
WOO ET AL . VOL. 5 ’ NO. 7 ’ 5976–5986 ’ 2011

www.acsnano.org

5976

June 25, 2011

C 2011 American Chemical Society

Universal Scaling and Fano Resonance
in the Plasmon Coupling between Gold
Nanorods
Kat Choi Woo,†,§ Lei Shao,†,§ Huanjun Chen,† Yao Liang,† Jianfang Wang,†,* and Hai-Qing Lin†,‡,*

†Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR and ‡Beijing Computational Science Research Center, Beijing 100084, China.
§These authors contributed equally to this work.

N
oble metal nanostructures can sup-
port localized surface plasmon re-
sonances when interacting with

electromagnetic radiations. When they are
placed close to each other, their plasmons
are coupled together, leading to plasmon
resonance shifts and the strong squeezing
of light in the gap regions. These unique
features brought about by the plasmon
coupling between metal nanocrystals have
been subjected to intensive research owing
to their great potential in various applica-
tions. For example, distance-dependent,
plasmon-coupling-induced spectral changes
can serve as molecular rulers.1 They have
been taken as the basis for the development
of highly sensitive biological and chemical
sensors,2 optical switches,3 and metallic
nanoscale lenses.4 The local electric field
enhancements arising from the adjacent
placement of two metal nanocrystals is
much larger than those associated with
spatially isolated ones. The enormous field
enhancements obtained from the plasmon
coupling have already been utilized in var-
ious types of plasmon-enhanced spectro-
scopies (Raman, upconversion, one- and
two-photon-excited fluorescence),5�8 high-
harmonic signal amplification,9 and nano-
metric optical tweezers.10

A great number of investigations have
been made to understand11�24 and engi-
neer25�27 the plasmon coupling between
metal nanocrystals. A majority of the pre-
vious studies have focused on the role of the
spatial arrangement of metal nanocrystals,
especially the gap distance, in the plasmon
coupling. Specifically, for the homodimers
of metal nanocrystals, such as elliptical and
circular Au nanodisks,11,15 Ag nanodisks,14

and Au nanorods,19,21 the fractional plas-
mon wavelength shifts have been found
by either experimental or computational
means to decay nearly exponentially with

the interparticle gap distance. The ratios
between the decay lengths and the char-
acteristic sizes of the nanocrystalmonomers
are typically in the range 0.2�0.3, irrespec-
tive of the nanocrystal size, shape, or metal
type or the refractive index of the surround-
ing medium.
Heterodimers of metal nanocrystals ex-

hibit more complex plasmon coupling be-
haviors than homodimers because the sym-
metry breaking in the heterodimers leads to
the formation of new plasmon modes. The
interactionbetweendifferent plasmonmodes,
usually broad superradiant “bright” modes
and narrow subradiant “dark” modes, can
give rise to the Fano resonance in asym-
metric plasmonic nanostructures.28,29When
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ABSTRACT The plasmon coupling between metal nanocrystals can lead to large plasmon shifts,

enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical

ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy.

Consequently, the plasmon coupling between metal nanorods is much more complicated than that

between nanospheres. For the latter, experimental approaches, simple scaling relationships, and

exact analytic solutions have been developed for describing the plasmon coupling. In this study, we

have carried out extensive finite-difference time-domain simulations to understand the plasmon

coupling in the dimers of Au nanorods that are aligned along their length axes. The effects of the gap

distance, longitudinal plasmon energy, and end shape of the nanorod monomers on the plasmon

coupling have been scrutinized. The coupling energy diagrams show a general anticrossing behavior.

