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Tracing the structure of asymmetric molecules from high-order harmonic generation
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We investigate high-order harmonic generation (HHG) from asymmetric molecules exposed to intense laser
fields. We show that the emissions of odd and even harmonics depend differently on the orientation angle,
the internuclear distance, as well as the effective charge. This difference mainly comes from different roles
of intramolecular interference in the HHG of odd and even harmonics. These roles map the structure of the
asymmetric molecule to the odd vs even HHG spectra.
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I. INTRODUCTION

In past years, high-order harmonic generation (HHG) from
atoms and molecules in strong fields has attracted wide
theoretical and experimental attention [1]. This interest in
HHG arises from the important applications of HHG. For
example, using HHG, one can obtain attosecond pulses, which
are important for ultrafast time resolution. In addition, HHG
also provides a new manner to probe the structure of matter [2].

Great progress has been made in the study of HHG
both for theoretically and experimentally. HHG can be well
understood by three-step models [3,4], where harmonics are
emitted through the steps of tunneling, propagation, and
recombination. In recent years, attention has been paid mainly
to HHG from symmetric molecules, such as N2 [2], H2

+ [5],
and CO2 [6,7]. The multicenter characteristic of the molecular
Coulomb potential is responsible for many interesting physical
phenomena such as the alignment effect [2], the two-center
interference effect [5], etc. For asymmetric molecules such
as CO [8,9], HCl [10], and HeH2+ [11,12], interest in HHG
is increasing. HHG is more complex in the latter cases.
Due to symmetry breaking, some different effects appear,
such as asymmetric ionization [11], enhanced excitation [12],
etc. This asymmetry also induces the HHG of both odd
and even harmonics. The mechanism for these two different
HHG channels, to our knowledge, is not yet sufficiently well
understood.

In this paper, we study HHG from asymmetric two-center
model molecules with diverse effective charges and internu-
clear distances at different orientation angles. The numerical
solution of the time-dependent Schrödinger equation (TDSE)
shows that the emission of odd and even harmonics rely
differently on the molecular parameters and angle. But the
relative yields of odd vs even harmonics are characterized by
these parameters and are not sensitive to the laser intensity.
To explore the underlying physical mechanism, we use the
continuum electronic wave packet generated from a symmetric
molecule to recollide with the nuclei of the asymmetric
molecule. This recollision produces HHG spectra that agree
with the TDSE results. Using a model that we developed based
on the simulations, we show that the two HHG channels of
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odd and even harmonics are subject to different interference
effects. The effects arise from the two-center structure of
the asymmetric Coulomb potential and influence significantly
the HHG spectra of odd vs even harmonics. As a result, the
property of the asymmetric potential can be traced from the
odd vs even HHG spectra.

II. NUMERICAL SIMULATION

The Hamiltonian of two-center molecules studied here is

H (t) = p2/2 + V (r) − r · E(t)

(in atomic units of h̄ = e = me = 1). We use the soft-core
Coulomb potential

V (x) = −Z1√
0.5 + (x + R1)2

+ −Z2√
0.5 + (x − R2)2

and

V (x,y) = −Z1√
0.5 + (x + R1)2 + y2

+ −Z2√
0.5 + (x − R2)2 + y2

for one-dimensional (1D) and two-dimensional (2D) cases.
Here Z1 and Z2 are the effective charges, R1 =
[Z2/(Z1 + Z2)]R, and R2 = [Z1/(Z1 + Z2)]R. R is the inter-
nuclear separation. E(t) = �eθE sin ω0t is the external electric
field with the amplitude E and the frequency ω0. �eθ is the
unit vector along the laser polarization and θ is the angle
between the molecular axis and the laser polarization. We
use trapezoidally shaped laser pulses with a total duration
of 10 optical cycles and linear ramps of three optical cycles
in the calculations. The details for the numerical solution of
the TDSE are introduced in Ref. [13]. The HHG spectrum is
obtained by [5]

