文章编号: 0254-5357(2010)05-0508-05

Needle trap - 顶空进样 - 气相色谱法分析地下水中的苯系物

高松1,张兰英1*,王琳2,宋杰1,崔哲1,吕春欣1,刘鹏1,邓银舟3

- (1. 吉林大学环境与资源学院水资源与水环境重点实验室, 吉林 长春 130026;
- 2. 大唐长春第三热电厂, 吉林 长春 130103; 3. 深圳出入境检验检疫局, 广东 深圳 518045)

摘要:利用 Needle trap 集现场采样、无溶剂提取和热解吸进样等多功能为一体的特点,针对密闭的 20 mL 顶空样品瓶(10 mL 样品),通过优化提取温度、样品平衡时间、注射器推杆循环抽拉体积、加盐量及现场采样保存时间等条件,确定了 Needle trap 吸附提取地下水中7种苯系物的最佳条件,用顶空进样气相色谱法测定,方法加标回收率为 84.27%~115.03%,检出限为 $0.06 \sim 0.09 \, \mu g/L$,精密度(RSD,n=7) < 7%,符合EPA 相关标准。建立的方法表明 Needle trap 适用于地下水中苯系物的提取分析。

关键词: 动态针捕集; 顶空进样; 气相色谱法; 苯系物; 地下水

中图分类号: 0657.72; 0625.1; P641 文献标识码: A

Analysis of Benzene Series in Groundwater by Gas Chromatography with Needle trap-Headspace Sampling

 $GAO\ Song^1$, $ZHANG\ Lan-ying^{1*}$, $WANG\ Lin^2$, $SONG\ Jie^1$, $CUI\ Zhe^1$, $L\ddot{\mathcal{U}}\ Chun-xin^1$, $LIU\ Peng^1$, $DENG\ Yin-zhou^3$

- (1. Key Laborbory of Water Resources and Water Environment, College of Resources and Environment, Jilin University, Changchun 130026, China;
- 2. Changchun No. 3 Thermal Power Station, Changchun 130103, China;
- 3. Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China)

Abstract: A method for the determination of 7 benzene series in groundwater samples by gas chromatography with Needle trap-headspace sampling was developed, which represents the integrated features of on-site sampling, solvent-free extracting and thermal desorption. The experiment conditions such as extraction temperature, sample-equilibration time, pump volume of syringe plunger, additive amount of salt and sample storage time were tested and optimized. The detection limits of the method for 7 benzene series were $0.06 \sim 0.09 \,\mu\text{g/L}$ and the recoveries were $84.27\% \sim 115.03\%$ with precision of lower than $7\% \, \text{RSD}(n=7)$, which is consistent with relevant criteria of US EPA. The method is suitable for the determination of these benzene series in groundwater samples.

Key words: Needle trap; headspace sampling; gas chromatography; benzene series; groundwater

收稿日期: 2010-01-18; 修订日期: 2010-05-26

基金项目: 国家自然基金项目资助(200950879029); 青年科学基金项目资助(30900204); 国土资源地质大调查——地下水污染测试技术研究项目资助(1212010634607)

作者简介:高松(1973-),男,吉林通化人,博士研究生,高级工程师,主要从事地下水污染修复及环境分析研究。

E-mail: gsong@ jlu. edu. cn $_{\circ}$

通讯作者: 张兰英(1947 -),女,北京人,教授,博士生导师,主要从事环境生物修复技术研究。

E-mail: zhangly@ jlu. edu. cn $_{\circ}$

苯系物是环境中一类典型的挥发性有毒有机污 染物,在极低的浓度下就会对环境和人类健康造成 危害[1-2]。随着污染物的迁移,在地下水中也常有 苯系物检出。水中苯系物的分析常采用气相色谱 法。传统的前处理方法多采用二硫化碳萃取法[3], 该方法操作繁琐费时,易造成二次污染;近年来,顶 空直接进样法、吹扫捕集法和固相微萃取法(SPME) 得到广泛应用;但都有各自的缺点。顶空直接进样 法灵敏度不高;吹扫捕集法易使样品产生气泡; SPME 萃取头的使用寿命有限,灵敏度较差,目标物 的萃取选择性单一。本文介绍了一种新型的用于气 态基体痕量分析的技术——Needle trap(动态针捕 集)。Needle trap 是一种先进的无溶剂化的环境样 品前处理技术[4-8],其工作原理是将提取吸附剂相 填充入一支特殊的针内,使针与注射器或采样泵相 连,采样时通过外动力使气样穿过针内,目标分析物 被吸附浓缩,然后将 Needle trap 插入气相色谱高温 进样口中,经0.5~1 min 后热解吸出的分析组分被 带入色谱柱中,实现样品目标物的分离分析;而且还 可用 Needle trap 进行现场采样,然后用气相色谱进 样口废弃的低流失隔垫将 Needle trap 针尖密封, Luer 端与气密注射器相联,最后带回实验室分析。 因此,该技术是将采样、萃取、浓缩和样本引入集中 于一个步骤完成,是一种动态捕集技术,其功能比 SPME 灵敏度高,技术更加完善。

