilibrium ∆  ̃π ld* ≥ 0 , it is straightforward to show that p(.)
increases with a. Indeed, applying the implicit function theorem to (I.3), we have:
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∂p *
∂a

=
η

2
η − 1 + 2σ πloc* + I * + ∆  ̃π ld* + p * ′ π (p*)( )

∂p * ∂a  is positive since π(p) ≥ 0  (non-negativity condition),

′ π loc( p*) ≥ 0 (i.e. p* ≤pM ) , where pM = η
η − 1

cloc  is the monopoly price in the local

segment, and ∆  ̃π ld* ≥ 0 . So for a large enough, ∂p * ∂a  will be positive and bounded
away from zero, implying that p* goes to infinity with a. But then for a large and thus p*
high enough, each network could corner the market and get the full monopoly profit
cutting its price; so no equilibrium exist for a large. n

Explanation of condition (10)

The F.O.C with respect to  ̃a i  is the following:

∂πi

∂̃  a i
= α Qi

* −  ̃q i* + (  ̃a i − c0)
∂Qi

* −  ̃q i*[ ]
∂  ̃a i

+ ∂πii
ld

∂̃  a i

 
 
 

 
 
 

+ ∂α
∂̃  a i

πloc + I + ∆  ̃π ld[ ]

             + (1 − 2α )
∂α
∂  ̃a i

q(p j
loc) − q(pi

loc)[ ]= 0 (I.4)

In a symmetric equilibrium, pi
loc = pj

loc = p*,  ̃a i  =  ̃a j  =  ̃a * , α = 1/2 and
d α (1 − α )[ ]/ dα = 0; thus, condition (I.4) can be rewritten:

∂πi

∂̃  a i pi
loc = p j

loc = p *
 ̃a i =  ̃a j =  ̃a *

= Qi
* −  ̃q i* + (  ̃a i − c0)

∂Qi
* −  ̃q i

*[ ]
∂̃  a i

+ ∂πii
ld

∂̃  a i
+ 2σβQi

* ∂Qi
*

∂  ̃a i
Π[]= 0

(I.5)

where Π = πloc* + I * + ∆  ̃π ld*  is evaluated at the equilibrium. Since:

∂Qi
* −  ̃q i

*[ ]
∂̃  a i

=
∂(n − 2)qi

* +  ̃q ji
*[ ]

∂̃  a i
= − 2

β(n + 1)
n − 2 + 1( )= − 2(n − 1)

β(n + 1)
∂πii

ld

∂̃  a i
= 2β  ̃q ii*

∂̃  q ii*

∂̃  a i
= 2β  ̃q ii*

n − 1
β(n + 1)

= 2  ̃q ii*
n − 1
n + 1

we obtain after manipulations:

 ̃a i* − c0

pi
ld = 1

2ηld

n + 1
n − 1

+ n − 3
n − 1

 ̃q ii*

Qi
* − 2σ Π[] 

 
 

 
 
 (I.6)
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that is condition (9) in Proposition 3, where ηld = − ∂Qi

∂pi
ld

pi
ld

Qi
 is the demand elasticity of

long distance calls. Using the elasticity formula, we have:

 ̃a i* − c0 = β
2

n + 1
n − 1

Qi
* + β

2
n − 3
n − 1

 ̃q ii* − σβQi
* Π[] (I.7)

Substituting (3) and (6) into (I.7) we have:

 ̃a i* − c0 = β
2

n + 1
n − 1

nγ− (n − 1)(  ̃a i + c) − ∆c − (c0 +  ̃c )
(n + 1)β

 
  

 
  

                          + β
2

n − 3
n − 1

γ+ (n − 1)(  ̃a i + c) + ∆c − n(c0 +  ̃c )
β(n + 1)

 
  

 
  

− σβQi
* Π[]

We obtain:

2(n + 3)  ̃a i* = c0(n + 3) + (n + 3)γ− (n − 1)  ̃c − 4c − 4∆c
n − 1

− 2(n + 1)σβQi
* Π[]

Adding and substracting 3  ̃c  and (n + 3)  ̃c  it results:

 ̃a i* = γ+ (c0 +  ̃c )
2

− 2(n + 3)  ̃c − 4  ̃c + 4c
2(n + 3)

− 4∆c
2(n − 1)(n + 3)

− n + 1
n + 3

σβQi
* Π[]

Once again, adding and substracting 2(n+3)c to the numerator of the second  element
in the RHS of the above formula, we have:

 ̃a i* = γ+ (c0 +  ̃c )
2

− c − n + 1
n + 3

∆c − 4∆c
2(n − 1)(n + 3)

− n + 1
n + 3

σβQi
* Π[]

that is, after manipulations, condition (10) defined in Proposition 3. n

Second order sufficient condition

To analyse if our candidate equilibrium, represented by the set of equations in (8) and
(10), can be a local maximum, we study the Hessian matrix of our optimization problem,
evaluated at the equilibrium.