All of them can be rescaled into one simple and universal hyperbolic formula. A theoretical model

based on two interacting mechanical oscillators has been developed to understand the plasmon

coupling between two arbitrarily varying Au nanorods. This model, together with the universal

equation, allows for the determination of the coupled plasmon energies of Au nanorod dimers with

high accuracies. Furthermore, the Fano interference has been observed in the nanorod heterodimers,

with its behavior being dependent on the gap distance and plasmon energies of the nanorod

monomers. Our results will be useful for predicting the coupled plasmon energies of metal nanorod

dimers in a variety of plasmonic applications and understanding the Fano resonance in plasmonic

nanostructures.
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the Fano resonance occurs, the asymmetrical Fano
profile with a clear Fano minimum that results from a
destructive interference appears in the spectral re-
sponses. This plasmonic Fano interference phenomen-
on can not only further our understanding on
light�matter interactions at the nanoscale below the
diffraction limit of light but also offer tremendous
potential for developing various plasmonic devices.
The Fano resonance has so far been observed in
several types of metal nanocrystal heterodimers.30�32

The symmetry breaking in the heterodimers plays an
important role in the generation of the Fano interfer-
ence. The unique properties of the Fano resonance
have been utilized for creating nanoscale sensors with
improved performance,33 fabricating metamaterials
with very narrow and nearly full transparencywindows,34

and realizing various active operations, such as optical
switching32 and electro-optical modulation.35

Gold nanorods are one type of preferred candidates
for future plasmonic applications owing to their
synthetically tunable longitudinal plasmon energies,
polarization-sensitive longitudinal plasmon modes,
and simple and reliable synthetic protocols. Controlla-
ble plasmonic coupling between Au nanorods can
provide adjustable resonance frequencies as well as
superior local field enhancements. It is therefore
strongly desirable for the development of high-
efficiency optical antennas,36,37 ultrasensitive biosen-
sors, and high-performance plasmon-enhanced quan-
tum emitters. Tailoring the plasmon coupling in Au
nanorod dimers can be realized either by varying the
interparticle gap distance or by adjusting the plasmon
energies of the nanorods. The latter can result in
controllable coupled plasmon energies while the gap
distance remains unchanged. This controllability will
be advantageous to applications that require simulta-
neously large local field enhancements and variable
plasmon energies. Consequently, there exists a strong
need to evaluate the coupled plasmon energies in the
design of plasmonic structures and devices out of
plasmon-coupled Au nanorods. A plasmon-hybridiza-
tion model has been developed for the determination
of the coupled plasmon energies of both homo- and
heterodimers of metal nanorods in the quasi-static
limit.18,38 The effect of the symmetry breaking on the
plasmon coupling in Au nanorod dimers has been
examined in a recent study.39 At a maintained gap
distance, the coupled plasmon energy has been found
to be strongly dependent on the plasmon energy of
each nanorod monomer. In our previous work, the
coupled plasmon energies of the dimers composed of
mismatched Au nanorods have also been measured,
and an anticrossing behavior has been observed in the
plasmon coupling energy diagram.22 Despite these
previous efforts and in contrast to the occurrence of
a number of studies on the distance dependence of the
plasmon coupling, simple and reliable means have

not been found for the determination of the coupled
plasmon energies of Au nanorod dimers. The coupled
plasmon energies of Au nanorod dimers are strongly
dependent on both the plasmon energies of and the
gap distance between the nanorod monomers. The
interplay of these two dependences makes the accu-
rate prediction of the coupled plasmon energies rather
challenging.
Here we report on our systematic study of the

energy diagrams of the plasmon coupling between
Au nanorods that are aligned along their length axes
using the finite-difference time-domain (FDTD) simula-
tion method. The coupled plasmon energy has been
investigated as a function of the plasmon energy of the
nanorod monomer, the nanorod end shape, and the
gap distance between the nanorod monomers. All of
the coupling energy diagrams can be collapsed onto
one universal scaling curve. A theoretical model based
on two interactingmechanical oscillators has also been
employed to understand the plasmon coupling in Au
nanorod dimers. Moreover, the asymmetric nanorod
heterodimers are found to exhibit the Fano resonance.
The parameters obtained from fitting the scattering
spectra with the Fano profile are dependent on the
relative plasmon energies of the nanorod monomers
and the interparticle gap distance.