本文将 Needle trap 与气相色谱仪相联,对地下水中7种常见苯系物进行分析研究,取得了较为满意的结果。

1 实验部分

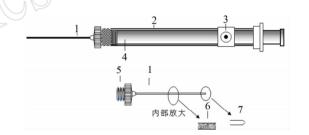
1.1 仪器和主要试剂

OPTIC 2 多模式自动进样口[弗科斯(香港) 科技有限公司] 及 CONCEPT 多功能前处理系统,该装置可实现顶空进样、SPME 进样、液体进样和Needle trap 动态针捕集进样,如图 1 所示。

GC6890 气相色谱仪(美国 Agilent 公司),带氢火焰离子化检测器(FID)。

DB-WAX 色谱柱(30 m×0.32 mm×0.50 μm)。 Needle trap 动态针捕集阱:如图 2 所示,针内 填充 Tenax(60~80 目,长1 cm,Focus 公司)。

SPME 固相微萃取纤维头(PDMS,100 μm,美国 Supelco 公司)。


20 mL 带隔垫的顶空螺纹口样品瓶(美国Agilent 公司)。

苯系物(BTEX,含苯,甲苯,乙苯,间、对、邻二甲苯)标准物质:购于国家标准物质研究中心,浓度 240 mg/L,基体为甲醇。

试剂水:采集长白山矿泉水,确认不含 BTEX。 NaCl:分析纯,购于北京化工试剂厂,马弗炉 400℃烘烤 2 h,置于干燥器中保存。

图 1 OPTIC 2 多模式进程口及 CONCEPT 多功能前处理装置 Fig. 1 The OPTIC 2 system of multi-modal injector and CONCEPT multi-functional preparation sample pre-treament device

图 2 Needle trap 结构示意图

Fig. 2 Schematic diagram of Needle trap 1—Needle trap; 2—气密注射器(带氮气反吹孔); 3—反吹孔; 4—注射器推杆; 5—Luer 头; 6—Needle trap 内部填料(Tenax); 7—锥形针头。

1.2 仪器操作条件

气相色谱条件:程序升温,初始温度 $40 \, ^{\circ}$,保持 5 min, 15 $^{\circ}$ C/min 升温至 $100 \, ^{\circ}$,保持 2 min; FID 检测器温度 $300 \, ^{\circ}$,空气流量 $450 \, \text{mL/min}$,氢气流量 $30 \, \text{mL/min}$,尾吹高纯氮 (99. 999%)流量 $20 \, \text{mL/min}$ 。

OPTIC 2: 进样口温度 250 ℃, split 模式, 载气高纯氮(99.999%), 平衡时间 0.1 min, 总运行时间 12 min, 初始温度 250 ℃, 升温速率 16 ℃/min, 终温 251 ℃, 传递压力 0.1 MPa, 传递时间 30 s, 初始压力 0.049 MPa, 最终压力 0.137 MPa。

CONCEPT: Needle trap 提取时间 10 min,提取温度 $60 \,^{\circ}$; OPTIC 2 进样口解吸温度 $250 \,^{\circ}$, 恒温; 解吸时间 $30 \,^{\circ}$ s;注射器注入反吹时间 $10 \,^{\circ}$ s,反吹气 (backflush)为高纯氮(纯度 99.999%)。

1.3 实验样品的配制

向 20 mL 顶空瓶中准确移取 10.0 mL 试剂水,使瓶中 $V_{\text{气相}}$: $V_{\text{濱}}$ = 1:1;向瓶内试剂水中准确注入 10 μ L 苯系物标准溶液,配制成浓度为 240 μ g/L的实验模拟样品。

1.4 实验步骤

以上述 240 µg/L 的实验模拟样品,分别选取提取温度、注射器抽拉体积、循环次数、样品加盐量等条件来研究 Needle trap 对 BTEX 的吸附量变化,通过OPTIC 2 进样口解吸,气相色谱 FID 检测器分析。