The Hessian matrix is the following:

H pi
loc = p j

loc = p*
 ̃a i =  ̃a j =  ̃a *

=
∂2πi

∂(pi
loc )2

∂2πi
∂pi

loc∂̃  a i
∂2πi

∂pi
loc∂̃  a i

∂2πi
∂̃  a i

2
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Following the proof of Proposition 1 in LRT, we have:

∂2πi

∂(pi
loc)2 pi

loc = p j
loc = p*

 ̃a i =  ̃a j =  ̃a *

= ′ ′ π loc (p*)
2

− ′ ′ q ( p*) (a − c0)
4

− σ ′ q (p*) πloc* + I * + ∆  ̃π ld*[ ]

                                  − 2σq(p*) ′ π loc (p*)  (I.8)

that is:

∂2πi

∂(pi
loc)2 pi

loc = p j
loc = p*

 ̃a i =  ̃a j =  ̃a *

= − 1
2

q(p*)
p *

(η − 1) (η + 1)
pM − p *

p *
+ 1

 
 
  

 
+ η a − c0

2
η + 1
p *

 
 
 

− 2ση πloc* + I * + ∆  ̃π ld*[ ]+ 4σp * ′ π loc(p*)}     (I.9)

From (I.3) it results ηa − c0

2
= 2σp * πloc* + I * + ∆  ̃π ld*[ ]− (η − 1) pM − p *( ); then,

condition (I.9) can be rewritten as:

∂2πi

∂(pi
loc)2 pi

loc = p j
loc = p*

 ̃a i =  ̃a j =  ̃a *

= − 1
2

q(p*)
p *

η − 1 +{ 2σ πloc* + I * + ∆  ̃π ld*[ ]+ 4σp * ′ π loc( p*)}

(I.9bis)
which is strictly negative since η > 1, πloc* ≥ 0  and ∆  ̃π ld* ≥ 0  (non-negativity condition)
and ′ π loc( p*) ≥ 0 (i.e. p* ≤pM ) .

For simplicity, denote with Θ ld (  ̃a i ) = I(  ̃a i) +  ̃π iild (  ̃a i )  the global profit of network i
deriving from its downstream activities (interconnection and retail). The F.O.C. in (I.5),
evaluated at the candidate equilibrium, can be rewritten as:

∂πi

∂̃  a i pi
loc = p j

loc = p*
 ̃a i =  ̃a j =  ̃a *

= 1
2

∂Θ ld

∂̃  a i

 
 
 

 
 
 

+ ∂α
∂  ̃a i

Π[]= 0  ⇒  
∂Θ ld

∂̃  a i
= -2

∂α
∂̃  a i

Π[]
          (I.5bis)

Thus, the second order derivative with respect to  ̃a i , evaluated at the optimal
solution, is the following:

∂2πi

∂̃  a i2 pi
loc =p j

loc = p*
 ̃a i =  ̃a j =  ̃a *

= 2
∂α
∂̃  a i

∂Θ ld

∂̃  a i

 
  

 
  
+ 1

2
∂2Θ ld

∂̃  a i2
 
  

 
  

+ ∂2α
∂  ̃a i2

Π[] (I.10)

Substituting (I.5bis) in (I.10), we obtain:
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∂2πi

∂̃  a i2 pi
loc =p j

loc = p*
 ̃a i =  ̃a j =  ̃a *

= − 4
∂α
∂̃  a i

 
 
  

 

2

Π[]+ 1
2

∂2Θ ld

∂̃  a i2
 
  

 
  
+ ∂2α

∂̃  a i2
Π[] (I.11)

It results:

∂2Θ ld

∂  ̃a i2
= − 2

β
(n − 1)(n + 3)

(n + 1)2 < 0  since n ≥ 2
 
, 

∂α
∂̃  a i

= − σQi
* n − 1

n + 1  
,
 

∂2α
∂̃  a i2

= σ
β

n − 1
n + 1

 
 