RESULTS AND DISCUSSION

A commercial package, FDTD Solutions 6.5, which was
developed by Lumerical Solutions, was employed for the
simulations. Aunanorodsweremodeledas cylinderswith
differently shaped end-caps. Eachnanorodhad a radius R
of 10 nm. The total length of the nanorod L was varied
from 20 to 100 nm. The aspect ratio L/(2R) was therefore
varied from 1 to 5. Such sizes are typical for chemically
synthesized colloidal Au nanorods.40�42 The nanorods
were placed in a linear end-to-end configuration to form
dimers, because colloidal Au nanorods tend to assemble
in a linear end-to-end manner in liquids.25,43�48 The gap
distance between the two nanorods was also variable.
The dielectric function of gold was described by the
Drude model with parameters chosen to match the
experimental dielectric data as close as possible. The
refractive index of the surrounding medium was set to
be 1.33, which is the refractive index of water. For our
simulations, 0.5 nm spatial discretization was used in the
gap region and 1 nmgrids were applied in other regions.
The excitation lightwas polarized along the length axis of
the nanorod,which is also the axis of rotational symmetry
of the dimer system. The transverse polarized light was
not taken into account, since the plasmon resonance
excited by such polarization is very weak in comparison
to the longitudinal plasmon resonance for typically sized
Au nanorods.22,39

Figure 1a shows the calculated scattering spectra of
two Au nanorod monomers as examples. The nanorods
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are capped with hemispheres at their ends. The aspect
ratios of the two nanorods are 3.5 and 5, respectively.
Their scattering spectra exhibit sharp peaks at 781 and
956 nm, respectively, which are ascribed to the long-
itudinal plasmon resonance wavelengths of the nano-
rods. The calculated longitudinal plasmon wavelengths
exhibit a linear dependence on the aspect ratios of the
nanorods (Supporting Information, Figure S1). This
linear dependence is in agreement with previous
experimental findings.19,22,42 We can then vary the
longitudinal plasmon energy of the Au nanorod by
changing the aspect ratio. In addition, because max-
imum scattering occurs when the localized plasmon
resonances of metal nanocrystals are resonantly ex-
cited, the plasmon energies were obtained from the
peak wavelengths of the calculated scattering spectra
of the Au nanorod monomers and dimers in our study.
Figure 1b shows the calculated scattering spectra of

the plasmon-coupled Au nanorod dimers. There are
two homodimers and one heterodimer (Figure 1b,
inset). The gap distances in all of the dimers are set
at d = 7 nm. When the homodimers are formed from
the nanorods with aspect ratios of 3.5 and 5, the
plasmon resonance peaks red-shift to 845 and 1047 nm,
respectively, due to the capacitive attraction between
the two nanorods. The plasmon coupling between two
identical nanorods can bewell understood on the basis
of the hybridization model.18,38 The red-shifted hybri-
dized plasmon mode in the nanorod homodimers is
known as a hybridized bonding mode. Owning to the
symmetry of the structure, the corresponding anti-
bonding one cannot be excited by far-field light. It is
known as a “dark” mode. When the two different
nanorods are placed together to form the heterodimer,

a weak scattering peak in the shorter-wavelength
region, in addition to the strong scattering peak in
the longer-wavelength region, is produced. The two
scattering peaks are positioned at 770 and 989 nm,
respectively. The higher-energy peak is induced by the
symmetry breaking in the heterodimer. A detailed
discussion about it will be presented later in this study.
We first examined how the coupled plasmon energy of
the bonding mode is dependent on the nanorod
monomers. In our previous experimental study,22 we
have observed an anticrossing behavior in the plas-
mon coupling energy diagram of Au nanorod dimers.
Due to the experimental limitations, only one coupling
energy diagram at a particular gap distance has been
obtained. FDTD simulations allow the parameters in-
volved in the plasmon coupling to be varied over a
large parameter space. We therefore carried out sys-
tematic FDTD simulations in order to gain a deeper
understanding of the plasmon coupling behavior in Au
nanorod dimers.
In our simulations, we fixed the plasmon energy of

