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1 Introduction 
 
Innovation and technological knowledge have long attracted the int erest of scholars in 

economics. Most of the attention has been paid by the pioneers in the economics of 

innovation on the economic effects of the introduction of new technological knowledge 

as well as on the structural conditions better triggering innovative performances. This 

has paved the way to an empirically grounded research tradition which has initially 

considered knowledge as an homogeneous stock, as if it were the outcome of a quite 

uniform and fluid process of accumulation made possible by R&D investments, the 

same way as capital stock. This made it possible to include knowledge capital stock 

within an extended production function framework, as an additional input to labour and 

fixed capital (Griliches, 1979; Mansfield, 1980). 

 

The focus therein was on the empirical assessment of the impact of technological 

knowledge on economic performances. Yet, very little was known about how new 

knowledge is brought about and, consequently, about how to provide a representation of 

knowledge that could be meaningful also from the epistemological viewpoint. 

Technology was mostly a black box, which begun to be explored in depth with a 

significant lapse of time. The idea progressively arose that knowledge was something 

more than the mere outcome of a linear accumulation process. Indeed such an idea was 

grounded on theoretical reflections on the nature of knowledge creation processes, with 

a particular emphasis on the concept of search and on the institutions involved in the 

production of new technologies (Nelson, 1982 and 1986; Nelson and Winter, 1982; 

Rosenberg, 1982). 

 

Drawing on insightful intuitions of Schumpeter (1912 and 1942) and Usher (1954), an 

increasingly share of scholars in the economics of innovation has recently elaborated 

theoretical approaches wherein the process of knowledge production is viewed as the 

outcome of a recombination process, according to which innovations stem either from 

the combination of brand new components or from the combination of existing 

components in new ways (Weitzmann, 1998; Kauffman, 1993). These theoretical efforts 

are in turn complemented by a well-defined cognitive approach to innovation as well as 



3 

 

 

by the increasing availability of historical accounts and sectoral studies on the dynamics 

of technological knowledge  (Vincenti, 1990; Nightingale, 1998; Katila and Ahuja, 

2002; Fleming, 2001; van der Bergh, 2008). 

 

Such framework has been largely used to build empirical studies aimed at investigating 

the dynamics of knowledge from the viewpoint of the complex systems approach. 

Knowledge was indeed seen as a set of elements connected by a network of 

relationships, the architecture of which affects its performances. However,  despite the 

emergence of these new lines of inquiry in the economics of knowledge, only a few 

efforts can be found in literature attempting to analyze their empirical consequences, 

with respect to i) the identification of the relevant properties that better proximate the 

concept of recombinant knowledge, and hence provide a more sensible representation of 

knowledge on the one hand; ii) the operational translation of such properties, as well as 

the identification of the most appropriate analytical tools on the other hand. Moreover, 

such approaches are also characterized by an important theoretical limit, according to 

which the architecture of knowledge structure is stable over time, i.e. complexity 

exogenous rather than endogenous.  

 

This chapter aims at providing an original review of the main theoretical approaches to 

technological knowledge, both implicit and explicit, and of their empirical counterparts 

in the field of economics of innovation. While there are in the literature interesting 

contributions aiming at assessing the relative goodness of the different proxies used in 

empirical analysis of innovation (see for example Kleinknecht et al., 2002), there is a 

lack of efforts explicitly directed towards synthesis of theoretical and empirical issues in 

a historical perspective. 

 

In this direction, we will go through the most recent debates on the dynamics of 

knowledge by proposing new methodologies to identifying relevant properties of 

knowledge that are consistent with the recombinant knowledge concept and allow for its 

grafting in the complex system dynamics approach in a fairly different way from the 

extant literature.  
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In particular, such methodologies are well suited to reconcile two different aspects of 

the analysis of the complex dynamics of technology, that is the view of technology as 

an artefact and as an act (Arthur, 2009; Lane et al. 2009). Indeed, by proposing that 

knowledge is the outcome of a collective process of recombination, we may argue that 

technological knowledge itself is characterized by an internal structure emerging out of 

a complex dynamics that is strictly connected to the dynamics affecting the formation 

and evolution of technology coalitions (David and Keely, 2003). 

 

The chapter is organized as follows. Section 2 provides an overview of the main 

different approaches to technological knowledge, both in empirical and theoretical 

terms. Section 3 lays down the basic ingredients of complex system dynamics and 

establishes the linkages with knowledge dynamics. In Section 4 we discuss the 

operational implications of knowledge understood as a complex system, by proposing a 

set of indicators that may fit this framework. Section 5 provides the conclusion and 

establish an agenda for future research. 

 

2 Technological Knowledge: From Knowledge Capital Stock 
to Complex Knowledge 

 

2.1 Knowledge capital stock and the linear model 
 
The importance of creativity for the production of goods and wealth is not a recent 

discovery within economics. The earlier treatment can indeed be found already in Adam 

Smith’s first four books of the Wealth of Nations. After more than a century, Alfred 

Marshall elaborated upon Adam Smith’s contribution, by proposing a former systemic 

account of the role of knowledge in the production process. In particular, Marshall made 

it very clear both in Industry and Trade (1919) and in the Principles of Economics 

(1920) that knowledge is a key input in the production process and the main engine of 

economic growth. 

