文章编号:0254-5357(2007)06-0460-05

国土资源地质大调查分析测试技术专栏

悬浮液进样 – 氢化物发生原子荧光光谱法

测定土壤中痕量砷锑硒

温晓华¹,邵超英²,张 琢²,何中发¹

(1.上海市地质调查研究院,上海 200072;2.东华大学,上海 200051)

摘要:在原子荧光光谱法传统样品前处理的基础上,提出了悬浮液进样技术。用琼脂作为 悬浮剂,水溶液作为校正曲线,对土壤标准样品和实际样品进行测定,结果令人满意,并且省去了 冗长的样品化学前处理过程。检出限分别为砷0.33 μ g/L、锑0.13 μ g/L、硒0.06 μ g/L;相对标 准偏差分别为:砷3.92%~6.32%、锑1.76%~3.11%、硒3.08%~5.54%;回收率分别为 砷98.7%~105.7%、锑99.5%~103.3%和硒94.6%~107.2%。国家一级标准物质的测定结 果与标准值相符,实际样品的测定值与传统消化法相比较,结果基本一致。

关键词:悬浮液进样;氢化物发生-原子荧光光谱法;砷;锑;硒;土壤 中图分类号:0657.31;06-339 文献标识码:A

Determination of Trace Arsenic , Antimony , Selenium in Soil Samples by Hydride Generation-Atomic Fluorescence Spectrometry with Slurry Sample Introduction

WEN Xiao-hua¹, SHAO Chao-ying², ZHANG Zhuo², HE Zhong-fa¹
(1. Shanghai Institute of Geological Survey, Shanghai 200072, China;
2. Donghua University, Shanghai 200051, China)

Abstract : A method for direct determination of arsenic , antimony and selenium in soil samples by hydride generation atomic fluorescence spectrometry (HG-AFS) with ultrasonic-mixed slurry sample introduction was developed. Agar was selected as a suspending agent and aqueous solution was used for preparation of calibration solutions. The operation condition for hydride generation and AFS determination are optimized. The detection limits are 0.33 μ g/L for As , 0.13 μ g/L for Sb and 0.06 μ g/L for Se. The recoveries are 98.7% ~105.7% for As , 99.5% ~103.3% for Sb and 94.6% ~107.2% for Se with precision (RSD) of 3.92% ~6.32% for As , 1.76% ~3.11% for Sb and 3.08% ~5.54% for Se. The method had been applied to the determination of trace arsenic , antimony and selenium in National Reference Materials and soil samples with satisfactory results. **Key words** : suspension sampling ; hydride generation-atomic fluorescence spectrometry ; arsenic ; antimony ;

selenium; soil

基金项目:国土资源地质大调查——上海市三维城市地质调查项目资助(1212010511102) 作者简介:温晓华(1979-),女,陕西宝鸡人,助理工程师,主要从事痕量元素分析研究工作。 E-mail:xiaohua_wen@hotmail.com。

收稿日期:2007-03-06;修订日期:2007-05-24

自 1974 年 Brady 等^[1]首次应用直接悬浮液进 样技术以来,固体样品直接进样和悬浮液直接进样 技术得到了迅速发展,广泛地应用于光谱分析技术 的各种样品分析检测中^[2-5]。悬浮液进样与传统 的湿法和干法样品消解方法相比较,大大简化了操 作步骤,缩短了制样时间,也避免了消解过程中带 入的杂质污染物,特别适合于痕量元素的分析。 Vieira 等^[6]采用悬浮液进样氢化物发生法测定底 泥沉积物和煤样品中的 Sn。近年来,采用氢化物 发生 – 原子荧光光谱(HG – AFS)技术直接测定沉 积物、生物和环境样品中多种痕量元素已有报 道^[7-9]。本文在前人工作的基础上,提出了超声搅 拌 – 悬浮液进样 – HG – AFS 法直接测定土壤样品 中痕量 As、Sb、Se 的方法。

1 实验部分

1.1 仪器及实验条件

AFS-3100 原子荧光分光光度计(北京科创海 光仪器有限公司),砷、硒、锑高强度空心阴极灯。 仪器工作条件及氢化物发生条件见表1 和表2。

表1 仪器工作条件

Table 1 Working conditions of the instrument

工作会批	<u> </u>	设定条件	
上作参数	As	Sb	Se
负高压 U/V	250	260	300
原子化温度 θ∕℃	200	200	200
原子化器高度 h/mm	8	8	8
灯电流/辅助电流 1/mA	40/20	30/30	30/30
载气流速(Ar)	500	300	300
屏蔽气流速(Ar) ν/(mL・min ⁻¹)	800	800	800
读数方式	峰面积	峰面积	峰面积
进样体积 V/mL	0.5	0.5	0.5
读数时间 t/s	10	9	10
延迟时间 t/s	1	2	1