F (ω,θ ) =
∫

〈ψ(t)|�eθ · ∇V |ψ(t)〉eiωtdt, (1)

where |ψ(t)〉 is the time-dependent wave function of H (t)
and ω is the emitted-proton frequency. Omitting the con-
tribution of the continuum-continuum (c-c) transition [4],
Eq. (1) can be approximated as [14] F (ω,θ ) ≈ ∑

n

∫ 〈n|�eθ ·
∇V |ψ(t)〉a∗

n(t)eiωtdt . Here, |n〉 is the bound state of the field-
free Hamiltonian H0 = p2/2 + V (r) and an(t) = 〈n|ψ(t)〉.
For cases in this paper, our calculations show that the main
contribution to harmonics comes from the initial state |0〉
(the ground state of H0). We have F (ω,θ ) ≈ F0(ω,θ ) with
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FIG. 1. (Color online) Harmonic spectra of 2D asymmetric
molecules with the same ionization potential Ip = 1.1 a.u. but diverse
effective charges Z1 and Z2 and internuclear distances R at θ = 0◦

[(a), (d), and (g)] and θ = 50◦ [(b), (e), and (h)] for odd (solid
black curves) and even (dotted red curves) harmonics, obtained using
Eq. (1) with I = 5 × 1014 W/cm2 and λ = 780 nm. Results in each
column are obtained for the same molecular parameters shown at
the top of the column. In panels (c), (f), and (i), we also show
the corresponding interference factors |Godd(ω,θ )|2/ω4 of Eq. (3)
at θ = 0◦ (thin black solid curves) and at θ = 50◦ (thin black dashed
curves), and |Geven(ω,θ )|2/ω4 of Eq. (4) at θ = 0◦ (bold red solid
curves) and at θ = 50◦ (bold red dashed curves). There, we also
show the interference factor |Gsy

odd(ω,θ )|2/ω4 of H2
+ with the same

internuclear distance R as the corresponding asymmetric molecule at
θ = 0◦ (dotted green curves) and at θ = 50◦ (dot-dashed blue curves).

F0(ω,θ ) = ∫ 〈0|�eθ · ∇V |ψ(t)〉a∗
0 (t)eiωtdt. To identify the role

of the asymmetric Coulomb potential in HHG, we first solve
the TDSE of a symmetric molecule with a similar ionization
potential as the asymmetric molecule under consideration. In
each time step in F0(ω,θ ), we replace |0〉 and V (r) of the
symmetric molecule by |0as〉 and Vas(r) of the asymmetric
model. We have

F ′
0(ω,θ ) =

∫
〈0as|�eθ · ∇Vas|ψ(t)〉a∗

0 (t)eiωtdt. (2)

Equation (2) denotes a simulated recollision between the
continuum electronic wave packet of a symmetric molecule
and the nuclei of an asymmetric molecule. We have simulated
the HHG of asymmetric molecules using Eqs. (1) and (2).
Results are presented in Figs. 1–3. For comparison, the initial
states of the molecules studied have the same ionization
potential Ip = 1.1 a.u. in Figs. 1 and 2 and Ip = 2.25 a.u.
in Fig. 3. In addition, in the use of Eq. (2) in this paper, a
symmetric molecule with R = 2 a.u. (H2

+) has been chosen to
generate the continuum wave packet for cases of Ip = 1.1 a.u.
and another with R = 4 a.u. for cases of Ip = 2.25 a.u. As we
will show in the following, the HHG spectra of the asymmetric
molecules with similar Ip are characterized by the molecular
parameters of Z1/Z2 and R.

In the first two rows of Fig. 1, we plot the characteristic
HHG spectra of 2D asymmetric molecules with diverse
molecular parameters at different angles. In our simulations,

FIG. 2. (Color online) Harmonic spectra of 1D asymmetric
molecules with the same ionization potential Ip = 1.1 a.u. but diverse
effective charges Z1 and Z2 and internuclear distances R for odd
(solid black curves) and even (dotted red curves) harmonics, obtained
using Eq. (1) [(a), (d), and (g)] and Eq. (2) [(b), (e), and (h)] with
I = 5 × 1014 W/cm2 and λ = 780 nm. Results in each column are
obtained for the same molecular parameters shown at the top of the
column. In panels (c), (f), and (i), we also show the relevant dipoles
|〈0|∇V |p〉|2/ω4 of the model molecules with the continuum energy
Ep = ω − Ip . Here, the solid curves show the exact results with |p〉
being the odd-like-parity (thin black solid curves) or even-like-parity
(bold red solid curves) continuum eigenstates of the asymmetric
molecules. The dotted curves show the simulated ones with |p〉
being the odd-parity (thin black dotted curves) or even-parity (bold
red dotted curves) continuum eigenstate of H2