 

Despite the venerable origins of the interest in technological knowledge within the field 

of economics, the former attempts to provide empirical accounts of the dynamics and 
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the effects of innovation appeared only in the late 1950s. The studies by Griliches 

(1957) and Mansfield (1961) on the diffusion of innovation can be viewed as the earlier 

empirical efforts in this sense. However, very little was known at that time about 

knowledge and in particular about its production and exploitation. The earlier empirical 

works in which the word ‘knowledge’ appeared to refer to a factor affecting the 

production of firms can be dated back to the late 1970s. Zvi Griliches turned out to be a 

pioneer in the field again. In his 1979 paper indeed he proposed the famous extended 

production function, which paved the way to a pretty wide body of empirical 

investigations. In such paper the traditional production function was extended so as to 

include an additional explanatory variable, as follows: 

 
γβα
iiii KLCY =           (1) 

 

Where C is the fixed capital stock, L stands for labour services and K is the knowledge 

capital used by firm i. Strangely enough, the empirical literature has generated a great 

deal of confusion on this contribution, as it is usually taken as key reference in papers 

using the so-called ‘knowledge production function’ approach. We believe this is due to 

a basic misunderstanding. Indeed, Professor Griliches in his article made some step 

forward to give an empirical meaning to the K term. To this purpose he proposed the 

following relationship: 

 

( )[ ]υ,RBWGK =          (2) 

 

Where R is R&D expenditures and ? is a set of unobserved disturbances. The term W(B) 

is instead a lag polynomial describing the relative contribution of past and present R&D 

expenditures to the accumulated level of knowledge. Clearly, this representation is one 

more application of the distributed lag literature, which influenced Griliches to a great 

extent. Far from proposing a knowledge production function, this relationship simply 

was the formalization of the concept of knowledge capital stock, which the author 

subsequently used in his 1980 paper on the US productivity slowdown (Griliches, 

1980). In a nutshell, the 1979 paper offered the formal basis to the application of the 
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permanent inventory method to calculate the knowledge stock starting from R&D 

expenditures, which are then considered as a flow measure. 

 

The specification of knowledge capital also called for a proper account of the effects of 

knowledge spillovers, i.e. knowledge borrowed or stolen from other firms or industries 

that can equally affect productivity of the observed firm or industry. Knowledge 

spillovers have been accommodated in an extended production function at the firm level 

by including a proxy for the aggregate stock of knowledge available within the industry 

firm i operates: 

 
µγβα
aiiii KKLCY =          (3) 

 

Such equation enables to distinguish between the total effect of aggregate private 

knowledge and the total spillover effect. Since all private knowledge is supposed to spill 

over to some extent, the total effect of all private knowledge at the aggregate level is 

given by ?+µ (Griliches, 1979 and 1992). 

 

On the basis of the argument elaborated so far, we may provide some insights about the 

possible theoretical underpinnings to the concept of knowledge capital stock. Indeed, 

we lack an explicit theoretical reasoning on technological knowledge leading to its 

operationalization in terms of knowledge capital stock. A quote from Griliches (1967) 

may be of some help here: 

 

“For example, let investments affect the level of patenting with a lag whose generating 

function is given by W1(z), let these new inventions be embodied in new investment 

with a lag W2(z) and let new investment affect total factor productivity with a lag W3(z); 

then the total lag distribution of productivity behind investment is given by 

)()()()( 321 zWzWzWTW = ” (Griliches, 1967: p. 20). 

 

It is clear that the application of lag generating functions to investments measures so as 

to get a stock implies an underlying sequential process that start with R&D investments 

to yield a proxy of cumulated knowledge that in turn is supposed to show some effects 
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on economic performances. In this direction, we believe it would not be that 

inappropriate saying that knowledge capital stock implies a vision of knowledge 

accumulation as an outcome of a linear process like this one: science precedes 

technology development, which then comes to be adopted by firms, and finally affects 

production efficiency.  

 

After all, Vannevar Bush’s report to the US president had long been the main reference 

text to students of science and technology. Therefore it’s likely that the articulation of 

the linear model he proposed has influenced the way scholars from other fields looked 

at technological knowledge as well. Moreover, Kline and Rosenberg’s critique came 

only in the 1980s, and so did many of the works that opened up a new view on 

knowledge and innovation providing the basis to the knowledge production function 

approach (Bush, 1945; Kline and Rosenberg, 1986; Balconi et al., 2009)1. 

 
 

2.2 Knowledge production function 
The inclusion of knowledge capital stock within an extended production function 

approach allows economists to preserve the basic microeconomic assumptions about 

production sets out of which firms take their profit-maximizing choice. However, such 

approach assumes the existence of a separate R&D sector that is partly responsible of 

the change in the production technology, and hence of the shift of the production 

function (Nelson, 1980). 