表 2 氢化物发生条件

Table 2 Experimental conditions of the hydride generation

元素	ρ(KBH ₄)/ (g · L ⁻¹)	载流	介质酸度	还原剂和 掩蔽剂
As	30	9% HNO ₃	$10\%\mathrm{HCl} + 10\%\mathrm{HNO}_3$	硫脲 – 抗坏血酸
\mathbf{Sb}	20	5% HCl	$10\%\mathrm{HCl}+10\%\mathrm{HNO}_3$	硫脲 – 抗坏血酸
Se	15	7% HCl	$20\%\mathrm{HCl}+10\%\mathrm{HNO}_3$	浓 HCl

超声波清洗机(上海声彦超声波仪器有限公司),超纯水机(Ultra Pure 基本型),自动进样器(北京科创海光仪器有限公司)。所用器具在使用

前均用 $\varphi = 5\%$ (体积分数,下同)的 HNO₃浸泡过 夜,用高纯水反复冲洗数次,晾干后使用。

1.2 主要试剂

KBH₄溶液:适量分析纯 KBH₄溶于含5 g/L KOH 溶液中。现用现配。

硫脲 – 抗坏血酸溶液 :分析纯硫脲和抗坏血酸 各 10.0 g,溶于少量高纯水,然后用高纯水定容至 100 mL,质量浓度为 100 g/L。现用现配。

As 标准储备液 :用基准 As_2O_3 按常规方法以 KOH 溶解后 ,用 $\varphi = 20\%$ 的 H_2SO_4 稀释 ,配制成 1 g/L的 As 标准储备液。

Se 标准储备液:用高纯硒粉配制成 1 g/L 的 Se 标准储备液($\varphi = 1\%$ 的 HNO₃介质)。

Sb 标准储备液:用基准酒石酸锑钾配制成 1 g/L的 Sb 标准储备液($\varphi = 20\%$ 的 HCl 介质)。

4 g/L 琼脂悬浮剂:准确称取4.0 g 高纯生化 琼脂粉,移入1000 mL 容量瓶中,加水至刻度,浸 泡过夜,然后加热使其沸腾。保持微沸状态,直到 溶液呈无色透明,取下冷却,待用。

丙三醇、黄原胶、乙醇等试剂均为分析纯。 HCl、HNO₃、H₂SO₄均为优级纯。高纯水:电阻率 18.2 M $\Omega \cdot cm$ 。

1.3 实验方法

1.3.1 悬浮进样法

分别称取两份经玛瑙研钵研磨至粒度小于 0.074 mm、烘干至恒重的土壤样品 0.3000 g(准确 至 0.0003 g) 放于干燥的 25 mL 比色管中。其中一 份加入 2.5 mL HCl 和 2.5 mL HNO₃、7.5 mL 4 g/L 琼脂溶液、5 mL 硫脲 – 抗坏血酸,用高纯水定容,最 终悬浮剂浓度为 1.5 g/L,作为测定 As、Sb 用;另一 份则加入 5 mL HCl 和 2.5 mL HNO₃、7.5 mL 4 g/L 琼脂溶液,用高纯水定容,最终悬浮剂浓度为 1.5 g/L 用来测定 Se(加热使高价硒还原)。悬浮 样品在超声清洗器中混合 30 min,使其保持均匀、稳 定的悬浮状态。按仪器优化的条件进行测定。在测 定过程中,不断地进行手动摇晃 24 h 之内吸收信号 基本保持不变。记录峰面积,以标准曲线法进行校 正,计算样品中痕量元素 As、Sb、Se 的含量。

1.3.2 传统酸消解法

称取经玛瑙研钵研磨至粒度小于 0.074 mm、 烘干至恒重的土壤样品 0.3000 g(准确至 0.000 3 g),放于干燥的 25 mL 比色管中,加入 10 mL 王水 浸泡过夜,在 100℃水浴锅中消解 1 h,其间两次充 分振摇。取下冷却 加入掩蔽剂 测定 Se 加入还原 剂)稀释,调节介质与标准曲线一致,定容待测。 记录峰面积,以水溶液标准工作曲线法进行校正, 计算样品中痕量元素 As、Sb、Se 的含量。