 
 

2

Then, condition (I.11) becomes:

∂2πi

∂̃  a i2 pi
loc =p j

loc = p*
 ̃a i =  ̃a j =  ̃a *

= 1
2

∂2Θ ld

∂̃  a i2
 
  

 
  
+ Π[]σ

β
n − 1
n + 1

 
 

 
 

2

− 4 − σQi
* n − 1

n + 1
 
 

 
 

2 
 
 

 
 
 

After manipulations we have:

∂2πi

∂̃  a i2 pi
loc =p j

loc = p*
 ̃a i =  ̃a j =  ̃a *

= 1
2

∂2Θ ld

∂̃  a i2
 
  

 
  
+ σ Π[] n − 1

n + 1
 
 

 
 

2 1
β

− 4σQi
*2 

 
 

 
 
 (I.12)

Since ∂α
∂Qi

* = σβQi
*  the last term in the RHS of (I.12) can be rewritten as:

1
β

− 4σQi
*2 = 1

β
− 4

β
Qi

* ∂α
∂Qi

*

Hence

1
β

− 4
β

Qi
* ∂α
∂Qi

* < 0  ⇒   Qi
* ∂α
∂Qi

* > 1
4

  ⇒   ηα = Qi
*

α
∂α
∂Qi

* > 1
4α

and so, since α = 1 2  in equilibrium, ηα > 1/2; thus, according to our assumptions, the
RHS of (I.12) is negative.

Besides, from condition (I.5) we have:

∂2πi

∂pi
loc∂̃  a i pi

loc = p j
loc = p *

 ̃a i =  ̃a j =  ̃a *

= − σq(p*)
∂Θ ld

∂̃  a i

 
  

 
  
+ ∂α

∂̃  a i
′ π (p*) (I.13)

The determinant of the Hessian matrix H is the following:
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H = ∂2πi

∂( pi
loc )2

∂2πi

∂̃  a i2

       − σ2q(p*)2 ∂Θ ld

∂̃  a i

 
 
  

 

2

− ∂α
∂̃  a i

 
 
  

 

2

′ π loc ( p*)
2

+ 2σq( p*) ′ π loc (p*)
∂Θ ld

∂̃  a i

∂α
∂̃  a i

As shown before, the equilibrium exists only if a and/or σ are not too large (i.e. σ →  0
and/or a →  c0). Then, simplifying the above condition we obtain:

H ≅ ∂2πi

∂( pi
loc )2

∂2πi

∂̃  a i2
> 0

Thus, the Hessian matrix is negative definite so that the candidate equilibrium is a local
maximum. n

Symmetry

Fix  ̃a i  =  ̃a j  =  ̃a * . Then, Proposition 1 from LRT shows that a unique symmetric

equilibrium exists for a and/or σ small, just replace f by f ' = f − I * + ∆  ̃π ld*[ ]. In the
same way, fix pi

loc = pj
loc = p*, profit in function of  ̃a i  and  ̃a j  have exactly the same

functional form as profits in LRT in function of pi
loc and pj

loc for a = c0, just replace f by
f ' ' = f − ( p* − c)q( p*)[ ]. Indeed, for pi

loc = pj
loc = p*, profits are strictly concave in  ̃a i

(see condition I.12) and there is only one equilibrium in which  ̃a i  =  ̃a j  =  ̃a * . nn

Relation between  ̃a i  and σ

Applying the implicit function theorem to the F.O.C., denoted by X, we have:

∂̃  a i*

∂σ
= −

∂X
∂σ

∂X
∂̃  a i*

(I.14)

The sign of ∂X
∂̃  a i*

 is negative from the second order condition (I.12). Hence, the sign

of (I.14) only depends on ∂X
∂σ  :

∂X
∂σ

= 2βQi
* ∂Qi

*

∂̃  a i
Π[]= − 2Qi

n − 1
n + 1

Π[]

which is negative. Then, the higher the subsitutability in the local sector, the lower the
one way access charge. n
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Relation between  ̃a i  and a

Applying the implicit function theorem to condition (I.5bis), denoted once again by
X, we have:

∂̃  a i*

∂a
= −

∂X
∂a

∂X
∂̃  a i*

(I.15)

The sign of ∂X
∂̃  a i*

 is negative from the second order condition (I.12). Hence, the sign

of (I.15) only depends on ∂X
∂a  :