+. The dashed arrows
indicate the interference-induced hollows in dipoles or spectra. The
solid arrows indicate the intersections of the odd vs even spectra or
the odd- vs even-parity-part dipoles.

odd and even harmonics are well resolved. For clarity, we link
them using solid or dotted lines. First, the HHG spectra in Fig. 1
show that the yields of even harmonics decrease significantly
as the angle increases. However, a careful comparison shows
that, for all cases presented here, the even-order HHG spectra
in the plateau are similar with each other within a vertical
scaling factor. Second, the odd-order HHG spectra differ
remarkably for different angles and molecular parameters.
But as the parameters change, the yields of some harmonics
increase and others diminish. As a result, the relative yields
of odd vs even harmonics in each subpanel are characterized
by the corresponding parameters. For example, in Fig. 1(a),
the yields of odd harmonics are one order of magnitude lower
than those of the even harmonics in the plateau. Those are
comparable in Fig. 1(d). In Fig. 1(g), the dotted red curve is
higher than the solid black curve for low orders. The situation
reverses for high orders. This reverse, which is related to a
well-defined intersection of these two curves, occurs at the 30th
order. This intersection is not observed in Figs. 1(a) and 1(d).
Below, the term “intersection” is used to direct to this reverse.
These different behaviors of odd and even harmonics have been
checked in other three-dimensional simulations. Particularly,
as the laser intensity increases, except for the cutoff position,

053402-2



TRACING THE STRUCTURE OF ASYMMETRIC MOLECULES . . . PHYSICAL REVIEW A 84, 053402 (2011)

FIG. 3. (Color online) Harmonic spectra of 2D HeH2+ with
Ip = 2.25 a.u., Z1/Z2 = 2, and R = 4 a.u. for odd (solid black
curves) and even (dotted red curves) harmonics, obtained using Eq. (1)
[shown in (a)] and Eq. (2) [shown in (b)] with I = 1.2 × 1015 W/cm2

and λ = 900 nm at θ = 0◦. Results in (c) show the 1D exact dipole
|〈0|∇V |p〉|2/ω4 of HeH2+ with the continuum energy Ep = ω − Ip

for |p〉 having the odd-like (thin black curve) or even-like (bold
red curve) parity. Results in (d) show the interference factors
|Godd(ω,θ )|2/ω4 of Eq. (3) (thin black curve) and |Geven(ω,θ )|2/ω4 of
Eq. (4) (bold red curve) of this asymmetric molecule at θ = 0◦. The
horizontal solid (dotted) arrows indicate the interference minima in
the odd-parity-part (even-parity-part) dipole, the interference factor
of Godd (Geven), or the odd-order (even-order) spectrum. The vertical
dashed arrows indicate the intersections of the odd- vs even-parity-
part dipoles, the interference factors of Godd vs Geven, or the odd vs
even spectra.

the main characteristics of the odd vs even spectra hold in
other calculations. Since results are similar, we do not show
them here. To understand Fig. 1, Eq. (2) is used. For the 2D
cases in Fig. 1, Eq. (2) produces HHG spectra very similar to
those presented here for both odd and even harmonics. This
implies that the continuum wave packets generated from the
asymmetric molecules are similar to the symmetric ones here.
It can then be concluded that the recombination step is mainly
responsible for the phenomena shown above. To clarify this
conclusion, we turn in the following to 1D cases, where a
full-quantum analysis of HHG can be performed [14]. We will
return to Fig. 1 later.

In Fig. 2, we plot 1D spectra of asymmetric molecules with
the molecular parameters similar to the 2D parameters used
in Fig. 1. The corresponding results in the first two rows of
Fig. 2 obtained using Eqs. (1) and (2) are similar. They are also
comparable with the relevant 2D results at θ = 0◦ in Fig. 1.
To achieve a full-quantum analysis of HHG, we project |ψ(t)〉
onto the eigenstates of H0 of the system and only consider
the continuum-bound transition [14]. Then the expression
of F0(ω,θ ) can be written as F0(ω,θ ) ≈ ∫

dp[a(p,ω)〈0|�eθ ·
∇V |p〉]. a(p,ω) = ∫

dt[a∗
0 (t)cp(t)eiωt ] is the spectral ampli-

tude. 〈0|∇V |p〉 is the dipole moment between the continuum
eigenstate |p〉 and the bound eigenstate |0〉 of H0 of the asym-
metric molecule. Similarly, Eq. (2) of F ′