 

Because of this limitation, such a representation begun to be challenged mainly by 

evolutionary economists, who proposed to expand the view upon technological 

knowledge so as to account for it inherent compositeness. At the same time, scholars of 

science and technology started criticizing the linear model, by proposing an alternative  

view basically drawing upon systemic models of innovation based upon the interaction 

                                                                 

1 We do not intend to go into the debate on the virtues and drawbacks of the linear model. The work by 
Balconi et al. (2009) provides an excellent synthesis in this direction. 
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among different and yet complementary institutions involved in the complex business of 

knowledge production (Kline and Rosenberg, 1986; Gibbons et al. 1992).  

 

A couple of Dick Nelson’s contributions in the early 1980s provided a clear statement 

of the problems with the concept of knowledge capital stock, along with the theorization 

of a more articulated concept of knowledge, understood as a set of capabilities guiding 

the search processes undertaken by organizations performing R&D. Such capabilities 

may be themselves the outcome of R&D activities, and are likely to improve over time 

due to dynamic increasing returns stemming from learning by doing dynamics (Nelson, 

1980 and 1982).  

 

In this sense, such contributions may be viewed as pioneering in the attempt of opening 

the black box of technological knowledge so as to explicitly improve upon Griliches’ 

and Mansfield’s former operationalizations. Moreover, they also proposed a more 

realistic view in which science and technology are far from being sharply differentiated. 

There are a number of institutions producing knowledge, some of them are public while 

some others are private, and it is not possible to identify a one to one mapping from 

science to public ins titutions or from applied technology to private business firms. 

Scholars must acknowledge that different kinds of organizations take part in the process 

of knowledge production, like firms, research labs and universities (Nelson, 1982 and 

1986).  

 

This set of arguments has been well received mostly in the literature dealing with 

knowledge production at the aggregate level. In particular the literature on regional 

systems of innovation provided a fertile ground to develop the implications of this new 

view (Cooke, 1996; Cooke et al., 1997). Regional economists translated the idea that 

knowledge is the result of the interaction of a number of complementary inputs 

provided by different research institutions, into the concept of knowledge production 

function. The differences with the concept of knowledge capital stock are clear. 

Knowledge is no longer the mere result of cumulated R&D spending subject to 

decreasing returns. The knowledge production function provides a mapping from 

knowledge inputs to knowledge outputs that appears as follows: 
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εδγβα ++++= )log()log()log()log( tttt ZURK      (3) 

 

Where K stands for a measure of knowledge output, say patents, R stands for the 

industry R&D and U represents the university research, while Z includes a proxy for the 

concentration of a given type of activity (Acs et al., 2002; Fritsch, 2002). Equation (3) 

represents a production function, the arguments of which enter a multiplicative 

relationship, and hence are seen as complementary rather than substitute. The 

coefficients are in turn the elastiticities of knowledge output to knowledge inputs.  

 

On a fairly similar ground, the localized technological change approach has stressed that 

the dynamics of knowledge production are characterized by the joint utilization of 

internal and external knowledge, both tacit and codified. Mechanisms of learning, 

socialization and recombination are considered as crucial in a context characterized by 

the production of knowledge by means of knowledge itself (Antonelli, 1999). 

 

The knowledge production function approach represents an improvement both from the 

theoretical and the empirical viewpoint, with respect to the concept of knowledge 

capital stock. It allows to gaining a better understanding of the interactive dynamics 

leading to the production of technological knowledge, by accounting for possible 

dynamic increasing returns stemming from learning dynamics as well as knowledge 

externalities. However, knowledge on the left hand side of the equation still is 

conceived as an homogeneous stock, and little  is said about the intrinsic heterogeneity 

of knowledge base. In other words such representation still lacks proper cognitive 

models of knowledge production. 

 

2.3 Complex knowledge and NK models 
 
The development of the knowledge production approach inevitably leaves with a basic 

question as to what are the micro-founded mechanisms underlying knowledge 

production. In this respect, the interest in the cognitive mechanisms leading to 

production of new technological knowledge has recent ly emerged in the field of 
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economics of innovation. This strand of analysis has moved from key concepts brought 

forward by Schumpeter (1912 and 1942) and Usher (1954), and then elaborated upon 

the models proposed within evolutionary economics (Nelson and Winter, 1982). 

 

In his seminal works, Schumpeter proposed to view innovation as the outcome of a 

recombination process. Most of innovations brought about in the economic system stem 

from the combinations of existing elements in new and previously untried ways. Such 

innovations appear to be mainly as incremental. Radical innovations stem instead from 

the combination of existing components with brand new ones.  

 

The contributions by Weitzman (1996 and 1998) represent the former, and very 

impressive, attempt to draw upon such assumptions. His recombinant growth approach 

provides a sophisticated analytical framework grafting a micro-founded theory of 

knowledge production within an endogenous growth model. The production of 

knowledge is seen as the outcome of an intentional effort aimed at reconfiguring 

existing within a genuine cumulative perspective. However, there is no particular focus 

on the constraints that the combination of different ideas may represent, especially when 

these ideas are technologically distant. The only limiting factor seems to be the bounded 

processing capacity of economic agents. 