2 结果与讨论

2.1 悬浮液的稳定性

悬浮液的稳定性是影响分析结果精密度和准确 度的一个重要因素。悬浮液的制备是悬浮液直接进 样技术中的关键之一,它直接决定着样品的均匀性、 稳定性和取样的代表性。琼脂¹⁰⁻¹¹¹、丙三醇²¹、黄原 胶¹²¹、乙醇¹³¹等已作为悬浮剂用于悬浮液进样 – 原 子吸收光谱法测定生物和环境样品中的微量元素。 通过对这些悬浮剂进行比较,作者认为琼脂悬浮效果 最好。悬浮液的稳定性可用质点在重力场作用下于 介质中的沉降速度 $\nu = 2R^2(\rho - \rho_0)g/9\eta^{141}$ 来描述。 式中 g 为重力加速度;质点的沉降速度(ν)是颗粒粒 径 R、黏滞系数 η 、密度 ρ 等的函数。降低颗粒粒径和 提高悬浮剂的黏度,均会明显增大悬浮液的稳定性, 降低质点的沉降速度。实验结果表明,在可行的条件 下 应尽可能地降低样品的颗粒粒径。

样品经研磨成细粉状后,烘干至恒重,分别过 0.175 mm(80目),0.147 mm(100目),0.074 mm(200 目),0.045 mm(300目筛),实验结果表明,土壤粒度 小于0.074 mm(200目)的悬浮液均能呈现较好的稳 定性。一般而言,悬浮介质的黏度越高,稳定时间越 长,但黏度太高时,悬浮液不易流动,难于进样,且容 易粘附在管壁上,影响测定精度。随着琼脂悬浮剂浓 度的增大,悬浮液的稳定性也逐渐增加,但是当悬浮 剂浓度达到2g/L 悬浮液黏度太大,难于进样。故本 实验选择1.5g/L的琼脂作为悬浮剂,其悬浮液进样 测定的结果稳定(表3)。

表 3 悬浮液稳定性实验

Tabla 3	Stability	toot	of	the	aucropoion	adution
able 5	Stability	test	or	une	suspension	solution

稳定时间 t/h	荧光强度 <i>I</i> _f	稳定时间 t/h	荧光强度 $I_{\rm f}$
1	952.554	5	947.076
2	960.811	8	950.231
3	931.746	24	946.332

2.2 实验参数的选择

对于氢化物发生法,待测溶液的介质必须保持 一定的酸度因为被测元素以一定的价态存在,酸度 决定了还原条件及还原程度。根据文献15-17], 分别测试了 As、Sb、Se 元素发生氢化物的最佳载流 和介质浓度。对于 As、Sb ,HCl、HNO₃和 H₂SO₄作载 流的效果基本一致 对于 Se ,市售的 H₂SO₄中含有一 定的 Se ,所以采用 HCl 和 HNO₃作载流。考虑到土 壤中 As、Sb 和 Se 多以硫化物和氧化物形式存在 ,仅 用 HCl 不能使其完全浸出 ,介质采取 HCl 和 HNO₃ 的混合酸。实验中最终采用的酸及其浓度见表 2。

KBH₄在氢化物反应中作为一种强还原剂,当 浓度过低时,还原反应不彻底;浓度过高时,会产生 大量氢气稀释待测元素,同时反应过于剧烈,易引 起液相干扰,导致荧光强度下降,稳定性降低。实 验中分别测试了不同浓度下 KBH₄对三种元素荧 光响应的影响,结果表明,对于 As、Sb、Se,KBH₄的 最佳浓度为 30 g/L、20 g/L、15 g/L。

载气流量大会冲稀原子的浓度,流量小则难迅 速将氢化物带入到石英炉,使荧光强度降低;而屏 蔽气流量小,氢-氩火焰不稳定。实验进行了载气 和屏蔽气最佳流量的优化选择,结果表明,荧光信 号和背景值分别随着载气和屏蔽气流量不断增大 而逐渐减小,但减小程度各有差别。根据信噪比, 实验选择的最佳流速见表1。

