文章编号:0254-5357(2008)03-0197-04

电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正

李 刚,曹小燕

(四川省地质矿产勘查开发局成都综合岩矿测试中心,四川成都 610081)

摘要:采用 HF – HClO₄ – HNO₃分解样品 8 mol/L HNO₃提取剂,外标法校准,电感耦合等离 子体质谱法同时测定地球化学样品中锗和镉。选择¹⁰³ Rh 为内标,确定了最佳仪器参数,研究了 Zn、Zr、Sn、Ce、Nd、Sm 对 Ge 和 Cd 的干扰,试验选择质量数⁷⁴ Ge 和¹¹⁴ Cd 作为测定同位素,采用数 学公式校正法校正了来自 Nd 和 Sm 的二次电离离子对 Ge 的干扰、Sn 对 Cd 的同质异位素干扰。 方法检出限(10*s*)分别为 Ge 30 ng/L、Cd 15 ng/L,精密度(RSD, *n* = 15)为 Ge 1.35%、Cd 1.47%。对多种国家一级标准物质进行分析验证,结果与标准值相符。方法适用于地质样品中 微量锗和镉的测定。

关键词:电感耦合等离子体质谱法;干扰校正;锗;镉;地质样品 中图分类号:0657.63;0614.431;0614.242 文献标识码:A

Interference and Its Elimination in Determination of Germanium and Cadmium in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry

LI Gang , CAO Xiao-yan

(Chengdu Analytical & Testing Center for Rocks and Minerals, Chengdu 610081, China)

Abstract : The samples were decomposed by mixed acid of HF-HClO₄-HNO₃. Germanium and cadmium in sample solutions were determined by inductively coupled plasma-mass spectrometry with external calibration method. ⁷⁴Ge and ¹¹⁴Cd were chosen as determining isotopes and ¹⁰³Rh as internal standard. The instrument operating parameters were optimized and the interference from coexistent elements of Zn , Zr , Sn , Ce , Nd , Sm to the determination of Ge and Cd was studied. Interference from Nd²⁺ and Sm²⁺ to Ge and from Sn isobars to Cd were calibrated by the mathematical method. The detection limits (10SD) of method for Ge and Cd are 30 ng/L and 15 ng/L respectively. The method has been verified by the determination of Cd and Ge in geological standard reference materials and the results are in agreement with certified values with precision of 1.35% RSD for Ge and 1.47% RSD for Cd. The method is suitable for the determination of trace Ge and Cd in geological samples.

Key words : inductively coupled plasma-mass spectrometry ; interference calibration ; germanium ; cadmium ; geological sample

锗和镉与人体健康和生态环境质量密切相关,在 生态地球化学调查中,锗和镉都是重要的调查对象, 也是主要检测元素之一。由于锗和镉属于稀有、稀散 元素,它们在地壳中的含量较低,分别约为7 μg/g 和 0.2 μg/g 测定地质样品中的锗和镉难度较大。

地质样品中测定微量的锗和镉时,常采用氢化 物发生 – 原子荧光光谱法^[1-6]、无火焰石墨炉原子 吸收光谱法^[37]以及分光光度法^[7-10]。这些方法都

收稿日期:2007-09-18;修订日期:2007-12-22

作者简介:李刚 1964 -) 男 四川成都市人 教授级高级工程师 从事光谱分析研究。E-mail: ligang1718@ vip. sina. com。

能有效地测定锗和镉 但是,一般都采用一种方法单 独测定,手续繁琐。等离子体质谱法(ICP – MS)具 有检出限低、多元素同时测定、线性范围宽等优点, 是目前公认的最强有力的痕量和超痕量无机元素分 析技术^[11]。目前,ICP – MS 法测定镉或锗已有文献 报道^[3,11-14] 但是,用 ICP – MS 法同时测定锗和镉, 以及测定时的干扰和消除方法研究不多。本文针对 地质样品,采用 HF – HCIO₄ – HNO₃分解样品,HNO₃ 提取技术,选择质量数⁷⁴ Ge和¹¹⁴ Cd 作为测量同位 素,ICP – MS 法同时测定锗和镉。研究了 Zn、Zr、 Sn、Ce、Nd、Sm 对 Ge 和 Cd 的干扰,采用数学公式法 校正 Nd和 Sm 对 Ge 及 Sn 对 Cd 的干扰。方法应用 于土壤、水系沉积物等类型的地球化学样品中微量 锗和镉的测定 效果良好。