one nanorod and varied that of the other. For Au
nanorods with hemispherical ends, the plasmon en-
ergy of a nanorod monomer varies from 2.466 to 1.297
eV when the aspect ratio is changed from 1 to 5
(Supporting Information, Table S1). An aspect ratio of
1 for a nanorod with hemispherical ends corresponds
to a nanosphere. A plasmon coupling energy diagram
for a representative nanorod dimer is given in Figure
2a. For this example, the plasmon energy, Efixed, of one
nanorod is fixed at 1.715 eV (red circles). The gap
distance is set at d = 1 nm. As the plasmon energy of
the other nanorod is gradually increased (black circles),
the coupled plasmon energy of the dimer also in-
creases (blue circles). It is always smaller than the
plasmon energies of the two nanorod monomers.
The increase saturates asymptotically toward the plas-
mon energy of the fixed nanorod. The coupling energy
diagram therefore exhibits an anticrossing behavior.
This anticrossing behavior is maintained when Efixed is
varied from 1.297 to 2.466 eV, as shown in Figure 2b.
The saturation limit of the coupled plasmon energy
gets larger with increasing Efixed. The numerical values
of the coupled plasmon energies for all of the dimers
are supplied in Table S2 in the Supporting Information.
One of our aims in this study is to find out whether

and how the plasmon coupling between variously
sized Au nanorods can be unified with a simple scaling
relationship. Interestingly, we found that all of the
anticrossing energy diagrams collapse into one if both
the plasmon energies of the nanorod monomers and
the coupled plasmon energies are divided by their
corresponding Efixed (Figure 2c). The universal rescaled
energy diagram might result from the fact that the
plasmon coupling strength is mainly determined by
the gap distance. Once a gap distance is given, the
strength of the electromagnetic interaction between

Figure 1. (a) Scattering spectra of two differently sized Au
nanorods with hemispherical ends. The aspect ratios of the
nanorods 1 and 2 are 3.5 and 5, respectively. (b) Scattering
spectra of the plasmon-coupled Au nanorod dimers. The
gaps between the two nanorods in all three dimers are
7 nm. The inset shows schematically the heterodimer.
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the nanorods will be fixed. Figure 2c shows that the
universal diagram has two asymptotes. One is the
inclined line with a slope of 1 (dashed line), and the
other is the horizontal line (black line). We therefore
utilized a hyperbolic function to describe the rescaled
coupled plasmon energies

y ¼ 0:5(xþ 1) � 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x � 1)2 þR2

p
(1)

In eq 1, x and y are the rescaled energy values on the
horizontal and vertical axis, respectively. There is only
one fitting parameter, R, in the equation. When R =
0.30, the hyperbolic equation fits very well the uni-
versal energy diagram, with a coefficient of determina-
tion of R2 = 0.9996.
We next considered the effect of the interparticle

gap distance on the plasmon coupling between Au
nanorods. We performed the FDTD calculations of the
Au nanorod dimers with the two monomers having
varying plasmon energies and spaced apart at d = 3, 5,
and 7 nm, respectively. The calculated coupled plas-
mon energy values are listed in Tables S3, S4, and S5 of
the Supporting Information. At each gap distance, all of
the coupling energy diagrams are collapsed onto one
(Figure 3a�c). In addition, we also calculated the cou-
pled plasmon energies of the nanorod dimers with a
gap distance of 7 nm immersed in media having
varying refractive indices. The results (Supporting In-
formation, Figure S2 and Table S6) show that the
plasmon coupling energy diagrams obtained for dif-
ferent refractive indices also collapse universally onto
one curve. Therefore, the effect of the index of the
surrounding medium can also be included in the
energy rescaling. In this study, we focus on the plas-
mon coupling behavior of the nanorod dimers in
water. The rescaled anticrossing energy diagrams can
bewell fittedwith the hyperbolic function given above.
The parameter R/coefficient of determination R2 ob-
tained from the fitting are 0.20/0.9998, 0.16/0.9998,

and 0.14/0.9999 for d = 3, 5, and 7 nm, respectively. R is
seen to decrease as d is increased. A close examination
of Figure 2c and Figure 3a�c indicates that the cou-
pling-induced plasmon shift also decreases with in-
creasing gap distances. The decreased plasmon shift is
attributed to the reduced capacitive coupling between
the nanorods. We therefore reason that the fitting
parameter R is dependent on the plasmon coupling
strength.
The fractional plasmon shift is directly related to the