∂X
∂a

= 2σQi
* ∂Qi

*

∂̃  a i
′ π loc (p*)

∂p *
∂a

= − 2σQi
* n − 1

n + 1
′ π loc ( p*)

∂p *
∂a

< 0

since, as shown before, ′ π loc( p*) ≥ 0 (i.e. p* ≤pM )  and ∂p * ∂a  > 0. Then, the higher
the two-way access charge in the local sector, the lower the one way access charge in
the complementary downstream sector. n

APPENDIX II

Proof of Proposition 5

First Order Conditions

Using the same Proposition 7 from LRT it can be shown that no equilibrium exists
for σ large and/or (a – c0) large, just replace f by f ' = f − I + ∆  ̃π ld[ ]. Differentiating
global profit with respect to pi

loc, Fi and  ̃a j , we have:

∂πi

∂pi
loc = α q( pi

loc) + pi
loc − c loc( )∂q

∂pi
loc

 
  

 
  
− σq( pi

loc) πloc + Fi + I + ∆  ̃π ld[ ]
− α(1 − α) a − c0( ) ∂q

∂pi
loc + (1 − 2α ) ∂α

∂pi
loc q( pj

loc) − q(pi
loc)[ ](a − c0)

(II.1)

∂πi

∂Fi
= α − σ πloc + Fi + I + ∆  ̃π ld[ ]− σ(1 − 2α ) q(p j

loc ) − q( pi
loc)[ ](a − c0)

(II.2)
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∂πi

∂̃  a i
= α Qi

* −  ̃q i* + (  ̃a i − c0)
∂Qi

* −  ̃q i*[ ]
∂̃  a i

+ ∂πii
ld

∂̃  a i

 
 
 

 
 
 

+ ∂α
∂̃  a i

πloc + Fi + I + ∆  ̃π ld[ ]

             + (1 − 2α )
∂α
∂  ̃a i

q(p j
loc) − q(pi

loc)[ ]
(II.3)

In a symmetric equilibrium, pi
loc = pj

loc = p*, Fi = Fj = F*,  ̃a i  =  ̃a j  =  ̃a * , α = 1/2 and
d α (1 − α )[ ]/ dα = 0; thus, the above condition can be rewritten:

∂πi

∂pi
loc

opt
= 1

2
q(pi

loc ) + pi
loc − c loc( ) ∂q

∂pi
loc

 
  

 
  
− σq(pi

loc ) πloc* + F * + I * + ∆  ̃π ld*[ ]
− 1

4
a − c0( ) ∂q

∂pi
loc

= 0
(II.4)

∂πi

∂Fi opt
= 1

2
− σ πloc* + Fi + I * + ∆  ̃π ld*[ ]= 0

(II.5)

∂πi

∂̃  a i opt
= 1

2
Qi

* −  ̃q i* + (  ̃a i − c0 )
∂Qi

* −  ̃q i
*[ ]

∂̃  a i
+ ∂πii

ld

∂̃  a i

 
 
 

 
 
 

+ ∂α
∂  ̃a i

πloc* + F * + I * + ∆  ̃π ld*[ ]= 0

(II.6)

After manipulations (for condition II.6 see also Appendix I), we obtain the optimal
conditions in Proposition 5. n

Second Order Conditions

The second order derivatives, evaluated at the equilibrium,  are the following:

• with respect to the local price pi
loc:

∂2πi

∂(pi
loc )2

opt

= ′ ′ π loc (p*)
2

− ′ ′ q ( p*)(a − c0)
4

− σ ′ q (p*) πloc* + F * + I * + ∆  ̃π ld*[ ]
                                  − 2σq(p*) ′ π loc (p*)  (II.7)

which becomes, using condition (II.5):

∂2πi

∂(pi
loc )2

opt

= 1
2

′ q ( p*) − 2σq(p*) ′ π loc ( p*) < 0
      (II.7bis)

since p* is lower than the monopoly price.
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b) with respect to the fixed fee Fi:

∂2πi

∂(Fi )2
opt

= − 2σ < 0
(II.8)

c) with respect to  ̃a j :

∂2πi

∂̃  a i2 opt
= 2

∂α
∂̃  a i

∂Θ ld

∂  ̃a i

 
  

 
  
+ 1

2
∂2Θ ld

∂̃  a i2
 
  

 
  
+ ∂2α

∂̃  a i2
1

2σ
 
 

 
 