- 1 实验部分
- 1.1 仪器与主要试剂

X Series^Ⅱ型电感耦合等离子体质谱仪(美国 Thermo Scientific 公司)。

锗标准储备溶液:ρ(Ge) = 10 mg/L,0.9 mol/LH₂SO₄介质,储标准溶液;ρ(Ge) = 50 μg/L, 0.8 mol/LHNO₃介质。

镉标准储备溶液:ρ(Cd) = 10 mg/L,1.5 mol/L HNO₃介质,镉标准溶液;(Cd) = 50 μg/L, 0.8 mol/L HNO₃介质。

锡标准储备溶液 🕅 Sn)=50 mg/L ,1.8 mol/L H₂SO₄介质。

钐标准储备溶液: ρ (Sm) = 10 mg/L,0.8 mol/L HNO₃介质。

 $牧标准储备溶液 : \rho(Nd) = 10 mg/L, 1.2$ mol/L HNO₃介质。

混合标准溶液:B、Co、In、Ba、U 含量各 10 μg/L 0.8 mol/L HNO₃介质。

HNO₃ :MOS 级(广东西陇化工有限公司);HF 和 HClO₄ :优级纯(广东西陇化工有限公司)。高 纯水 :电阻率 > 18 MΩ · cm(纯水机由重庆台浦科 技有限公司提供)。

1.2 实验方法

干扰试验 :分别吸取 2.50 mL 锗标准溶液和镉标准溶液于 25 mL 聚乙烯塑料容量瓶中 ,加入 2 mL HNO₃,再分别加入一定量的 Nd、Sm、Sn 等干扰元素 ,用高纯水稀释至刻度 ,摇匀 ,用 ICP – MS 法测定锗和镉的计数率(cps)。

样品分解:称取 0.05 g(精确至 0.000 2 g)样品于 25 mL 聚四氟乙烯坩埚中,加入 5 mL HF、

5 mL HClO₄ - HNO₃混合酸(体积比1:1),加盖, 于电热板上加热分解至刚冒白烟。关闭电热板,静 置过夜。次日升温至冒浓白烟,取盖,分解至近干 (约残留0.5 mL 溶液),趁热加入2 mL 8 mol/L HNO₃,加热浸取至溶液清亮,加入10 mL 沸水,微 沸1~2 min 取下坩埚,冷却后将溶液转入25 mL 塑料比色管,定容,摇匀,静置澄清后上机测定。随 批带2~3 个样品空白。

- 2 结果与讨论
- 2.1 仪器工作参数

实验采用混合标准溶液对仪器工作参数进行 最佳优化。选择的最佳 ICP – MS 工作参数见表 1。 在此工作条件下,¹³⁸ Ba 氧化物的产率约为 < 3%, 双电荷的产率 <0.3%。

表 1 仪器工作参数 Table 1 Operating parameters of the instrument

工作参数	最佳值	工作参数	最佳值
射频功率	1200 W	扫描次数	50
冷却气(Ar)流量	13. 0 L/min	停留时间	18 s
辅助气(Ar)流量	0.70 L/min	延迟时间	30 s
雾化气(Ar)流量	0.85 L/min	采样锥(Ni)孔径	1.1 mm
测量方式	跳峰	截取锥(Ni)孔径	0.9 mm
每个质量通道数	3	提升量	1.0 mL/min