0(ω,θ ) can be written
as F ′

0(ω,θ ) ≈ ∫
dp[a(p,ω)〈0as|�eθ · ∇Vas|p〉]. 〈0as|∇Vas|p〉 is

the simulated dipole of the asymmetric molecule. Note, here,

that |p〉 is the continuum eigenstate of the symmetric molecule
H2

+. We have calculated the exact and the simulated dipoles
for the 1D asymmetric molecules. Results are shown in the
last row of Fig. 2. One can see that the curves obtained using
different methods agree well with each other. The simulated
dipole in each subpanel can be divided into two parts; that
is, the thin black dotted and the bold red dotted parts, which
correspond to the odd-parity and even-parity states |p〉 of H2

+,
respectively. For the simulated spectra in the second row of
Fig. 2, our analysis shows that the main contribution to odd or
even harmonics comes from |p〉 having the odd or even parity,
respectively. For the TDSE spectra in the first row of Fig. 2,
the situation is similar. Our analysis shows that the continuum
eigenstates |p〉 of the asymmetric molecules studied here have
the odd-like or even-like “parity.” According to this “parity” of
|p〉, the exact dipoles 〈0|∇V |p〉 of the asymmetric molecules in
Fig. 2 can also be divided into the odd-parity (thin black solid
curves) and even-parity (bold red solid curves) parts. The main
contribution to odd or even TDSE harmonics also comes from
|p〉 having the odd-like or even-like “parity.” Thus, the odd or
even HHG spectrum of the asymmetric molecule is related to
the odd-parity-part or even-parity-part dipole of the molecule.

Further comparisons show that the relevant spectra and
dipoles in each column of Fig. 2 behave similarly. For example,
the thin black solid curve of the odd-parity-part dipole in
Fig. 2(c) shows a broad interference-induced hollow [14]
around the 33rd order, as indicated by the dashed arrow. The
odd harmonics are suppressed in the whole plateau in Fig. 2(a).
The curves in Fig. 2(i) show an intersection located at the 23rd
order, as indicated by the solid arrow. The spectra in Fig. 2(g)
intersect at the 26th order. These results imply that the structure
of the asymmetric molecule is mapped directly in the HHG
spectrum. In fact, if we assume that the main contribution
to one harmonic ω comes from electrons with energy Ep =
ω − Ip [2], we have F0(ω,θ ) ≈ a(p,θ )〈0|�eθ · ∇V |p〉. The
expression shows the close relation between dipoles and
spectra. Note that, in the above expression, the emission of
odd or even harmonics from asymmetric molecules is related
to the continuum eigenstate |p〉 having the odd-like or even-like
“parity.” In particular, the similarity between the exact results
and the simulated ones for the dipoles and the spectra in
Fig. 2 also tells that (1) the continuum eigenstate |p〉 of the
asymmetric molecule in the expression can be approximated
by the symmetric one; (2) for the present cases, the spectral
amplitude a(p,θ ) in the expression is not sensitive to the
molecular parameters. These suggest that the structure of the
asymmetric molecule can also be traced from the HHG spectra
using the molecular orbital tomography procedure [2].

III. ANALYTICAL EXPRESSION

With these analyses, we now explore the analytical expres-
sion for the part of the dipole, which is mainly responsible
for the emission of odd or even harmonics. We assume that
the ground-state wave function of the asymmetric molecule is
φ0(r) = 〈r|0〉 = P (a1e

−κra + a2e
−κrb ) with a1 = Z1/B, a2 =

Z2/B, B = (Z2
1 + Z2

2)1/2, ra = |r + R1|, rb = |r − R2|, and
κ = √

2Ip. P is the normalization factor. The dipole along
the laser polarization can be written as 〈0|�eθ · r|p〉. Here,
|p〉 ∝ eipk ·r is the plane wave with energy Ep. pk is the effective
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momentum with pk = |pk| = [2(Ip + Ep)]1/2 that considers
the Coulomb effect [13]. The part of the dipole relating to the
odd-parity component of |p〉 is Dodd(ω,θ ) = ∫

dr[φ0(r)�eθ ·
r sin(pk · r)] with ω = Ep + Ip. Dodd(ω,θ ) is mainly responsi-
ble for the emission of odd harmonics, as discussed above. We
assume that |p〉 is orthogonal to e−κr and consider the momenta
p parallel to �eθ , which contribute importantly to HHG [4]. We
have Dodd(ω,θ ) ∝ Godd(ω,θ )