(II.9)

where, as in Appendix I, Θ ld (  ̃a i ) = I(  ̃a i) +  ̃π iild (  ̃a i )  denotes the global profit of network i
deriving from its downstream activities (interconnection and retail). After manipulations,
we have:

∂2πi

∂̃  a i2 opt
= 2

∂α
∂̃  a i

∂Θ ld

∂  ̃a i

 
  

 
  
− 1

β
n − 1

(n + 1)2

 
 
  

 
n + 7

2
 
 

 
 < 0

         (II.9bis)

since n ≥ 2, ∂α ∂̃  a i < 0  and ∂Θ ld ∂̃  a i opt = (n − 1)(n + 3)(γ− c − c0 )
β(n + 1)(n + 7)

> 0 .

Besides, we have:

∂2πi

∂pi
loc∂Fi opt

= − σq( p*) − σ ′ π loc (p*) < 0 (II.10)

∂2πi

∂pi
loc∂̃  a i opt

= − σq( p*)
∂Θ ld

∂̃  a i

 
  

 
  
+ ∂α

∂̃  a i
′ π loc (p*) < 0

(II.11)
∂2πi

∂Fi∂̃  a i opt
= − σ ∂Θ ld

∂̃  a i

 
  

 
  
+ ∂α

∂̃  a i
< 0

(II.12)

The second and the third leading submatrix of the Hessian, evaluated at the
equilibrium, are given respectively by:

Dopt =
∂2πi

∂(pi
loc)2

∂2πi
∂pi

loc∂Fi

∂2πi
∂pi

loc∂Fi

∂2πi
∂Fi

2
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G opt =

∂2πi
∂(pi

loc)2
∂2πi

∂pi
loc∂Fi

∂2πi
∂pi

loc∂̃  a i
∂2πi

∂pi
loc∂Fi

∂2πi
∂Fi

2
∂2πi

∂Fi∂̃  a i
∂2πi

∂pi
loc∂̃  a i

∂2πi
∂Fi∂̃  a i

∂2πi
∂(  ̃a i)2

 

 

 
 
 
 

 

 

 
 
 
 

After manipulations, it results:

D opt = − σ ′ q ( p*) 1 + σ ′ q ( p*)
(a − c0)2

4
 
  

 
  (II.13)

G opt = σk ′ q (p*) 1 + σ ′ q (p*)
(a − c0 )2

4
 
  

 
  
 (II.14)

where k = 1
β

n − 1
(n + 1)2

 
  

 
  

n + 7
2

 
 

 
 > 0 .

The sufficient second order conditions for the equilibrium to be a local maximum are
that (II.13) should be positive and (II.14) should be negative. It is straightforward to see
that, as suggested in LRT, if σ →  0 and/or a →  c0, the sign of the above determinats are
satisfied. But if σ or a are not so small, the following condition ensures the global
second order conditions:

1 + σ ′ q ( p*)
(a − c0 )2

4
> 0

(II.15)

From condition (18), it results p* = cloc + a − c0

2
. Then, condition (II.15) can be

rewritten as 1 − ση x 2

(x + c loc )η+ 1 > 0, where  x = a − c0

2

 

and η is the demand elasticity of

local calls. Let’s define

ϕ (x) = 1 − ση x2

(x + c loc )η+ 1
(II.15bis)

Condition (II.15) will be automatically satisfied if the function φ(x) evaluated at its
minimum level of x = x* is positive. Deriving (II.15bis) we find that the function φ(x)
reach a minimun in x* = 2cloc/η -1. Then, after manipulations, we have that φ(x*) ≥ 0,
and so φ(x) > 0 ∀ x, if:

c loc ≥ η − 1
η + 1

4ση
(η + 1)2

η− 1

(II.16)
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Thus, if σ is not large enough (i.e. σ →  0) and/or the mark up one the two-way
access charge is not large enough (i.e. a →  c0) and/or condition (II.16) is satisfied, then,
the candidate equilibrium given by the set of equations (II.4), (II.5) and (II.6) is a local
maximum. For the symmetry of the equilibrium, see LRT and Appendix 1.n

Proof of Proposition 7

Maximizing the aggregate profits shown in conditions (31) and (32) for the integrated
(i) and the separated (j) networks, respectively, and using the same methodology shown
at the begining of this Appendix, it is straighforward to determine the optimal conditions
(33), (34) and (35) for the integrated network and (36), (37) and (38) for the separated
one.