2.2 样品分解

由于锗的氯化物的易挥发性,因此在样品分解 和提取时不宜采用含氯离子的试剂,但是样品分解 时,氯酸根并不影响锗的稳定存在。样品分解后, 大量的高氯酸已被赶去,残留的微量高氯酸对锗的 测定没有明显的影响。试验比较了 HF – HNO₃和 HF – HNO₃ – HClO₄两种样品分解体系及 HNO₃和 王水提取方法对测定 Ge 和 Cd 的影响(表 2)。

表 2	不同样品分解体系对测定锗和镉的影响

Table 2 Effect of different sample decomposion systems on determination of Ge and Cd

_										
		u(Ge)/(μg·g ⁻¹)				u(u(Cd)/(μg·g ⁻¹)			
	样品	分解体系 HF - HNO ₃		分解体系 HF – HNO ₃ – HClO ₄		分解体系 HF - HNO ₃		分解体系 HF – HNO ₃ – HClO ₄		
		HNO ₃	王水	HNO ₃	王水	HNO ₃	王水	HNO ₃	王水	
	土壤	5.85	2.03	5.41	3.15	0.40	0.39	0.38	0.36	
	土壤	2.12	1.63	2.18	1.52	0.43	0.45	0.47	0.46	
	岩石	3.94	1.89	3.98	2.28	0.098	0.096	0.092	0.092	
	岩石	1.25	0.89	1.26	0.69	0.086	0.092	0.088	0.083	
	水系沉积物	1.44	0.98	1.45	1.00	0.080	0.081	0.085	0.083	
_	水系沉积物	1.51	0.84	1.54	0.88	0.12	0.13	0.13	0.13	
_		· -	1.1.1	1 17171	<u> </u>	A DULAL -				

 表中 HNO₃、王水为提取剂,浓度分别为8 mol/L HNO₃、王水 (体积比1:1),提取剂体积2 mL。 表 2 结果表明, HF - HNO₃和 HF - HNO₃ - HClO₄两种样品分解体系对样品的分解效果基本相同。采用不同的提取剂对 Ge 的测定影响很大, 王水 含有 HCl 使 Ge 的测定结果严重偏低, 提取剂对 Cd 的影响则不大。因为在样品分解时溶液不宜蒸干(否则提取不完全),鉴于 HClO₄在分解样品有明显的终点指示作用,本文选择 HF - HNO₃ - HClO₄体系分解样品, 提取剂则采用 8 mol/L HNO₃。

2.3 质谱干扰及校正

在 ICP – MS 测量中,质谱干扰主要有同量异 位素叠加干扰、难熔氧化物干扰、多原子复合离子 干扰及双电荷离子干扰等,其中质谱峰叠加、多原 子复合离子所形成的干扰较为严重^[11]。地质样品 中测定 Ge、Cd 时,干扰主要来自 Sm、Ce、Nd、Sn、 Zr、Zn 等元素的质谱峰叠加。表 3 列出了不同含 量的主要干扰元素对不同质量数的 Ge 和 Cd 的干 扰情况。

表 3 主要干扰元素对不同质量数的 Ge 和 Cd 的干扰情况 Table 3 Interference from main interferents on

determination of Cd and Ge

元麦	浓度 ρ _Β /	计数率/cps						
九系 (ng \cdot mL ⁻¹) ₇₀ Ge	⁷² Ge	⁷⁴ Ge	110Cd	^{N1} Cd	112Cd	114Cd
	0	650	163	42	24	16	25	27
e	20	666	426	298	20	11	22	27
Sm	2000	635	6663	25 158	18	15	19	26
	10000	572	32 377	126 037	13	13	18	23
	20	4325	160	48	17	17	21	25
Ce	2000	393737	180	45	16	12	20	26
	10000	1715528	160	42	20	12	16	28
	100	493	8687	2241	15	12	17	16
Nd	400	491	32463	8 3 6 1	18	11	28	26
	1000	772	80810	20992	28	23	20	27
	100	593	147	29	13	11	9100	6366
Sn	400	693	173	38	24	16	37725	26275
	1000	533	186	38	27	11	100666	69450
	100	697	158	35	3266	81	864	26
Zr	400	673	148	38	12907	366	2374	23
	1200	598	148	57	39528	1156	7 205	26
Zn	40	1 365	187	33	18	18	20	28
	100	3420	165	44	19	15	21	27
	1000	36649	192	57	14	10	13	26

