文章编号:0254-5357(2008)03-0237-02

硫脲介质 – 石墨炉原子吸收光谱法测定化探样品中微量银

黄仁忠

(福建环闽矿业有限公司,福建福州 350008)

摘要:样品经王水分解 硫脲提取 石墨炉原子吸收光谱法测定化探样品中的微量银。方法检出限为0.058 ng/mL; 精密度(RSD *n* = 6)为0.8% ~5.4% 回收率为94% ~105%。方法经国家一级标准物质验证 测定结果与标准值相符。 关键词:硫脲;石墨炉原子吸收光谱法;银;化探样品 中图分类号:0657.31;0614.122 文献标识码:B

Determinations of Micro-amount of Silver in Geochemical Exploration Samples by Graphite Furnace Atomic Absorption Spectrometry in Thiourea Medium

HUANG Ren-zhong

(Fujian Huanmin Mining Co. ,Ltd. , Fuzhou 350008 , China)

Abstract: The micro-amount of Ag in geochemical exploration samples is determined by graphite furnace atomic absorption spectrometry in 10 g/L of thiourea medium. The detection limit of the method for Ag is 0.058 ng/mL and the recovery of the method is 94% ~105% with precision of 0.8% ~5.4% RSD(n = 6). The method has been verified by the determination of Ag in the National Standard Reference Materials and the results are in agreement with the certified values.

Key words : thiourea ; graphite furnace atomic absorption spectrometry ; silver ; geochemical exploration sample

银在地壳中的丰度值为 1×10⁻⁵% 在自然界中 粮主要 以硫化矿物的形式存在。化探样品中银的含量一般为 0.0*x* ~ 0.*x* μg/g 微量银的测定方法主要有原子吸收光谱法^[1-7]、发 射光谱法^[8]、质谱法^[9]、极谱法^{10]}等。用原子吸收光谱法测定 化探样品中微量银较普遍,目前在化探样品测试中 样品一般 预处理为盐酸或硝酸介质,并多以(NH₄),HPO₄为基体改进 剂用石墨炉原子吸收光谱法测定;也有以二乙三胺 + 盐 酸⁴¹、高氯酸 + 酒石酸 + 硫脲⁷¹等为介质进行原子吸收光谱 法测定。将样品预处理成单一硫脲介质直接进行石墨炉原子 吸收光谱法测定的方法,尚未见报道。本文试验了样品经王 水分解,疏脲提取,石墨炉原子吸收光谱法直接测定化探样品 中的微量银,方法简便、结果重现性好、稳定可靠。

1 实验部分

1.1 仪器及工作条件

MQZ 石墨炉原子吸收光谱仪(美国热电公司),FS95 自动进样器。银空心阴极灯(国产),热电镀层石墨管(北 京友谊丹诺科技有限公司)。仪器工作条件为 波长 328.1 nm ,灯电流 6.0 mA ,光谱通带 0.5 nm ,进样量 10 μL。石墨 炉升温程序见表 1。 Transferpette 单道移液器(10~100 μL、100~1000 μL, 德国普兰德公司)。

表1 石墨炉升温程序①

Table 1 Temperature program of graphite furnace

步骤	温度	时间	斜坡	气体流量	
	<i>θ</i> ∕°C	t∕s	(°C∕s)	v∕(L · min ⁻¹)	
干燥	140	10.0	5	0.2	
灰化	700	10.0	100	0.2	
原子化	1600	3.0	0	0	
除残	2000	3.0	0	0.2	

① 原子化阶段停气 最大功率升温 测量方式 峰高(浓度直读)。

1.2 标准溶液与主要试剂

银标准溶液(1000 μg/mL,国家标准物质研究中心)。 用 10 g/L 硫脲溶液逐级稀释成 20 ng/mL 的银标准工作液。

HCl、HNO₃均为分析纯;100 g/L 硫脲溶液(分析纯)。 实验用水为去离子水。

1.3 样品前处理

准确称取 1.0 g(精确至 0.0001 g)样品于 50 mL 烧杯 中,用少量水润湿。加入 20 mL HCl,盖上表面皿,在电热 板上煮沸 10 min,加入 5 mL HNO3,继续煮沸至黄烟消失。

收稿日期:2007-12-03;修订日期:2008-02-20

作者简介:黄仁忠(1964 –),男,福建浦城县人,工程师,从事岩石矿物分析测试工作。E-mail:swklnm@163.com。

吹洗表面皿,將溶液蒸至近干;取下稍冷,加少量 HCl 重复 蒸至近干一次;取下冷却至室温,加入 100 g/L 硫脲溶液 5.0 mL,用少量水冲洗杯壁,加热溶解盐类。取下冷却 移 入 50 mL 容量瓶中,用水稀释至刻度,混匀。澄清后,按照 选定的仪器工作条件与标准系列同时测定。

2 结果与讨论

2.1 灰化温度与原子化温度

实验表明,灰化温度高于 800 ℃,吸光度下降明显(图 1)。原子化温度在 1400 ~ 2100 ℃,吸光度比较平稳(图 2)本法选择灰化与原子化温度分别为 700 ℃和 1600 ℃。