2.3 干扰的消除

实验结果表明,Cu、Co、Ni以及贵金属等元素 对待测元素氢化物发生存在严重的干扰;其他碱金 属、碱土金属以及部分重金属元素在100 μg/g以 下时不干扰测定。实验中通过提高介质酸度和加 入硫脲-抗坏血酸可消除这些元素干扰。

2.4 方法的线性范围和检出限

实验表明(表4),三种元素均在0~50 μg/L内 呈现良好的线性关系,其水标准溶液和悬浮液的标 准加入法得到的标准曲线斜率比值近似等于1,所 以实验可以采用水溶液进行校正。

表4 水标准溶液与悬浮液标准加入的线性关系

Table 4 Linearity relationship between aqueous standards and suspension standards

二夫	水标准溶液	夜	悬浮液标准加。	入法
儿杀	线性方程	相关系数	线性方程	相关系数
As	Y = 172.546 X - 1.721	1.0000	Y = 171.065 X + 12.495	0.9999
\mathbf{Sb}	Y = 91.094 X + 9.327	1.0000	Y = 92.875 X + 11.905	0.9998
Se	Y = 212.670 X + 9.036	1.0000	Y = 212.564 X - 2.7145	0.9997

按本法进行 11 次空白测定,以 3 倍的荧光值 标准偏差除以标准曲线的斜率求得检出限分别为

As 0.33 $\mu g/L_sSb$ 0.13 $\mu g/L_sSe$ 0.06 $\mu g/L_o$

加标回收实验及样品的测量 3

采用悬浮液进样对 GBW 07401, GBW 07402, GBW 07403 三种国家一级土壤标准物质以及实际

样品进行了加标回收试验 表 5 结果表明 三元素的 加标回收率(R)为As 98.7%~105.7%、Sb 99.5% ~103.3%和Se 94.6%~107.2%。

表5 土	_壤样品的加标回收率
------	------------

Table 5 Recovery test of the method for soil samples

+* 🗆		<i>m</i> (As)∕ng		D / C/		<i>m</i> (Sb)∕ng		D /01		<i>m</i> (Se)∕ng		D / C/
作于口口	本底值	加入量	测定值	- K/%	本底值	加入量	测定值	- K/%	本底值	加入量	测定值	- K/%
GBW 07401	11.87	10.20	21.94	98.7	5.56	4.90	10.62	103.3	3.26	3.50	6.98	106.3
GBW 07402	5.51	4.90	10.69	105.7	7.23	6.50	13.70	99.5	5.56	5.00	10.29	94.6
GBW 07403	1.16	1.20	2.39	102.5	5.24	5.50	10.81	101.3	10.24	10.00	20.96	107.2
实际样品1	3.05	2.96	6.02	100.3	2.37	2.05	4.41	99.5	1.02	1.10	2.10	98.2
实际样品2	2.50	2.74	5.23	99.6	1.98	2.10	4.12	102.1	1.23	1.50	2.76	102.0
实际样品3	4.68	4.50	9.13	98.8	2.43	2.00	4.44	100.6	0.97	1.03	2.06	105.7
实际样品4	3.20	3.00	6.36	105.4	1.50	1.72	3.24	101.4	1.05	1.23	2.27	99.6
实际样品 5	2.95	3.00	5.99	101.3	2.03	2.10	4.18	102.4	0.87	0.95	1.88	106.4
实际样品6	5.78	5.50	11.24	99.3	1.86	2.00	3.92	103.1	0.94	0.81	1.73	98.0
实际样品7	3.00	3.20	6.31	103.5	2.25	2.46	4.73	101.0	1.56	1.64	3.22	101.1
实际样品8	3.42	3.50	7.09	104.8	1.97	2.23	4.20	99.9	0.96	1.20	2.16	100.3
								\bigcirc	\bigcirc	1772		
同时采	用悬浮液	夜进样 和	湿法消解	解对以」	L标准物			ЛŲ				(续表6

同时采用悬浮液进样和湿法消解对以上标准物 质和实际样品进行测定 表 6 结果表明 两种方法三 元素 As、Sb、Se 的测定值基本一致 且与标准值相符。

表6 标准物质和实际样品的测定 Table 6 Analytical results of As, Sb and Se in National Standard Reference Materials and practical samples