从表 3 可以看出 ,Sm 和 Nd 对⁷² Ge 和⁷⁴ Ge ,Ce 和 Zn 对⁷⁰Ge 产生明显的干扰 Sn 对¹¹²Cd 和¹¹⁴Cd,Zr 对¹¹⁰Cd、¹¹¹Cd 和¹¹²Cd 产生明显的干扰。这些元素 形成干扰的主要原因是同量异位素叠加干扰(如 ⁷⁰Zn对⁷⁰Ge、¹¹²Sn 对¹¹²Cd、¹¹⁴Sn 对¹¹⁴Cd) 双电荷离子 干扰(如¹⁴⁰ Ce²⁺ 对 ⁷⁰Ge ,¹⁴⁴ Sm²⁺、¹⁴⁴ Nd²⁺ 对⁷² Ge , ¹⁴⁸Sm²⁺、¹⁴⁸Nd²⁺ 对⁷⁴ Ge)和多原子离子干扰(如 ⁹⁴Zr¹⁶O对¹¹⁰Cd、⁹⁴Zr¹⁶O¹H 对¹¹¹Cd、⁹⁶Zr¹⁶O 对¹¹²Cd)。 对于上述干扰,可以通过两种方法来克服:一是选择 测量元素的同位素;二是通过校正方程进行校正。

2.3.1 测量元素同位素的选择

尽量避免选择有大量干扰元素存在及干扰机理 复杂的测量同位素,这样可以有效降低部分质谱干 扰。前述实验表明,在测定 Ge 时,主要受到⁷⁰Zn 对 ⁷⁰Ge,¹⁴⁰ Ce²⁺ 对⁷⁰ Ge,¹⁴⁴ Sm²⁺、¹⁴⁴ Nd²⁺ 对⁷² Ge, ¹⁴⁸Sm²⁺、¹⁴⁸Nd²⁺ 对⁷⁴Ge 的干扰。考虑到地质样品中 Sm 和 Nd 的含量较低(<10⁻⁵),干扰元素同位素丰 度小(如¹⁴⁸Nd 5.7%、¹⁴⁸Sm 11.3%)等因素,选择质 量数⁷⁴Ge 作为测量同位素,干扰相对较小,同时, ⁷⁴Ge的灵敏度也较高。测定 Cd 时 Zr 和 Sn 是主要 干扰元素,由于一般地球化学样品中 Sn 的含量远远 小于 Zr,并且 Sn 对 Cd 仅有同量异位素干扰(¹¹²Sn 对¹¹²Cd、¹¹⁴Sn 对¹¹⁴Cd),干扰相对简单,而 Zr 则是多 原子离子干扰,干扰复杂,应该尽量避免,因此在测 定中选取没有Zr 干扰的同位素¹¹⁴Cd 进行测定。

2.3.2 干扰校正方程

对选择同位素仍然不能有效避免的质谱干扰, 可以通过校正方程进行数学模式干扰校正。校正 方程中的干扰系数分别用 Nd、Sm、Sn 的单个纯标 准溶液测定和计算得出。本实验条件下,Nd、Sm、 Sn 的干扰系数分别0.0072、0.0063和0.015。

测定 Ge 时 选定的测定同位素的校正方程为: $C_{74_{Ge 校}} = C_{74_{Ge 测}} - 0.0072 \times C_{14_{Nd}} - 0.0063C_{148_{Sm}}$ (1) 式(1)中 $C_{74_{Ge 校}}$ 为 Ge 校正结果 $C_{74_{Ge M}}$ 为 Ge 测定 结果 $C_{14_{Nd}}$ 为 Nd 测定结果 $C_{148_{Sm}}$ 为 Sm 测定结果。