Fig. 1 Effect of ashing temperature on Ag determination

Fig. 2 Effect of atomization temperature on Ag determination

2.2 介质对石墨管使用次数的影响

硫脲是一种常见的还原性物质,且在灰化阶段易于分解 除去,对石墨管的损耗较小,有利于提高测定的稳定性能。 用同批次石墨管按照选定的仪器工作条件,分别考察了硫 脲、硝酸、王水三种介质对石墨管使用寿命的影响,结果表 明,各介质对石墨管的使用寿命影响大小顺序为:硫脲 < 硝 酸 < 王水。本实验选择硫脲作介质。

2.3 硫脲溶液的用量

按1.3 节方法处理同一样品4份,分别加入100 g/L 硫脲溶液1.0 mL、2.5 mL、5.0 mL、10.0 mL,样品中Ag的 测定值为0.59 μ g/g、0.61 μ g/g、0.61 μ g/g、0.60 μ g/g。考 虑到样品中其他杂质也要消耗硫脲,为保证溶液中有足量 的硫脲与银络合,本法硫脲溶液用量以5.0 mL为宜。

2.4 干扰试验及背景校正

实验表明 $\underline{\hbar}$ 10 g/L 硫脲介质中 测定 5 ng/mL Ag 时, 下列共存元素的允许量为(以 mg/L 计):K⁺、Na⁺、Mg²⁺、Ca²⁺ 50 \underline{Mn}^{2+} 、Ca²⁺、Cu²⁺、Ch²⁺ 20 \underline{Fe}^{3+} 、Al³⁺ 500。

由于试样来源区域广泛 组分相对复杂 ,因此基体产生的背景吸收对测定有较大影响。本法应用塞曼效应进行背景校正 ,实验结果表明 ,背景扣除率大于 98% ,有效地消除了基体的干扰和背景吸收。

2.5 工作曲线和检出限

Ag 的浓度 ≤ 10.0 ng/mL 与吸光度呈线性关系 其回归方 程为 A = 0.078 32 ρ + 0.0020 相关系数为 0.9995。按照选定的 仪器工作条件 ,重复测定空白溶液 11 次 ,以 3 倍标准偏差 (3 σ /k)计算检出限 本法的检出限为 0.058 ng/mL。

2.6 精密度和准确度

用本法对国家一级标准物质中的微量 Ag 进行测定 并做加标回收试验 表 2 结果可见 方法的精密度(RSD n = 6)为 0.8% ~5.4% 回收率为 94% ~105%。

表 2 精密度和准确度试验

Table 2 Precision and recovery tests of the method

标准物质 编号	u(Ag)/(μg · g ⁻¹)		BSD	<i>m</i> (Ag)∕ng		回收率
	标准值	测定 平均值	/%	加标量	加标 测定值	R/%
GBW 07401	0.35 ± 0.05	0.36	1.8	200	195	98
GBW 07402	0.054 ± 0.007	0.047	2.6	200	202	101
GBW 07403	0.091 ± 0.007	0.096	0.8	200	206	103
GBW 07404	0.070 ± 0.011	0.064	4.2	200	194	97
GBW 07406	0.20 ± 0.02	0.20	0.8	200	196	98
GBW 07407	0.057 ± 0.011	0.048	5.4	200	210	105
GBW 07408	0.060 ± 0.009	0.062	3.7	200	188	94

3 结语

在样品前处理过程中,加盐酸重复蒸发至近干后,取下 必须冷却至室温,否则加入硫脲后可能产生剧烈反应。

本法硫脲溶液用量少,试液介质单一,石墨管使用寿命 长,操作流程相对简单。方法经国家一级标准物质验证,完 全可满足化探工作的需要。

4 参考文献

- [1] 岩石矿物分析编写组. 岩石矿物分析(第一分册)[M].3
 版. 北京 地质出版社 1991 860 864.
- [2] 地矿部勘查技术司.15万区域地质调查及地球化学普查样 品分析方法及质量管理指导性规程[J].地质实验室,1990, 6(增刊)88-90.
- [3] 李华昌,金醉宝.石墨炉原子吸收法测定地质样品中痕量银
 [J].矿冶 2001,10(4) 87-89.
- [4] 王春英 涨燕婕. 二乙三胺 盐酸介质原子吸收法测定地质样 品中微量银元素 J] 黄金科学技术 2005 J3(4) #1-44.
- [5] 徐强,曲荣君,刘英霞,等.三乙烯四胺型螯合树脂微柱分离 富集-火焰原子吸收光谱法测定地质样品中痕量银[J].化 学世界 2005 46(3):151-154.
- [6] 肖凡 徐崇颖 邢刚 等.碘化钾 甲基异丁基甲酮萃取 火焰 原子吸收分光光度法连续测定地球化学样品中痕量银镉铊
 [J].岩矿测试 2007 26(1) 67 – 70.
- [7] 代素芳 郑浩. 高氯酸 + 酒石酸 + 硫脲介质中原子吸收光谱法测 定多种矿石中的银 J] 岩矿测试 2000 J9(4) 301 – 303.
- [8] 张雪梅.发射光谱法测定勘查地球化学样品中银硼锡钼铅
 [J].岩矿测试 2006 25(4) 323-326.
- [9] 张彦斌 程忠洲 李华. 硫脲树脂富集 电感耦合等离子体 质谱法测定地质样品中的超痕量金、银、铂、钯[J]. 分析试 验室 2006 25(7):105 – 108.
- [10] 郭晋川. 全微机化极谱法测定地质样品中 Ag 的方法探讨 [J]. 光谱实验室 2005 22(1):183-185.