2 结果与讨论

2.1 提取温度对 Needle trap 吸附量影响

从30℃开始每隔5℃升温至70℃,进行吸附实验。从图3可以看出,随着提取温度的升高,Needle trap 对BTEX 的吸附量逐渐增加;由于苯和甲苯挥发性较强,在40℃时就达到吸附解吸平衡,所以二者吸附量增加不明显。虽然温度的升高有助于增大BTEX 的气-液相分配系数,但同时增加了顶空中水蒸汽的量,而过多的水蒸汽不但会对 Needle trap中 Tenax 的吸附产生影响,还会对色谱柱造成损伤,因此本实验选择 Needle trap 提取温度为60℃。

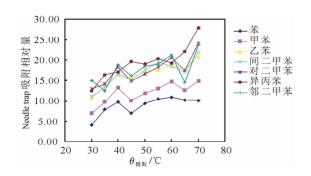


图 3 提取温度对 Needle trap 吸附量的影响 Fig. 3 Effect of different temperatrue on Needle trap adsorption

2.2 推杆抽拉体积对 Needle trap 吸附量的影响

增大注射器抽拉体积,能增加通过 Needle trap 吸附剂的顶空气量,从而增加了 Needle trap 对 BTEX 的吸附几率(图 4)。标配的 Needle trap 注射器规格为 1 mL,因此本实验选择注射器抽拉体积为 1000 µL。

图 4 注射器抽拉体积对 Needle trap 吸附量的影响

Fig. 4 Effect of pump volume of syringe on Needle trap adsorption

2.3 推杆抽拉次数对 Needle trap 吸附量的影响

从图 5 可以看出,当注射器推杆往复抽拉循环次数多于 6 次后,随着循环次数的增加,Needle trap吸附 BTEX 的量不再增加,而且出现波动。这是因为当推杆往复抽拉次数大于 6 次后,Needle trap 的吸附趋于饱和吸附,且由于吸附是放热过程,60 ℃时很快能达到吸附平衡,吸附量不再增加。因此,本实验确定注射器推杆抽拉次数为 6 次。

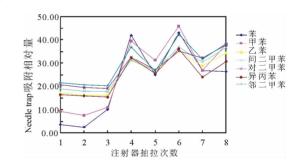


图 5 注射器推杆抽拉次数对 Needle trap 吸附量的影响 Fig. 5 Effect of time of pump frequency of syringe

Fig. 5 Effect of time of pump frequency of syringe on Needle trap adsorption

2.4 样品中加盐量对 Needle trap 吸附量的影响

分别向水样中加 0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0 g 的 NaCl,从图 6 可以看出,随着 NaCl 添加量增加,Needle trap 吸附量逐渐增加;尤其是 NaCl 添加量大于 3.0 g 时,NaCl 的盐析作用突出,导致 Needle trap 吸附量增加明显。考虑 NaCl 的溶解度因素,本实验选择 NaCl 的添加量为 3.5 g。

2.5 Needle trap 吸附量的线性范围和方法检出限

由公式 $L_D = s \times t_{(n-1,1-\alpha=0.99)}$ [9] 计算方法检出限,其中n 为重复测定次数,s 为重复分析的标准偏

差, $t_{(n-1,1-\alpha=0.99)}$ 是在n-1 的自由度内 99% 置信度的研究值,t 值通过查 t 分布表获得;n=7,t=3.143。从图 7 可以看出,当 BTEX 的浓度低于 240 μ g/L 时,Needle trap 吸附 BTEX 的量呈良好的线性。

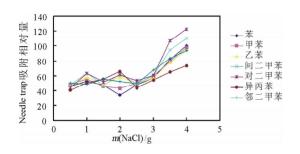


图 6 NaCl 的添加量对 Needle trap 吸附量的影响

Fig. 6 Effect of on additive amount of NaCl on Needle trap adsorption

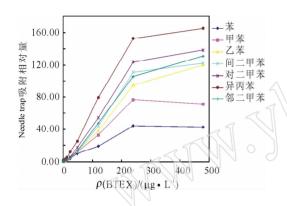


图 7 Needle trap 对 BTEX 吸附量的线性范围

Fig. 7 Linear ranges of BTEX adsorption by Needle trap

BTEX 的方法检出限见表 1;线性范围及相关系数见表 2, R^2 均在 0.9850 以上。当 BTEX 浓度大于 240 μ g/L 时,随着 BTEX 浓度进一步增大, Needle trap 趋于吸附饱和,发生吸附穿透现象,吸附量呈非线性。