plasmon coupling strength. In order to ascertain howR
changes with the fractional plasmon shift, we carried
out the FDTD simulations on Au nanorod dimers with
the gap distance between the two nanorods varied
from 2 to 24 nm at a step of 2 nm. For each gap
distance, since the results above have shown that all of
the coupling energy diagrams can be rescaled onto a
universal curve, we fixed the plasmon energy of one
nanorod at Efixed = 2.016 eV and changed the plasmon
energy of the other nanorod. All of the as-calculated
coupled plasmon energies are listed in Table S7 in the
Supporting Information. They were thereafter sub-
jected to the rescaling and hyperbolic fitting so that
R could be determined. We then plotted R as a
function of ΔE/Efixed (Figure 3d), where ΔE is the
difference between Efixed and the coupled plasmon
energy of the corresponding homodimer Ehomodimer.
For the data points shown in Figures 2c and 3a�c,
there aremany different Efixed values. If all of the energy
diagrams at each gap distance follow exactly the
universal hyperbolic equation, then Ehomodimer/Efixed
and therefore ΔE/Efixed = 1� Ehomodimer/Efixed are fixed
for different Efixed values. R is seen to be propor-
tional to ΔE/Efixed. A linear fitting gave a proportion-
ality constant of k = 2.06 and a coefficient of
determination of R2 = 0.9963. The proportional
relationship between R and ΔE/Efixed supports our
above argument that R can be interpreted as a

Figure 2. Energy diagrams of the plasmon coupling betweenAu nanorodswith hemispherical ends at a fixed gap distance of
1 nm. (a) Plasmon coupling between one nanorod with a fixed aspect ratio and another nanorod with varying aspect ratios.
The blue, black, and red circles represent the coupled plasmon energy, plasmon energy of the varying nanorod, and plasmon
energy of the fixed nanorod, respectively. The three energies are plotted as functions of the plasmon energy of the varying
nanorod. (b) Coupled plasmon energy curves obtained when the aspect ratio of the fixed nanorod is set at different values.
The corresponding plasmon energies of the fixed nanorods are given in the inset. The horizontal lines for the fixed nanorods
are omitted for clarity. (c) Rescaled energy diagram of the plasmon coupling between variously sized nanorods from (b). The
coefficient of determination for the fitting is R2 = 0.9996.
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measure of the plasmon coupling strength of Au
nanorod dimers.
We also studied how the end shape of Au nanorods

affects the plasmon coupling between Au nanorods.
Previous studies have shown that the end curvature
affects the longitudinal plasmon energy of Au nano-
rods.22 Au nanorods with flat (Figure 4a, inset) and
sharp ends (Figure 4b, inset) were considered. The
sharp end was modeled with a hemiprolate spheroid,
with the length of themajor axis being twice that of the
minor axis. The major axis is aligned along the length
axis of the nanorod. For both types of nanorods, the
gap distances were set to be 1, 3, 5, and 7 nm, and the
aspect ratio of one nanorod monomer was kept at 3 to
reduce the computational load. The plasmon energies
of the nanorod monomers and dimers are provided in
Tables S8 and S9 in the Supporting Information for the
flat and sharp ends, respectively. Figure 4a and b show
the rescaled energy diagrams when the gap distance is
1 nm. The energy diagrams can also be well fitted with
eq 1. The obtained values forR are 0.46 and 0.27 for the
flat and sharp ends, respectively. Taken together with
theR value of 0.30 for the nanorodswith hemispherical
ends at d = 1 nm (Figure 2c), the results indicate that
blunter ends lead to larger plasmon shifts for a given
interparticle gap distance. This is understandable be-
cause the capacitive coupling between Au nanorods
with blunter ends is stronger. Similar to the case of the
nanorods with hemispherical ends, R also varies in
proportion to ΔE/Efixed for both types of end shapes as
the gap distance is changed (Figure 4c,d). The proportion-
ality constants obtained from linear fitting are both 1.95.
These results reveal that thehyperbolic functiondescribed
by eq 1 is suitable for predicting the coupled plasmon
energies of the dimers of Au nanorods with different end
shapes. The fitting parameter R is directly proportional to
ΔE/Efixed. The proportionality constant is approximately
equal to 2, irrespective of the end shape of Au nanorods.
Equation 1 is purely mathematical. We tried to

translate the rescaled energies back into the physical

parameters involved in the plasmon coupling in the Au
nanorod dimers in order to gain the underlying phy-
sics. If E1 and E2 are used to represent the plasmon
energies of the fixed and varying nanorod monomers,
respectively, the coupled plasmon energy E12 can be
obtained from eq 1 as