测定 Cd 时 选定的测定同位素的校正方程为:

 $C_{114_{Cd} \overline{K}} = C_{114_{Cd} \overline{M}} - 0.015 \times C_{114_{Sn}}$ (2) 式(2)中, $C_{114_{Cd} \overline{K}}$ 为Cd校正结果; $C_{114_{Cd} \overline{M}}$ 为Cd测 定结果; $C_{114_{Sn}}$ 为Sn测定结果。

2.4 检出限与精密度

在本实验条件下,Ge和Cd工作曲线范围为 0~150 μg/L 相关系数为0.9994。对样品空白12次 测定得到方法检出限(以10倍标准偏差计算)为: Ge 30 ng/L、Cd 15 ng/L。对国家一级土壤标准物质 GBW 07401进行15次独立样品测定表4结果表明, 方法的精密度(RSD)为Ge1.35%、Cd1.47%。

2.5 标准样品分析结果对照

对国家一级土壤标准物质(GBW 07401~ GBW 07408、GBW 07425~GBW 07428),水系沉积 物标准物质(GBW 07301~GBW 07304、GBW 07309 ~ GBW 07311)等标准样品进行测定,表5 结果表明,本方法的测定值与标准值相符,同时也 满足地质样品化探分析质量要求。

表 4 精密度试验 Table 4 Precision test of the method

元素	$w_{\rm B}/(~\mu{ m g}\cdot{ m g}^{-1})$						
	标准值	本法分次测定值	平均值				
Ge	1.34 ±0.20	1.36 1.34 1.36 1.33 1.34 1.34 1.36 1.35 1.35 1.34 1.33 1.40 1.39 1.34 1.35	1.35 1.48				
Cd	4.3±0.4	4. 29 4. 22 4. 20 4. 32 4. 25 4. 33 4. 28 4. 43 4. 37 4. 36 4. 26 4. 30 4. 40 4. 31 4. 31	4.31 1.48				

表 5 国家一级标准物质的分析

Table 5 Analytical results of Ge and Cd

in National Standard Reference Materials

标准样品	$= u(Ge)/(μg \cdot g^{-1})$			u(Cd)/($\mu g \cdot g^{-1}$)				
编号	标准值	测量值	校正值	对数差	标准值	测量值	校正值	对数差
GBW 07401	1.34 ± 0.20	1.57	1.35	0.003	4.3±0.4	4.36	4.27	-0.003
GBW 07402	1.2 ± 0.2	2.73	1.13	-0.026	0.071 ± 0.014	0.12	0.080	0.058
GBW 07403	1.16 ± 0.13	1.25	1.09	-0.031	0.060 ± 0.009	0.10	0.060	0.000
GBW 07404	1.9 ± 0.3	1.96	1.75	-0.038	0.35 ± 0.06	0.44	0.37	0.022
GBW 07405	2.6 ± 0.4	2.64	2.45	-0.026	0.45 ± 0.06	0.75	0.50	0.046
GBW 07406	3.2 ± 0.4	2.88	2.72	-0.071	0.13 ± 0.03	1718	0.13	0.000
GBW 07407	1.6 ± 0.3	1.92	1.54	-0.017	0.08 ± 0.02	0.13	0.080	0.000
GBW 07408	1.27 ± 0.20	1.55	1.30	0.010	0.13 ± 0.02	0.16	0.12	- 0. 035
GBW 07425	1.3 ± 0.1	1.56	1.30	-0.003	0.125 ± 0.012	0.17	0.12	0.000
GBW 07426	1.3 ± 0.1	1.54	1.30	-0.007	0.15 ± 0.02	0.20	0.16	0.000
GBW 07427	1.27 ± 0.07	1.44	1.21	0.018	0.13 ± 0.01	0.17	0.12	-0.067
GBW 07428	1.42 ± 0.11	1.65	1.36	-0.019	0.20 ± 0.02	0.22	0.18	-0.058
GBW 07301	1.3 ± 0.4	1.73	1.42	0.038	0.088 ± 0.014	0.13	0.080	-0.051
GBW 07302	1.7 ± 0.3	1.92	1.42	-0.078	0.065 ± 0.011	0.47	0.060	-0.067
GBW 07303	1.3 ± 0.3	1.76	1.52	0.068	0.10 ± 0.02	0.14	0.090	-0.046
GBW 07304	1.4 ± 0.3	1.54	1.27	-0.042	0.19 ± 0.02	0.27	0.21	0.043
GBW 07309	1.3 ± 0.2	1.64	1.36	0.020	0.26 ± 0.04	0.31	0.28	0.032
GBW 07310	0.40 ± 0.06	0.49	0.40	0.000	1.12 ± 0.08	1.01	0.99	-0.054
GBW 07311	1.81 ± 0.21	1.81	1.58	-0.059	2.3 ± 0.2	7.405	1.96	-0.069