2.6 方法加标回收率和重现性

在 Needle trap 最佳实验条件下,重复实验 7次,BTEX 的加标回收率和重现性结果列于表 3,相对标准偏差(RSD)均小于 7%。

2.7 现场采样保存带来的组分损失

向 5 支密闭的 20 mL 顶空瓶中分别准确注入 10 mL 试剂水,加入 2 μL 240 mg/L 苯系物标准溶液,配制成 48 μg/L 的实验样品;在 60℃下加热使之充分平衡后,在相同的提取条件下用 Needle trap分别对各顶空瓶采样一次,4℃下密封保存,分别

经 0、1、6、12、24 h 进行上机测定。从表 4 结果可以看出,在 24 h 内,用 Needle trap 对 BTEX 进行模拟现场采样、保存及上机测试^[9],组分损失率<13%,浓度波动范围在 0.87%~1.11%,基本符合保存测试要求。

表 1 方法检出限

Table 1 Detection limits of BTEX

化合物		-RSD/%	检出限 $L_{\rm D}$		
化百物	标准加入浓度	实际测定值	平均值	-nsb/ %	(μg·L ⁻¹)
苯	0.60	0.60 0.60 0.61 0.57 0.59 0.61 0.59	0.61	2.35	0.07
甲苯	0.60	0.60 0.61 0.62 0.60 0.60 0.60 0.58	0.60	2.02	0.06
乙苯	0.60	0.58 0.62 0.60 0.59 0.59 0.60 0.60	0.60	2.11	0.07
间二甲苯	0.60	0.61 0.60 0.62 0.58 0.59 0.61 0.63	0.61	2.86	0.09
对二甲苯	0.60	0.600.600.610.590.590.590.62	0.60	1.92	0.06
异丙苯	0.60	0.61 0.60 0.59 0.59 0.61 0.60 0.63	0.60	2.31	0.07
邻二甲	0.60	0.58 0.61 0.60 0.60 0.58 0.59 0.61	0.60	2. 14	0.07

表 2 BTEX 的线性范围

Table 2 Linear ranges of BTEX

化合物	线性方程		线性范围 $\rho_{\rm B}/(\mu { m g}\cdot { m L}^{-1})$	相关系数(R2)
苯	y = 0,1005x + 3.	4479	0. 1 ~ 240. 0	0. 9948
果果	y = 0.1735x + 4.	4496	0. 1 ~ 240. 0	0.9937
乙苯	y = 0.2721x + 2.	6860	0. 1 ~ 240. 0	0. 9879
间二甲苯	y = 0.2873x + 3.	7051	0. 1 ~ 240. 0	0.9850
对二甲苯	y = 0.3248x + 4.	7787	0. 1 ~ 240. 0	0. 9928
异丙苯	y = 0.3868x + 9.	5013	0. 1 ~ 240. 0	0. 9974
邻二甲苯	y = 0.2996x + 3.	3984	0. 1 ~ 240. 0	0. 9918

表 3 BTEX 的加标回收率和重现性

Table 3 Recovery and reproducibility tests of BTEX

		,	1				
化合物	加标量ρ _B / (μg·L ⁻¹)	回收率 R/%	RSD/%	化合物	加标量 ρ _B / (μg・L ^{- 1})	回收率 R/%	RSD/%
苯	0.6	85.2~91.2	6.38	对二甲苯	0.6	95.29 ~ 106.38	4. 29
	48	$87.81 \sim 115.03$	5.03		48	92.58 ~ 101.55	6.05
甲苯	0.6	89.9 ~ 94.08	5.76	异丙苯	0.6	90.84 ~ 104.39	5.39
	48	$84.27 \sim 102.05$	4.42		48	91.71 ~ 106.32	4.68
乙苯	0.6	88.29 ~91.85	3.70	邻二甲苯	0.6	84.57 ~ 90.13	3.85
	48	$88.75 \sim 104.50$	3.53		48	95.23~99.85	4.12
间二甲苯	0.6	87.68 ~ 96.38	5.09				
	48	92.58 ~ 100.20	5.04				

表 4 Needle trap 密封保存所造成的组分损失

Table 4 Losses of BTEX by airtight storage of Needle trap

/1. A the	初始浓度	FID 检出浓度与初始浓度之比					
化合物	$ ho_{ m B}/(m \mu g\cdot L^{-1})$	0 h	1 h	6 h	12 h	24 h	
苯	48	1.03	1.11	1.05	0.95	0.87	
甲苯	48	1.07	1.03	0.98	0.99	0.89	
乙苯	48	0.95	1.07	1.02	0.98	0.92	
间二甲苯	48	1.00	0.99	1.00	1.06	0.95	
对二甲苯	48	1.02	1.04	1.01	0.93	0.92	
异丙苯	48	1.05	1.00	1.09	0.93	0.94	
邻二甲苯	48	1.02	1.00	1.08	0.96	0.96	