E12 ¼ 1
2
(E1 þ E2) � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E1 � E2)

2 þ [2(E1 � E11)]2
q

(2)

where E11 is the coupled plasmon energy of the
homodimer composed of the fixed nanorods. The term
E1 � E11 in eq 2 represents the contribution from the
plasmon coupling. Due to the exchangeability be-
tween the two nanorod monomers in a dimer, the
second term under the square root in eq 2 can be
replaced with [2(E2 � E22)]

2. However, the plasmon
coupling strength is also affected by the size and shape
of the nanorod, although it is predominantly deter-
mined by the gap distance, as revealed by our FDTD
simulations. The rescaled energy diagrams are seen to
deviate slightly from the hyperbolic curve. As a result,
the coupled plasmon energy E12 values calculated
from E1 � E11 and E2 � E22 are not exactly the same.
To reduce the error, we replace the term E1 � E11 with
the average of E1 � E11 and E2 � E22, which gives

E12 ¼ 1
2
(E1 þ E2) � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E1 � E2)

2 þ [(E1 � E11)þ (E2 � E22)]2
q

(3)

The largest error in the coupled plasmon energies
calculated with eq 3 in comparison with the FDTD
simulation results is 3.8%. Equation 3 therefore pro-
vides an analytical expression for the evaluation of
the coupled plasmon energy between any two Au

Figure 4. (a, b) Rescaled energy diagrams of the plasmon
coupling between nanorods with flat and sharp ends,
respectively. The insets show schematically the two types of
dimers. The gap distances are both 1 nm. The coefficients of
determination for the two fittings are 0.9999 and 0.9989. (c,
d) Fitting parameter R as a function of ΔE/Efixed for the flat
and sharp nanorod dimers, respectively. The coefficients of
determination for the fittings are 0.9999 and 0.9988,
respectively.

Figure 3. (a�c) Rescaled energy diagrams of the plasmon
coupling between nanorods with hemispherical ends at
different gap distances. The coefficients of determination
for the fittings are 0.9998, 0.9998, and 0.9999, respectively.
(d) Fitting parameter R as a function of the fractional
plasmon energy shift ΔE/Efixed. The coefficient of determi-
nation for the linear fitting is R2 = 0.9963.
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nanorods that are placed adjacently in a linear end-to-
end manner, once the plasmon energies of the corre-
sponding nanorod monomers and homodimers that
have the same gap distance are obtained in the same
dielectric environment. The quick and reliable estima-
tion of the coupled plasmon energies between Au
nanorods will facilitate the plasmonic applications of
Au nanorods in biotechnology and optics.
We further employed a theoretical model based on

two coupled mechanical oscillators to help in under-
standing the plasmon coupling in Au nanorod dimers.
We note that similarmodels have previously been used
to understand electromagnetically induced transparency49

and the Fano resonance in Au nanoparticle�silica
layer�Au layer core�shell�shell nanostructures.50 In
our study, the coupled plasmon modes of Au nanorod
dimers can be modeled as two mechanical oscillators
with frequenciesω1 andω2. The two oscillators interact
through one spring with a coupling constant of R0. In
the absence of dissipation, the coupled-oscillator sys-
tem can be described by the Lagrangian

L ¼ T � V

¼ 1
2
_x21 þ

1
2
_x22 � 1

2
ω2

1x
2
1 � 1

2
ω2

2x
2
2 þR0x1x2 (4)

where T and V denote the kinetic and potential en-
ergies, x1 and x2 are the displacements from the
equilibrium positions of the oscillators in a one-dimen-
sional system, and the dots represent the time deriva-
tives of the displacements. The Lagrangian equations
of motion are given as

d
dt

DL
D _xi

� �
� DL
Dxi

¼ 0 (5)