3 结语

本文采用混合酸溶样,等离子体质谱法同时测 定土壤及水系沉积物等地质样品中 Ge 和 Cd 样品 处理简单,分析速度快,选择合适的测定同位素,采 用数学模式校正干扰,方法经国家一级标准物质验 证,结果准确、可靠,适合于多种地质样品分析。样 品溶液不仅用于测定 Ge 和 Cd 必要时还可同时测定 Li、Be、Bi、Co、Cu 等 21 个元素。

4 参考文献

- [1] Li Gang , Li Wenli , Zhong Guanping , et al. L-cysteined enhanced hydride generation for atomic fluorescence spectrometric determination of germanium in geological samples [J]. Spectroscopy Letters ,2003 ,36(4) :275 – 285.
- [2] 杨国裕.氢化物空心阴极灯原子荧光法测定地质样品中锗 J].理化检验:化学分册,1993,29(2):104-105.
- [3] 叶家瑜,江宝林.区域地球化学勘查样品分析方法[M].北京地质出版社,2004:110,119.
- [4] 李刚,潘淑春,张哲玮.碱性模式氢化发生原子荧光 光谱法测定地质样品中痕量锗 J].岩矿测试 2004, 23(4) 295-299.
- [5] 肖灵 涨培新,胡月华.原子荧光光谱法测定地质样 品中的痕量锗[J],岩矿测试,2004,23(3):231-234.
- [6] 鲁海妍,谢海东.断续流动氢化物发生 原子荧光光 谱法测定地球化学样品中的痕量锗[J].青海国土 经略 2007(3) 42 – 43.
- [7] 岩石矿物分析编写组、岩石矿物分析(第一分册)
 [M].3版.北京地质出版社,1991 446,776.
- [8] 陈雁君,卢英华,张波,等.杨梅黄素荧光分光光度法 测定痕量锗的研究[J].济宁医学院学报,2004,27 (1)20-22.
- [9] 刘浏,王英华,徐金玉,等.流动注射化学发光法测定
 地质样品中痕量锗(Ⅳ)[J].冶金分析,2005,25
 (1):11-14.
- [10] 齐玲. 微乳液 水杨基荧光酮体系分光光度法测定 痕量镜 J]. 冶金分析 2002 22(3) 22 - 25.
- [11] 李冰 杨红霞. 电感耦合等离子体质谱原理和应用[M].北京 地质出版社 2005 1-40.
- [12] 张培新,黄光明,董丽,等. 电感耦合等离子体质谱 法同时测定地质样品中锗碘[J]. 岩矿测试,2005, 24(1)36-39.
- [13] 林光西 徐霞 张静梅. 电感耦合等离子体质谱法测定 地质样品中的镜 J] 现代仪器 2007 J3(4) 63-64.
- [14] 周丽萍,李中玺.王水提取-电感耦合等离子体质 谱法同时测定地质样品中微量银、镉、铋[J].分析 试验室 2005 24(9) 20-25.