∫
dr[e−κr�eθ · r sin(pk · r)] with

Godd(ω,θ ) = a1 cos(pkR1 cos θ ) + a2 cos(pkR2 cos θ ). (3)

Godd(ω,θ ) is the interference factor in the dipole for the
emission of odd harmonics. Similarly, the interference factor
for the emission of even harmonics is

Geven(ω,θ ) = a1 sin(pkR1 cos θ ) − a2 sin(pkR2 cos θ ). (4)

These two above expressions are the main conclusion of
this paper. They reveal the important role of intramolecular
interference in the HHG of asymmetric molecules. They show
that the two HHG channels of odd and even harmonics are
subject to different interference effects of cos and sin. These
interference effects rely on all the molecular parameters and
the angle. For symmetric molecules such as H2

+, we have
G

sy
even(ω,θ ) = 0 and G

sy
odd(ω,θ ) ∼ cos[pk(R/2) cos θ ]. One

returns to the familiar cos interference pattern in the HHG of
H2

+ [5]. For θ = 90◦, Geven(ω,θ ) ≡ 0 and Godd(ω,θ ) ≡ const.
This implies that the interference effect disappears and the
molecule behaves similarly to a single atom. The applicability
of the expressions is shown in the last row of Fig. 1. There, we
plot the function curves of |Godd(ω,θ )|2 (thin black curves) and
|Geven(ω,θ )|2 (bold red curves) at θ = 0◦ (solid curves) and
θ = 50◦ (dashed curves) for the relevant molecular parameters
in each column. For comparison, we also show the curves
of |Gsy

odd(ω,θ )|2 of H2
+ at θ = 0◦ (dotted green curves) and

θ = 50◦ (dot-dashed blue curves). The curves are divided by
a factor ω4 to compare with the spectra. It can be seen here
that the curves of Godd show a minimum located at different
orders for different parameters. The curves of Geven are similar
within a vertical scaling factor for different parameters. These
explain the different behaviors of odd and even harmonics
observed in the first two rows of Fig. 1. In particular, the
curves of Godd(ω,θ ) and Geven(ω,θ ) also predict the relative
yields of odd vs even harmonics. For example, the odd and
even spectra in Fig. 1(b) of θ = 50◦ show an intersection at
the 53rd order. This is near to the 46th order predicted by the
dashed curves in Fig. 1(c). In Fig. 1(d) of θ = 0◦, the odd and
even spectra are near to each other. This is also seen in Fig. 1(f)
for the solid curves. It should be noted that the interference
patterns of asymmetric molecules differ from the symmetric
ones remarkably. For example, in Fig. 1(c), the position of the
minimum in the dot-dashed blue curve is at the 51st order.
It is at the 67th order in the thin black dashed curve there.
This remarkable difference has been shown in Ref. [9] for CO.
We stress that the HHG of even harmonics from asymmetric
molecules is also subject to the sine-type interference effect,
as revealed by Eq. (4). For the present cases with small R,
this sine interference pattern is not striking. For larger R, the
situation changes, as shown in Fig. 3.

Figure 3(a) plots the HHG spectra of 2D HeH2+ with R =
4 a.u. at θ = 0◦. The spectra of odd and even harmonics in

Fig. 3(a) can be divided into three parts, as indicated by the
dashed arrows. For low orders, the yields of the odd harmonics
are higher than the even harmonics, and a minimum at the 66th
order in the even spectrum, as indicated by the first dotted
arrow, can be seen. For intermediate orders, which are near
the cutoff (about the 150th order) of the first plateau [11],
the odd and even HHG spectra are strongly oscillating. This
oscillation is believed to arise from asymmetry ionization [12]
and complicates the structure of the spectra. However, a careful
comparison shows that around the 129th order in the first
plateau, as indicated by the solid arrow, the yields of the even
harmonics are one order of magnitude higher than the odd ones.
For high orders, the situation is similar to that for low orders
and a minimum at the 222nd order in the even spectrum, as
indicated by the second dotted arrow, can be identified clearly.
These behaviors agree with the predictions of the 1D exact
dipole of HeH2+ with R = 4 a.u. in Fig. 3(c) and that of
Eqs. (3) and (4) in Fig. 3(d), all for the minima in the odd or
even HHG spectra (indicated by the solid or dotted arrows) and
for the intersections of these spectra (indicated by the dashed
arrows).