ᅷᆠᆷᄻᄆ	二主	Ŵ	RSD/%		
作血细石	兀糸	湿法消解	悬浮进样	标准值	(n = 6)
GBW 07401	As	32.5	33.1	34 ± 5	3.92
	\mathbf{Sb}	1.02	0.98	0.87 ± 0.32	2.09
	Se	0.12	0.11	0.14 ± 0.04	5.13
GBW 07402	As	14.20	14.40	13.7±1.8	3.98
	\mathbf{Sb}	1.38	1.40	1.3 ± 0.3	2.51
	Se	0.20	0.19	0.16 ± 0.04	4.26
GBW 07403	As	4.91	4.80	4.4 ± 0.9	5.06
	\mathbf{Sb}	0.47	0.48	0.45 ± 0.15	2.36
	Se	0.102	0.105	0.094 ± 0.045	4.63
实际样品1	As	9.76	9.87	-	4.23
	\mathbf{Sb}	0.27	0.29	-	1.84
	Se	0.017	0.019	-	4.89
实际样品2	As	6.87	6.92	-	4.56
	\mathbf{Sb}	0.80	0.78	-	3.11
	Se	0.018	0.017	-	3.41
实际样品3	As	11.32	11.27	-	6.03
	\mathbf{Sb}	0.61	0.62	-	1.76
	Se	0.092	0.090	-	3.69
实际样品4	As	11.01	10.64	-	5.57
	\mathbf{Sb}	1.23	1.22	-	2.43
	Se	0.135	0.134	_	4.34

(续表6)

		\overline{w}	RSD/%		
作吧场方	儿糸	湿法消解	悬浮进样	标准值	(n=6)
实际样品 5	As	9.92	9.81	-	6.32
	\mathbf{Sb}	0.62	0.59	-	1.97
	Se	0.034	0.031	-	4.91
实际样品6	As	17.56	17.45	-	5.39
	\mathbf{Sb}	2.11	2.03	-	2.19
	Se	0.056	0.055	-	5.43
实际样品7	As	9.27	9.24	-	4.83
	\mathbf{Sb}	0.74	0.70	-	3.08
	Se	0.031	0.033	-	5.07
实际样品 8	As	10.68	10.77	-	4.10
	\mathbf{Sb}	0.93	0.91	-	2.64
	Se	0.137	0.139	-	3.94

① $\overline{w}_{\rm B}$ 为 6 次测定的平均值。

结语 4

采用悬浮液进样 – 氢化物发生原子荧光光谱 法测定了土壤样品中的痕量 As、Sb、Se。用传统的 混酸消解法进行实验比对 并用标准物质以及加标 回收来进行质量控制 从而验证了此法的可行性。

参考文献 5

- [1] Brady D V, Montalvo J G, Jung J, et al. Direct Determination of Lead in Plant Leaves via GFAAS[J]. At Absorpt Newsl ,1974 ,13(5) :118-121.
- [2] 陈恒初,刘汉东,汤志勇,等.悬浮液进样平台石墨炉 原子吸收光谱法测定生物样品中的痕量镉[J].

— 463 —

光谱实验室,1998,15(1):44-46.

- [3] Torrence K, McDaniel R, Self D, et al. Slurry Sampling for the Determination of Arsenic, Cadmium, and Lead in Mainstream Cigarette Smoke Condensate by Graphite Furnace-Atomic Absorption Spectrometry and Inductively Coupled Plasma-Mass Spectrometry[J]. Analytical and Bioanalytical Chemistry 2002 372 (5-6) 523-731.
- [4] Peng Tianyou , Chang Gang , Wang Lei , et al. Slurry Sampling Fluorination Assisted Electrothermal Vaporization-Inductively Coupled Plasma-Atomic Emission Spectrometry for the Direct Determination of Metal Impurities in Aluminium Oxide Ceramic Powders[J]. Fresenius' Journal of Analytical Chemistry 2001 369(5) #61 – 465.
- [5] Danuta Baralkiewicz, Usama El-Sayed, Marian Filipiak, et al. Determination of Selenium in Infant Foods Using Electrothermal Atomic Absorption Spectrometry with Direct Slurry Sample Introduction[J]. *Talanta*, 2002 2(2) 334 – 346.
- [6] Vieira M A, Ribeiro A S, Curtius A J. Slurry Sampling of Sediments and Coals for the Determination of Sn by HG-GFAAS with Retention in the Graphite Tube Treated with Th or W as Permanent Modifiers[J]. Anal Bioanal Chem 2004 380(3) 570 – 577.
- [7] 程祥圣,秦晓光,徐韧,等. 悬浮液 流动注射 氢化 发生原子荧光法测定沉积物中的 Pb[J]. 海洋环境 科学 2004 23(2):72 - 74.
- [8] 梁立娜,胡敬,江桂斌,等.悬浮液进样流动注射在线

微波消解 – 冷蒸气原子荧光光谱法测定生物和环境 样品中的汞[J]. 分析化学, 2005, 33(2) 229 – 232.