The solutions to eq 5 are in the form of a linear
combination of harmonics. A determinant equation can
be generated by inserting the solutions into eq 5. Two
solutions for the eigenoscillation frequency Ω are ob-
tained by solving the determinant equation. Because the
lower-energy coupled plasmonmode was considered in
our above discussion of the coupled plasmon energies,
the smaller eigenfrequency solution is taken. It is givenby

Ω2 ¼

(ω1 þω2)
2

4
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 �ω2

ω1 þω2

� �2

þ 4R2
0

(ω1 þω2)
4

s2
4

3
5
2

� 4R2
0

(ω1 þω2)
4

8<
:

9=
;

(6)

By using Taylor expansion, the eigenfrequency of the
coupled-oscillator systemΩ can be expressed as

Ω ¼ ω1 þω2

2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ω1 �ω2)

2 þ 4R2
0

(ω1 þω2)
2

s
� δ

(7)

The first two terms in eq 7 have nearly the same form as
eq 3, which was obtained through the hyperbolic fitting.

The second term under the square root in eq 7 involves
the coupling constant, R0, of the spring connecting the
two oscillators. It represents the perturbation of the
coupling to the total energy of the coupled-oscillator
system. In the nanorod dimer system, the term bringing
theplasmoncoupling into the total energy is represented
by [(E1 � E11) þ (E2 � E22)]

2. The coupling strength
between the two nanorods is therefore related to the
difference in the plasmon energies of the nanorod
monomers and the corresponding homodimers. If we
let the corresponding terms in eqs 3 and 7 be equivalent
to each other, δ/Ω in eq 7 is estimated to the first-order
from our FDTD simulation data to be smaller than 3.5%.
As a result, the δ term in the coupled plasmon energy of
the Au nanorod dimer is neglected. The above reasoning
indicates the usefulness of the coupled-oscillator model
in understanding the coupled plasmon energy between
Au nanorods.
Equation 3 can be employed to calculate the

coupled plasmon energies between variously sized
Au nanorods if the plasmon energies of the nanorod
monomers and the corresponding homodimers hav-
ing the same gap distance are known. The longitudinal
plasmon energies of Au nanorod monomers can be
determined either spectroscopically or from the linear
dependence of the longitudinal plasmon wavelength
on the nanorod aspect ratio.19,22,42 We then need to
find out the coupled plasmon energies of two identical
Au nanorods that are aligned linearly. Previous
studies11,14,15 have shown that the coupled plasmon
wavelength between two identical metal nanoparti-
cles can be described using an empirical universal
scaling law

Δλ

λ
¼ βe� d=D

τ

� �
(8)

where λ is the plasmon wavelength of the individual
metal nanoparticle,Δλ is the plasmonwavelength shift
arising from the plasmon coupling, d is the gap dis-
tance, D is the diameter of the nanoparticle, τ is the
decay constant, and β is the maximum fractional
plasmon wavelength shift. The decay constant τ has
been found to be within 0.2�0.3, irrespective of the
metal type, the nanoparticle size and shape, and the
surrounding medium. This empirical scaling law has
also been applied to Au nanorods that are linearly
aligned.19,21 However, due to the geometrical anisot-
ropy of nanorods, the fitting of the data points for Au
nanorods with eq 8 is not as good as that for Au and Ag
nanoparticles.
We performed the FDTD calculations to determine

the plasmon shift Δλ/λ as a function of the gap
distance d for homodimers of Au nanorods that have
hemispherical ends and different aspect ratios (Figure 5).
Wefirst usedeq8 tofit theobtaineddatapoints,with the
nanorod length treated as the characteristic size. How-
ever, for the aspect ratio from 1 to 4, the β and τ values

A
RTIC

LE



WOO ET AL . VOL. 5 ’ NO. 7 ’ 5976–5986 ’ 2011

www.acsnano.org

5982

obtained from the fitting vary in the ranges 0.13�0.16
and 0.18�0.28, respectively. These results suggest that
eq 8 is not good enough for predicting the coupled
plasmon wavelengths of various Au nanorod homo-
dimers. In order to have a more universal equation, we
reasoned that the coupled plasmon energy is deter-
mined by the competition between the interparticle
near-field interaction and the intraparticle Coulombic
restoring force on the displaced electron cloud.16 We
therefore replaced the term d/D in eq 8 with
(Vgap/Vnanorod)