The TDSE spectra in Fig. 3(a) are also comparable with
the simulated ones obtained using Eq. (2) in Fig. 3(b),
especially for low and high orders. We stress that, in Fig. 3(b),
the continuum wave packet is generated from a symmetric
molecule and the asymmetric ionization does not occur. In
fact, the behaviors of the simulated spectra in Fig. 3(b) match
well with the relevant curves of the 1D exact dipole in
Fig. 3(c), all for the minima and the intersections, as indicated
by the corresponding arrows. This implies that, without the
asymmetric ionization, the spectra and dipoles of asymmetric
molecules with larger R can also show the close relation
as in previous cases of small R. Particularly, our further
simulations show that using higher laser intensities and longer
wavelengths will further improve the agreement between the
TDSE spectra and the simulated spectra using Eq. (2). This
suggests that the influence of asymmetric ionization on HHG
can diminish as the laser intensity and wavelength increase.
These above analyses give suggestions on orbital tomography
experiments [2] of asymmetry molecules with larger R using
HHG.

Before conclusion, we append that (1) the theoretical
predictions of Eqs. (3) and (4) in Fig. 3(d) match the exact
results in Fig. 3(c) on the whole. But there is still a quantitative
difference between them, both for the positions of the minima
and the intersections of the curves. This difference is also
seen between the 1D exact dipoles in Fig. 2 and those
corresponding theoretical curves of Eqs. (3) and (4) for θ = 0◦
in Fig. 1. For example, compared to Fig. 3(c), the minimum
in the thin black curve in Fig. 3(d) appears at a higher
order. This difference is expected to mainly arise from the
plane-wave approximation that omits the Coulomb effect on
the continuum electron. The use of the effect momentum
pk that partly considers the Coulomb effect in our analyses
diminishes this difference to some extent. A better description
of the Coulomb effect on the continuum electron is directed
to the two-center Coulomb continuum wave function [15].
(2) The interference minimum we discuss in this paper is
related to the odd or the even HHG spectrum. Around this
minimum, the yields of odd and even harmonics usually differ
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significantly, as suggested by Eqs. (3) and (4). This difference
will help to identify the minimum in experiments. Besides
the minimum, the intersection of the odd and the even HHG
spectra should also be paid attention to. It gives other insights
into the structural properties of the asymmetric molecule.
In some cases, compared to the interference minimum, this
intersection can be more easily identified in experiments.
(3) The asymmetric molecule has a permanent dipole due to
the asymmetry of the nuclei. This permanent dipole induces
asymmetric ionization of the molecule in external fields.
For asymmetric molecules with small internuclear distances
R, the ionization of the asymmetric molecule is atomic-
like [16]. This suggests that the influence of asymmetric
ionization on the HHG is small. As shown in Fig. 2, the
spectra for molecules with small R obtained using Eqs. (1)
and (2) are similar. The permanent dipole of the asymmetric
molecule is not included in the simulations using Eq. (2).
For asymmetric molecules with intermediate R, asymmetric
ionization can play an important role in HHG [16]. One
important mechanism contributing to asymmetric ionization
for intermediate R is that the excitation of the electron is
enhanced by near-resonance tunneling when the direction
of the laser field is antiparallel to the permanent dipole.
This enhanced excitation results in multichannel HHG and
fractional-order harmonics [12]. The use of the long laser

wavelength in our simulations diminishes the excitation to
some extent. In this situation, the main characteristics of the
TDSE HHG spectra of odd vs even harmonics still match the
predictions of the corresponding dipoles, as discussed in Fig. 3.

IV. CONCLUSION

In summary, we have studied HHG from asymmetric
molecules. We show that intramolecular interference plays
different roles in the emission of odd and even harmonics. As
a result, the spectra of odd and even harmonics show different
modulations that rely on all the molecular and laser parameters,
such as the effective charge, the internuclear separation, and
the orientation angle. The different interference effects for the
HHG of odd and even harmonics arise from the property of the
asymmetric Coulomb potential and are expected to appear in
many other asymmetric molecules. We show the close relation
between the odd vs even HHG spectra and the relevant dipoles.
The relation gives suggestions on imaging the structure of the
asymmetric molecule using HHG.
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