- [9] 李中玺,周丽萍.断续流动在线分离富集-蒸气发生 原子荧光光谱法测定复杂环境样品中痕量镉[J]. 岩矿测试 2006 25(3) 233-238.
- [10] 戴秀丽, 汪沁, 李绍南. 悬浮液直接进样塞曼石墨炉 平台原子吸收法测定土壤中痕量铅[J]. 中国环境 监测 2002, 18(1):24-26.
- [11] 邓世林,李新凤,周平.固体进样平台石墨炉原子 吸收直接测定土壤中铅和镉[J].光谱学与光谱分 析,1996,16(3):106-110.
- [12] 杨树 韩梅,马维琦,等.电热原子吸收悬浊液进样 法测定环境样品中的锰[J].中国环境监测,1997, 13(4)20-24.
- [13] 李林德. 悬浮液进样石墨炉原子吸收法测定钛白粉 中铁 J]. 冶金分析 2000 20(2) 58-59.
- [14] 周祖康. 胶体化学基础[M]. 北京:北京大学出版 社,1996.
- [15] 韦璐,王洪来,邵建强,等.顺序注射氢化物发生 原子荧光光谱法测定化肥中砷、汞、锑和硒[J]. 光谱实验室 2005 22(2) 273 – 277.
- [16] 李春玉.氢化物发生 无色散原子荧光光谱法测定 高纯阴极铜中砷、锑、铋、硒和碲[J].光谱实验室, 1998、15(6) 59 - 71.
- [17] 彭清. 断续流动氢化物发生原子荧光法测定饮用 矿泉水中硒[J]. 理化检验:化学分册 2002 38(8): 398-399.

仪器信息网' 学术会议 "栏目全新改版

应广大用户要求,仪器信息网近日对"学术会议"栏目进行了全面改版。此次改版将栏目的各个功能实现了模块化,设置了如,投稿中心、征集赞助、注册登陆、会议动态、特殊定制等几个功能模块,用户可以根据会议的特点来选择使用,以便更好地利用本网拥有的各项资源。新增的"会议动态"发布功能可以满足会议主办方随时随地发布会议进展最新消息的需求,并且其中高质量的新闻更有机会被本网"业界要闻"栏目收录,并在仪器信息网首页显示。此外,我们还专门针对无网站的学术会议设置了"特殊定制"模块,本网的设计人员会按照您的需求,提供个性化服务,为您的学术会议打造一片独特的平台,更多详情请与我们联系。

如果您主办分析测试行业相关的学术会议或学术研讨会,请与我们联系,我们免费给您提供一个网上网下宣传平台; 如果您想参加会议,可以直接在网上完成投稿、注册,如果您想赞助大会,请在网上直接登记!

```
联系电话 010-51654077-8017
```

电子邮箱 :project@ instrument. com. cn.

联系人 :杨旭

网址 http://conference.instrument.com.cn

仪器信息网开展"网上仪器展"参展商资质认证工作

为了让仪器用户真正找到好的厂家和产品,维护广大用户和参展商的切身利益,避免不必要的纠纷,自2007年3月1 日起仪器信息网开始对网上仪器展各参展商的资质进行认证。对于通过该认证的厂商本网将予以特殊标记,增加其产品 在专场中的3I指数,并给予额外的信用积分,信用积分越高,其产品排名越有优势,越容易得到用户的关注,成交机会也就 越大!未通过该认证的厂商将不能参加网上仪器展览。

认证内容主要包括:厂家通过年检的营业执照(副本)、销售代理授权证书以及企业登记证等证书的原件扫描件。

目前仪器信息网已有 500 多家会员单位通过了本网的资质认证 ; 网上仪器展 "已经真正成为了仪器行业最权威的仪器 产品信息发布平台!如何让用户信任您?如何买到满意放心的仪器?赶快到仪器信息网来吧!这些问题都将迎刃而解!

科学仪器专业网站——www.instrument.com.cn