 

The recombinant knowledge approach is based on the following assumptions. The 

creation of new knowledge is represented as a search process across a set of alternative 

components that can be combined one another. However, within this framework a 

crucial role is played by the cognitive mechanisms underlying the search process aimed 

at exploring the knowledge space so as to identify the pieces that might possibly be 

combined together. The set of potentially combinable pieces turns out to be a subset of 

the whole knowledge space. Search is supposed to be local rather than global, while the 

degree of localness appears to be the outcome of cognitive, social and technological 

influences. The ability to engage in a search process within spaces that are distant from 

the original starting point is likely to generate breakthroughs stemming from the 

combination of brand new components (Nightingale, 1998; Fleming, 2001). 
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Incidentally, such an approach also enables to better qualify the distinction between 

exploration and exploitation formerly articulated by March (1991). Most of the research 

in organization studies has usually seen search processes as ranging between two poles 

of a one-dimensional continuum, i.e. exploration and exploitation. The view of 

knowledge as an outcome of a recombination activity allows the introduction of two 

nested dimensions, defined according to degree to which agents decide to rely either on 

exploration or exploitation or on a combination of both. To this purpose concepts like 

search depth and search scope have been introduced. The former refers to degree to 

which agents intend to draw upon their prior knowledge, while the latter refers to the 

degree to which agent intend to rely on the exploration of new areas in the knowledge 

space (Katila and Ahuja, 2002). 

 

Recombination occurs only after agents have put much effort in searching within the 

knowledge space. This strand of literature posits that knowledge so obtained is 

complex, meaning that it comprises many elements that interact richly (Simon, 1966; 

Kauffman, 1993). This has paved to way to an increasing number of empirical works 

based on the NK model proposed by Kauffman, according to which the search process 

is conducted across a rugged landscape, where pieces of knowledge are located and 

which provides the context within which technologies interact.  

 

The bulk of the focus is on the concept of interdependence among the pieces that are 

combined together, while complexity is defined as the relationship between the number 

of components and the degree of interdependence (Fleming and Sorenson, 2001; 

Sorenson et al., 2006). Following the intuition on the importance of patent citations 

contained in the seminal paper by Manuel Trajtenberg (1990), the empirical 

implementation of the interdependence concept is based on the deployment of the 

information contained in patent documents, i.e. technological classes and citations to 

other patents. In particular, interdependence is considered as a powerful explanatory 

variable building upon the technological classes the patent is assigned to. The 

interdependence of a patent l is obtained in two steps. First of all one has to calculate 

the ease of recombination for each subclass i (Ei), defined as the count of subclasses j?i 
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previously combined with class i weighted by total number of patents assigned to class 

i: 

 

∑
∑ ≠

=
i

i l

ij
E           (4) 

 

Then one can calculate the degree of interdependence of patent l (Kl) by inverting its 

average ease of recombination: 

 

∑
∑

∈

∈
=

li i
l E

li
K            (5) 

 

This empirical approach allows for evaluating the relative probability of recombination 

of each technological class observed in the patent sample, and then to assign an average 

recombination score to a patent. The basic idea is that the more combinable are the 

classes contained within a patent, the lower the degree of interdependence, as the 

technology is susceptible to be developed in a larger number of directions. On the 

contrary, should the classes be hardly combinable, then a relatively low number of 

possible combinations is possible, for which the technology turns out to show a high 

degree of interdependence. Such measure of interdependence is in turn expected to 

explain differentials in usefulness of inventions as proxied by the flow of citations 

received by patents over time. 

 

Such framework clearly has the merit to push the economic discussion about 

technological knowledge beyond the conventional vision considering it as a sort of 

black box. It sheds light on the possibility to further qualify knowledge as proxied by 

patents, by better exploiting the information contained in patent documents. Moreover, 

it provides a former and innovative link between knowledge and complexity. 

 

However, the notion of complexity used therein seems to be constrained to a generic 

definition of an object the elements of which are characterized by a high degree of 

interaction. As an implication the empirical effort does not go beyond the count of 
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classes and of patents assigned to classes. The NK models fail to identify knowledge as 

an emergent property of an adaptive complex system, characterized by an architecture 

that can influence the actions at the micro and meso levels as well as be influenced as a 

result of what happens at lower layers. This requires first to make it explicit a concept of 

knowledge structure and then to explore the different tools made available by different 

methodological approaches.   

 

Summing up, the grafting of complexity theory into economic sciences has proved to be 

particularly fertile, especially for what concerns the economics of knowledge and 

innovation. The explicit reference to the NK-model by the recombinant knowledge 

literature provides a clear example in this respect. 

 

Most NK-models are however affected by a severe limit, which constrains their 

usefulness. The complex system is characterized by a set of elements and the 

connections amongst them. The configuration of the linkages connecting the elements 

of the system is likely to affect agents’ performances. The main problem here is that the 

architecture of the system is often considered as table over time rather than evolving 

(Frenken, 2006). This amounts to consider the degree of complexity of the system as 

exogenous, defined ex ante. The contribution by Fleming and Sorenson discussed above 

presents exactly this limitation, which makes it unsuitable to the analysis of the 

evolutionary and path dependent dynamics of technological change. 