2.8 Needle trap 和 SPME 对比分析

从图 8 可以看出, SPME (100 μm PDMS) 对BTEX 的萃取属静态吸附萃取时, 苯和甲苯的萃取效率均低于乙苯和二甲苯; 而 Needle trap 由于是主动吸附, 因此 Needle trap 对 BTEX 的吸附量的数量级相同, 且吸附量也大于 SPME。

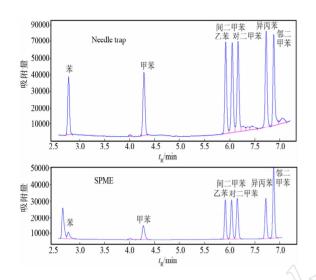


图 8 Needle trap 和 SPME 分析 BTEX 结果对比

Fig. 8 Comparison of analytical results of BTEX with Neelde trap and SPME

样品浓度均为48 μg/L,20 mL 顶空瓶,水样体积10 mL。

Needle trap 条件: 提取温度 60 °C, 抽拉体积 1 000 μL, 抽拉次数 6 次, 振荡提取 10 min;

SPME(100 μm PDMS)条件:提取温度 60 ℃,振荡提取10 min^[10]。

3 污染地下水中苯系物分析

采用建立的方法,分析污染地下水中的苯系物,结果见表5。

表 5 地下水中苯系物分析①

Table 5 Analytical results of BTEX in the groundwater

-	II. A Hm	初始浓度 ρΒ	/(μg·L ⁻¹)	化合物	初始浓度 $\rho_{B}/(\mu g \cdot L^{-1})$		
	化合物	地下水样1	地下水样2		地下水样1	地下水样2	
	苯	2.72	0.15	对二甲苯	N. D.	N. D.	
	甲苯	1.27	0.14	异丙苯	0.20	0.11	
	乙苯	0.85	0.17	邻二甲苯	2.72	0.15	
	间二甲苯	0.14	0. 50				

① N. D. 表示未检出。

4 结语

通过优化提取温度、样品平衡时间、注射器推

杆抽拉体积和循环抽拉次数、加盐量及现场采样保存时间等条件,确定了Needle trap 吸附提取7种苯系物的最佳条件,用顶空进样气相色谱法测定,方法检出限、回收率和重现性均得到满意结果,同样条件下要优于固相微萃取法的灵敏度,适用于对地下水中痕量苯系物的分析。

5 参考文献

- [1] Andrew B L, Karen YO C, Suramya W, Thomas A M, Bernard T G, Stephen M R. Investigation of benzene oxide in bone marrow and other tissues of F344 rats following metabolism of benzene in vitro and in vivo [J]. Chemical Research in Toxicology, 1998, 11 (4): 302-310.
- [2] 李萡,李扬秋. 苯致血液、免疫毒性及T细胞受体分析在接苯人群中的应用[J]. 国外医学:卫生学分册,2007,34(3):144—148.
- [3] 沈燕峰,陈秋红,侯定远.直接进样气相色谱法测定废水中的苯系物[J]。中国环境监测,1998,14(1):24-25.
- [4] Zhao B N, Gong A J, Bai Q H. The SPME-GC method for measuring the benzenes in water [J]. *Measurement Technique*, 2007 (11):9-10.
- [5] Caia J B, Ouyang G F, Gong Y, Pawliszyn J. Simultaneous sampling and analysis for vapor mercury in ambient air using Needle trap coupled with gas chromatography-mass spectrometry [J]. *Journal of Chromatography A*, 2008, 1213(1):19 24.
- [6] Eom I Y, Tugulea A M, Pawliszyn J. Development and application of Needle trap devices [J]. *Journal of Chromatography A*, 2008, 1196 – 1197(4):3 – 9.
- [7] Eom I Y, Niri V H, Pawliszyn J. Development of a syringe pump assisted dynamic headspace sampling technique for Needle trap device [J]. *Journal of Chromatography A*, 2008, 1196 – 1197(4):10 – 14.
- [8] Lou D W, Lee X Q, Pawliszyn J. Extraction of formic and acetic acids from aqueous solution by dynamic headspace-Needle trap extraction: Temperature and pH optimization[J]. *Journal of Chromatography A*, 2008, 1201(2):228-234.
- [9] EPA. Volatile organic compounds in drinking water (524. 2) [S]. USA; EPA,1989.
- [10] Wang A P, Fang F, Pawliszyn J. Sampling and determination of volatile organic compounds with Needle trap devices [J]. *Journal of Chromatography A*, 2005, 1072(1):127-135.