Market shares are given by:

α i = 1
2

+ σ v(pi
loc) − Fi + v ld (  ̃a i ) − v(p j

loc) + Fi − v ld (  ̃a j )[ ]
(II.17)

The difference in net surplus deriving from consuming long distance calls is given by:

v ld (  ̃a i
*) − v ld(  ̃a j

* ) = β
2

Qi
* − Qj

*( )

Since, in equilibrium, it results Qi
* = n + 3

n + 7
(γ− c − c0 )

β
 and Qj

* = n
n + 2

(γ− c − c0 )
β

, we

have:

v ld (  ̃a i
*) − v ld(  ̃a j

* ) = − 2
(γ− c − c0 )2

β
 
  

 
  

(n + 3)(n2 + 6n + 3)
(n + 7)2 (n + 2)2

(II.18)

Using conditions (34) and (39), the difference in the fixed fees in the asymmetric
equilibrium is given by:

− Fi
* + Fj

* = − α i

σ
+ (pi

loc * − c)q( pi
loc*) + (1 − 2α i)Ai − f + I(  ̃a i

* ) + ∆  ̃π ld (  ̃a i
*,  ̃a i

* )

              + (1 − α i)
σ

− ( p j
loc * − c)q(p j

loc*) − (1 − 2(1 − α i))Aj + f − I(  ̃a j*)
(II.19)

Since Aj = -Ai  and evalutiang the interconnection and retail profits at the optimal one-
way access charges, condition (II.19) can be rewritten as:
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− Fi
* + Fj

* = 1 − 2α i

σ
+ ( pi

loc * − c)q(pi
loc*) − ( pj

loc * − c)q(p j
loc*)

                     + (γ− c − c0 )2

β
2n3 + 10n2 + 11n + 48

(n + 2)2 (n + 7)2

 
  

 
  (II.20)

Substituting conditions (II.18) and (II.20) into (II.17) and denoting with si =
v(pi

loc*)+(pi
loc*-cloc)q(pi

loc*) and sj = v(pj
loc*)+(pj

loc*-cloc)q(pj
loc*)) the gross utility minus

cost of local calls provided by network i and network j, the asymmetric equilibrium
market share is given by condition (39), i.e.:

α i
* = 1

2
+ σ

3
si − s j[ ]+ σ

3
(γ− c0 − c)2 (4n2 + 41n + 66)

β(n + 2)2 (n + 7)2

 
  

 
  

Let’s analyse the effect of the two-way access charge a on market share. Following
Dessein (1999a), we have:

dα i
*

da
= σ

3
dsi

da
−

ds j

da
 
 

 
 

For a = c0, it results pi
loc* = pj

loc* = cloc; thus, si = sj and dα i
* / daa= c0

= 0. Then, it

results:

α i
* = 1

2
+ σ

3
(γ− c0 − c)2 (4n2 + 41n + 66)

β(n + 2)2 (n + 7)2

 
  

 
  
> α j

* (II.21)

and so the market share of the integrated network is greater than the market share of the
separated operator.

If a > c0, the level of the two-way access charge influences the equilibrium market
share. In particular, if

d 2 si

da2
a= c0

>
d2sj

da2
a =c0

(II.22)

then, an increase in the reciprocal access charge would permit to the integrated network
to get a greater market share in the subscriber market.

From the assumptions of the model, it results:

 si = u(q(pi
loc*))-clocq(pi

loc*) = 
(pi

loc*)1− η

1 − (1/η)
− cloc ( pi

loc*)− η

Then, we have:
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dsi

dpi
loc* = η2( pi

loc*)-η-1 − η(η + 1)c loc( pi
loc*)-η-2   ⇒   

dsi

dpi
loc*

a=c0

= − η
(c loc)η+ 1 < 0

and equivalently for network j. Condition (II.22) can be rewritten as:

d2 si

d(pi
loc*)2

dpi
loc*

da
 
 
  

 

2

a= c0 >
d2sj

d(p j
loc* )2

dp j
loc*

da

 
 
  

 
 

2

a=c 0 (II.23)

Since dpi
loc* da( )a= c0

= α j
*  and dp j

loc* da( )a=c 0
= α i

* , in a = c0, we have:

− η
(c loc )η + 1 α j

*( )2 > − η
(c loc )η + 1 α i

*( )2
   ⇒   α i

* > α j
*

which is always verified from (II.21). Thus, market share of the integrated network is an
increasing function in the reciprocal access charge a. n