 

3 Endogenous Complexity and Technological Knowledge 
 
The main issue to be considered now is that the architecture of a complex system may 

well change over time, and so may the structure of epistatic relationships. This may 

occur either due to a change in the relative weight of some elements in the system, these 

elements switching from a non- influential to an influential position, or by means of 

introduction of new elements within the system. This is in turn likely to alter the 

existing structure of relationships. Within this context, the pleiotropy represents the 

number of elements in the system that are affected by the appearance of new elements. 
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It is clear that the higher the pleiotropy, the greater the change in the architecture of the 

system that the inclusion of new elements may engender. 

 

The model of constructional selection by Altenberg (1994 and 1995) represents one of 

the few attempts to cope with the issue of changing architectures of complex systems. 

As noted by Frenken (2005 and 2006), such class of models is well suited to investigate 

the evolution of technologies considered as artefacts made of interdependent elements 

(Lane and Maxfield, 2005). 

 

The viewpoint of endogenous complexity makes the analysis of knowledge dynamics 

particularly appealing and challenging. Knowledge can indeed be represented as an 

emergent property stemming from multi-layered complex dynamics (see Figure 1). 

Knowledge is indeed the result of a collective effort of individuals who interact with 

one another, sharing their bits of knowledge by means of intentional acts of 

communication (Antonelli, 2008; Saviotti, 2007). In other words, the adoption of an 

endogenous complexity made possible by the recombination approach allows for the 

combination of the view on technology as an artefact with the view of technology as an 

act, i.e. as the product of collective actions involving agents with converging incentives 

and aligned interests (Arthur, 2009; Lane et al., 2009). 

 

The structure of the network of relationships amongst innovating agents represents 

therefore a crucial factor able to shape the ultimate outcome of knowledge production 

processes. Constructional selection matters, in that new institutions entering the network 

need first of all to choose with which incumbents they want to be linked with. The 

concept of preferential attachment applies to this situation. In a wide number of 

contexts, the new nodes in a network generally end up to link with those ‘old’ nodes 

already characterized by a large number of connections (Barabasi and Albert, 1999). As 

a consequence, the entrance of new actors in the network is likely to reshape the relative 

weight of nodes, and hence modify the structure and the balance of relationships. 
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Figure 1 - Multi-layered complex dynamics of knowledge 
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Collective knowledge so produced stems from the combination of bits of knowledge 

dispersed among innovating agents. Creativity refers to the ability of agents to 

combining together these small bits of knowledge so as to produce an original piece of 

technological knowledge. This in turn may be thought about as a collection of bits of 

knowledge linked one another. The knowledge base of a firm can be therefore imagined 

as a network in which the nodes are the small bits of knowledge and the links represent 

their actual combination in specific tokens. Knowledge in this sense turns out to be an 

emergent property of complex dynamics featuring the interdependent elements of the 

system, i.e. the bits of knowledge. 

 

This is a quite unexplored consequence of the collective character of knowledge 

production, which provides further richness to its dynamics. Such complex system may 

be represented as network the nodes of which are the smaller units of knowledge while 

the edges stand for their actual combination. Hence the knowledge base is characterized 
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by a structure with its own architecture. This in turn may evolve over time, as an effect 

of the introduction of new small bits of knowledge and the consequent change in the 

relative weight of the nodes within the network. Indeed, like in the networks of 

innovators, new nodes will be attached to some existing nodes, the centrality of which 

will be altered. Learning dynamics and absorptive capacity represent a channel through 

which the topology of knowledge structure affects search behaviour at the level of 

agents networks. Indeed, agents move across the technology landscape in regions that 

are quite close to the area of their actual competences. Technological change is 

localized as an effect of the interactions between the complex dynamics at the 

knowledge and the agents’ level. However the topology of knowledge structure is in 

turn shaped by the choices made by innovating agents as to which bits of knowledge 

combine together. A self-sustained process is likely to emerge, according to which the 

knowledge creation process tends more and more towards a local attractor in which they 

are locked in (see the chapter by Colombelli and von Tunzelmann in this book). 

 

This dynamics indeed makes preferential attachment work also at the knowledge level. 

Agents’ search behaviour is indeed constrained by the topology of the knowledge 

structure. In this direction, those small bits of knowledge which have grown in 

importance are likely to exert a much stronger influence. This process is rooted in 

historical time, according to which the gradual sorting out of knowledge bits which 

have proved not to be so fertile, leaves the floor to few and more fertile bits. New bits of 

knowledge entering the knowledge base later on are likely to be linked to these few 

pillars. 

 

Preferential attachment introduces a great deal of path dependence in system dynamics 

of technological knowledge. It amounts to articulate the concept of persistence beyond 

the rate of introduction of innovations, so as to apply it to the centrality of the specific 

smaller bits of knowledge which make the structure of the knowledge base. 

 

Still, while this self-enforcing process is likely to trap the search process within a 

bounded area, the dynamics of technological communication at the agents’ level as well 

as the capabilities to cope with search in areas that are far away from the competences 



17 

 

 

of innovating agents are likely to introduce discontinuities in the evolutionary pattern. 

This amounts to introduce a wide variety of new bits of knowledge which are loosely 

related with those already existing in the knowledge base, so as to give rise to radically 

new combinations. The process of evolution, fed by learning dynamics and 

cumulativeness, leads to the gradual selection of the best combinations, which grow in 

centrality and hence begin to constrain agents’ search behaviour. 

 

Knowledge sharing and technological communication ensure therefore the emergence 

of new variety, which is more likely to occur in transition phases. At this stage a wide 

range of alternatives are viable, and multiple local attractors are likely to emerge from 

mutual influences between complex dynamics at the knowledge and the agents’ layers.  

 
 
 

4 Some Operational Methodologies 
 
The outcome of considering endogenous complexity in technological knowledge is that 

the layout of knowledge structure appears to be both an outcome and a determinant of 

agents’ search. This deserves further careful attention and more in depth analysis. In 

what follows we propose two alternatives methodologies which have been recently 

introduced, and are equally suitable to improve our empirical ability to measure the 

various facets of the evolution of the knowledge base, including the occurrence of path 

dependency and persistence phases as well as the emergence of variety and 

discontinuity phases. 

 

4.1 Measures based on co-occurrence matrixes 
 
The purpose of this first methodology consists in the exploration of the evolution of the 

properties of the knowledge base, with particular emphasis on the issues of variety, 

similarity and complementarity.  

 

1) Variety can be measured by using the information entropy index.  Entropy 

measures the degree of disorder or randomness of the system, so that systems 
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characterized by high entropy is also be characterized by a high degree of 

uncertainty (Saviotti, 1988). 

 

The information entropy has some interesting properties, and especially a 

property of multidimensional extension (Frenken and Nuvolari, 2004). Consider 

a pair of events (Xl, Yj), and the probability of co-occurrence of both of them plj. 

A two dimensional total variety (TV) measure can be expressed as follows: 

 

∑ ∑ 
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If one considers plj to be the probability that two technological classes l and j co-

occur within the same patent, then the measure of multidimensional entropy 

focuses on the variety of co-occurrences of technological classes within regional 

patents applications. 

 

Moreover, the total index can be decomposed in a “within” and a “between” part 

anytime the events to be investigated can be aggregated in a smaller numbers of 

subsets. Within-entropy measures the average degree of disorder or variety 

within the subsets, while between-entropy focuses on the subsets measuring the 

variety across them. Frenken et al. (2007) refer to between- and within- group 

entropy respectively as unrelated and related variety. 

 

It can be easily shown that the decomposition theorem holds also for the 

multidimensional case. Hence if one allows l∈Sg and j∈Sz (g = 1,…,G; z = 1,…, 

Z), we can rewrite H(X,Y) as follows: 
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Where the first term of the right-hand-side is the between-entropy and the 

second term is the (weighted) within-entropy. In particular: 
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We can therefore refer to between- and within-entropy respectively as unrelated 

technological variety (UTV) and related technological variety (RTV), while total 

information entropy is referred to as general technological variety.  

 

2) The similarity amongst different types of knowledge can be captured by a 

measure of cognitive distance. A useful index of distance can be derived from 

the measure of technological proximity originally proposed by Jaffe (1986 and 

1989), who investigated the proximity of firms’ technological portfolios. 

Subsequently Breschi et al. (2003) adapted the index in order to measure the 

proximity, or relatedness, between two technologies. The idea is that each firm 

is characterized by a vector V of the k technologies that occur in its patents. 

Knowledge similarity can first be calculated for a pair of   technologies l and j as 

the angular separation or uncentred correlation of the vectors Vlk and Vjk. The  

similarity of  technologies l and j can  then be defined as follows: 

∑∑
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The idea underlying the calculation of this index is that two technologies j and l 

are similar to the extent that they co-occur with a third technology k. The 

cognitive distance between j and l is the complement of their index of the 

similarity:  
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Once the index is calculated for all possible pairs, it needs to be aggregated at 

the industry level to obtain a synthetic index of technological distance. This can 

be done in two steps. First of all one can compute the weighted average distance 

of technology l, i.e. the average distance of l from all other technologies.  
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Where Pj is the number of patents in which the technology j is observed. Now 

the average cognitive distance at time t is obtained as follows: 
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Complementarity: typically a firm needs to combine, or integrate, many different pieces 

of knowledge to produce a marketable output. In order to be competitive a firm not only 

needs to learn new 'external' knowledge. It also needs to learn how to combine it with 

other, new and old, pieces of knowledge. We can say that a knowledge base, in which 

different pieces of knowledge are well combined, or integrated, is a coherent knowledge 

base. Such technologies are by definition complementary in that they are jointly 

required to obtain a given outcome. We can now turn to calculate the coherence (R) of 

the knowledge base, defined as the average relatedness of any technology randomly 

chosen within the sector with respect to any other technology (Nesta and Saviotti, 2005 

and 2006; Nesta, 2008). To yield the knowledge coherence index, a number of steps are 

required however. In what follows we describe how to obtain the index at the sector 

level. First of all, one should calculate the weighted average relatedness WARl of 

technology l with respect to all other technologies present within the sector. Such a 

measure builds upon the measure of technological relatedness τlj (see Nesta and 
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Saviotti, 2005). Following Teece et al. (1994), WARl is defined as the  degree to which 

technology l is related to all other technologies j∈l in the sector, weighted by patent 

count Pjt: 

 

∑
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Finally the coherence of knowledge base within the sector is defined as weighted 

average of the WARlt measure: 
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It is worth stressing that such index implemented by analysing co-occurrences of 

technological classes within patent applications, measures the degree to which 

the services rendered by the co-occurring technologies are complementary one 

another. The relatedness measure t lj indicates indeed that the utilization of 

technology l implies that of technology j in order to perform specific functions 

that are not reducible to their independent use.  

 

4.2 Measures based on social network analysis 
 
The starting point of this second methodology is to consider that a network may be 

defined as a graph made of nodes that are tied each other by one or more types of 

interdependency. Relationships among nodes are expressed by arcs, which in turn may 

be directed or undirected. Two nodes that are connected by a line are said to be adjacent 

to one another. Adjacency is therefore the graphical expression of the fact that two 

nodes are directly related or connected to one another. The points to which a particular 

point is adjacent are termed its neighbourhood. Points may be directly connected by a 

line, or they may be indirectly connected through a sequence of lines. It may be thought 

as a ‘walk’ in which each point and each line are distinct. This is called path. The length 
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of path is measured by the number of lines that constitute it. The distance between two 

points is the shortest path (the geodesic) that connects them. 

 

One of the most widely used measures to describe a network is the density. It describes 

the general level of linkage among the points in a graph. The density of a network is 

therefore defined as the total number of actual lines, expressed as a proportion of the 

maximum possible number of lines: 
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         (16) 

 

A network is complete when all the nodes are adjacent, and the measure of density 

attempts to summarize the overall distribution of lines in order to assess how far the 

network is from completion. Density depends upon two other important parameters of 

the network, i.e. the inclusiveness and the sum of the degree of its points. Inclusiveness 

can be defined as the share of network nodes that are not isolated, i.e. the share of nodes 

that are connected to at least another node. For example, in a network of 20 nodes with 

5 isolated nodes the inclusiveness is 0.75. The more inclusive the graph, the more dense 

the network will be.  

 

However some nodes will be more connected than other ones. The degree of a node is 

an important measure of centrality that refers to the total number of other points in its 

neighbourhood. Formally one can represent the degree by the following equation: 
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This measure is obviously biased by the network size. Therefore it is useful to use a 

standardized measure, which consists in dividing the degree measure by its maximum 

value as follows: 
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The higher the degree of the connected points in the network, the higher will be the 

density. For this reason the calculation of density needs to take into account both 

measures. It should compare the actual number lines present in the graph with the total 

number of lines that the graph would show if it were complete. 

 

While the density describes the network as a whole, the measures of centrality refer to 

the relevance of the nodes belonging to the network. A point is locally central if it has a 

large number of connections with other points in its immediate environments, i.e. other 

points in its neighbourhood. Global centrality refers instead to the prominence of the 

node with respect to the overall structure of the network. Measures of global and of 

local centrality have a different meaning. 

 

Measures of global centrality are expressed in terms of the distance among various 

points. Two of these measures, i.e. closeness and betweenness, are particularly 

important. The simplest notion of closeness is that calculated from the ‘sum distance’, 

the sum of geodesic distances to all other points in the graph (Sabidussi, 1966). After 

having calculated the matrix of distances among the nodes of the network, the sum 

distance is the row of column marginal value. A point with a low sum distance is close 

to a large number of other points, and so closeness can be seen as the reciprocal of the 

sum distance. Formally it can be expressed as follows: 
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Where the denominator represents the sum of the geodesic distance of the vertex v to all 

other points. 

 

The betweenness measures the extent to which a particular point lies ‘between’ the other 

points in the graph: a point with a relatively low degree may play an important 

intermediary role and so be very central to the network (Freeman, 1979). The 

betweenness of a node measures how much it can play the part of a broker or gatekeeper 
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in the network. Freeman’s approach is built upon the concept of local dependency. A 

point is dependent upon another if the paths which connect it to the other points pass 

through this point. Formally, let G be a graph with n vertices, then the betweenness is 

calculated as follows: 
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Where stσ  is the number of shortest geodesic paths from s to t, and )(vstσ  is the 

number of shortest geodesic paths from s to t passing through a vertex v. 

 

The centrality measures discussed above, allow us to characterize each single network 

node. However, it is also possible to calculate the sector averages fo r all of the three 

indexes. In this direction, one must consider that each node corresponds to a 

technological class observed with a specific relative frequency, which must be taken 

into account when averaging out the centrality measures. We can then propose weighted 

average centrality measures as follows. Let Z(v) be one of the three centrality measures 

referred to the generic node v, the weighted average centrality at time t is: 
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Where Pv is the number of patents in which the technology v is observed. 

 

5 Conclusion: Avenues for Future Research 
 
The chapter was intended to provide an original and creative review of the literature on 

the dynamics of technological knowledge. Table 1 provides a synthesis and a taxonomy 

of the different approaches to technological knowledge, as well as of their theoretical 

underpinnings and empirical consequences. 
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Table 1 – Taxonomy of the different approaches to technological knowledge 
      
Early 1980s Extended production 

function 
Knowledge capital stock 
as explanatory variable 

Homogeneous good Linear model Linear mode and top 
down process 
R&D and specialized 
institutions of 
knowledge 
Large, vertically related 
companies 
Internal financial 
markets 

Late 1980s  
Early 1990s 

Knowledge production 
function 

Knowledge capital stock 
as dependent variable 

Homogeneous good Systemic interactions Learning effects and 
bottom up process 
Markets for knowledge 
and strong IPR regimes 
Small, specialized  firms 
Venture capital and 
IPOs 

Late 1990s 
Early 2000s 

Exogeneous complexity Citations and ease of 
recombination 

Heterogeneous good Emergent property of a 
given architecture 

Search conducted 
across a rugged 
landscape 
Explain differentials in 
usefulness of inventions 

Early 2000s Endogeneous 
complexityt 

Technological classes 
and knowledge 
structure 

Heterogeneous good Emergent property of a 
changing architecture 

Knowledge 
discontinuities and 
search strategies 
Stable innovation 
networks with large and 
small firms  
retain and reinvest and 
long term investors 
strategies 
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We argue that among the new developments on the theme, the investigation on 

endogenous complexity in technological knowledge is certainly the most promising 

advance. First it provides an accurate representation of how knowledge is created and 

diffused at the analytical level, and second it also benefits of an empirical value since it 

can be expressed by a wide range of indicators and measures. In particular, we claimed 

that such framework has a great potential in that it provides both the theoretical and 

empirical grounds to carry out an interdependent analysis of technology as an act and as 

an artefact. In this direction, the structure of technological knowledge is represented as a 

network the architecture of which is in turn influenced by the architecture of the 

network of innovation, and vice versa. It follows a never ending process of mutual 

influences that keeps the system constantly out of equilibrium.  

 

The notion of coalitions for innovation gains momentum in this context (David and 

Keely, 2002). They can be regarded as the product of spontaneous order, yet their 

emergence can be guided and designed by means of the intentional intervention of 

policy makers as well as corporate strategies. The successful introduction of an 

innovation may be regarded as the result of a hegemonic coalition, that is a coalition 

that has been able to design a group of complementary agents, coordinate their 

incentives and integrate their competences so as to of achieve hegemony in a given 

technological space. The design of coalitions for innovation is therefore likely to exert a 

great deal of influence on the direction of technology evolution, and hence on future 

developments of the knowledge space. Within non-ergodic systems, this is likely to 

favour the lock- in engendered by path dependent dynamics, unless the structures of the 

two nested networks change so much that a new hegemonic coalition emerge able to 

introduce a discontinuity in the technology space.  

 

The implications of such approach are far reaching. One of the major domains of 

application so far has been the analysis of the technological basis of knowledge of 

firms, characterized by patent portfolios (see Nesta, 2008). Further applications have 

been recently proposed in empirical studies dealing with the evolutionary patterns of 

development of knowledge intensive sectors, especially focused in the identification of 
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the introduction of discontinuities and the periodicity of random screening and 

organized search stages (Krafft, Quatraro and Saviotti, 2009 and 2011;Antonelli, Krafft 

and Quatraro, 2010). 

 

A non exhaustive list of potential applications can be elaborated, and each element in 

this list can be considered as a major avenue of research to be explored in the future: 

 

- industrial dynamics and evolution: the fact that, in an industry, knowledge can either 

come from a recombination of existing knowledge or from the creation of new 

knowledge has an impact on industrial evolution. Incumbents may play the role of 

efficient recombination of existing knowledge, but very often may also rely on new 

entrant firms on the creation of new knowledge. Depending on the share of combina tion 

of existing knowledge versus creation of entirely new knowledge, incumbents or new 

entrants may act as leaders in the industry.  

 

- networks: in most industries, networks occur among firms, and appear more and more 

as a stable form of industrial organization. Endogenous complex knowledge allows an 

accurate mapping of the formation of networks, and their transformation over time. 

Moreover depending on preferential attachment characteristics of the agents within the 

network, it is possible to identify the centrality of some actors in the network at some 

point in time, and to predict how it may change over time with the entrance of new 

actors.  

 

- geographical issues:  the recent debates on knowledge cities, or the more traditional 

ones on learning regions, also can have a new echo based on the use of the analysis of 

complex knowledge. On this theme, the approach can provide new quantitative results 

on the importance of geography in the creation and recombination of knowledge. 

Especially it is possible to assess quantitatively how new actors bringing new pieces of 

knowledge may aggregate other actors already installed or not, and eventually how 

these new actors may gain over time some weight (or centrality) over older ones, 

shaping thus the technological characteristics of a region. 
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