1/3, where Vgap and Vnanorod denote the
volumes of the gap region and nanorod, respectively.
Because the volume ratio is approximately equal to d/L,
with L being the nanorod length, the exponential
equation can then be expressed as

Δλ

λ
¼ βe�(d=L)1=3=τ (9)

Figure 5 displays the calculated fractional plasmon
shift as a function of the gap distance for different
nanorod homodimers and the curves obtained from
the fitting with eq 9. The coefficients of determination
for all of the fittings are comparable to those for the
fittings with eq 8. More importantly, all of the fittings
give one set of β and τ at 0.67 and 0.22, respectively.
The decay constant τ is very close to the values
obtained previously for metal nanoparticles and nano-
rods.11,14,15,19,21 With eq 9, we can calculate the
coupled plasmon energies of Au nanorod homodimers
and subsequently estimate the coupled plasmon en-
ergies of heterodimers composed of arbitrarily sized
Au nanorods using the hyperbolic formula given in eq 3.
Figure 1b shows a blue-shiftedweak scattering peak,

in addition to the red-shifted strong peak, for the
nanorod heterodimer. The weak scattering peak does
not exhibit an anticrossing behavior in the plasmon
coupling energy diagram. There is also a dip, which is
located at the lower-energy side of the weak scattering
peak. The weak scattering peak and the dip must arise
from the symmetry breaking in the heterodimer be-
cause none of Au nanorod homodimers exhibit such

features. The appearance of the scattering peak agrees
with previous experimental findings observed by us22

and others.39 The peaks on the calculated scattering
spectra of the heterodimers have an asymmetric line
shape, which signifies the Fano resonance.29 The Fano
resonance typically involves a broadband excitation
light source, a superradiant mode, and a subradiant
mode. The Fano profile is generated from the destruc-
tive interference between the two modes.29

In plasmonics, different coupled plasmon modes
can be identified from corresponding spatial charge
distributions. We therefore first calculated the charge
distributions at different scattering energies for a
heterodimer of Au nanorods with hemispherical ends
in order to ascertain the coupled plasmon modes that
are involved in the Fano resonance. The two nanorods
have aspect ratios of 3.5 and 5. When they are placed
together to form a heterodimer, the calculated scatter-
ing spectrumexhibits aweak peak at 1.610 eV (i), a dip at
1.533 eV (ii), and a strong peak at 1.254 eV (iii, Figure 6a).
In comparison, the longitudinal plasmon energies of the
two nanorodmonomers are 1.587 and 1.297 eV, respec-
tively (Figures 1a and 6b). The calculated charge dis-
tributions (Figure 6c) reveal that the strong scattering
peak (iii) is contributed by the dipole�dipole bonding
plasmon mode. At the positions of the weak scattering
peak (i) and the dip (ii), the electron oscillation in the
longer nanorod is mainly quadrupolar and slightly
dipolar, and that in the shorter nanorod is dipolar. In
order to obtain the hybridization energy diagram for the
nanorod heterodimer, we also calculated the energies
of the dipolar and quadrupolar plasmon modes of the
longer nanorod by employing a dipole instead of a
plane wave as the excitation source. The dipole source
provides a nonuniform electromagnetic field. It can
excite both the bright dipolar mode and the dark
quadrupolar mode in the nanorod. Two peaks are seen
on the obtained absorption spectrum of the longer
nanorod (Figure 6b, red). The charge distributions
(Figure 6c) at these two peaks show that the lower- (II)
and higher-energy peaks (I) arise from the dipolar and
quadrupolar plasmon mode, respectively. These two
modes hybridize with the dipolar mode of the shorter
nanorod to give the dipole�dipole and dipole�quadru-
pole bonding modes, as shown by the hybridization
energy diagram in Figure 6a. The entire heterodimer
therefore possesses a mixture of the hybridized dipole�
dipole bonding and dipole�quadrupole bonding
modes. The dipole�dipole bonding mode is superradi-
ant. Its spectral profile extends to the energy region of
the dipole�quadrupole bonding mode, as revealed by
the charge distributions. The dipole�quadrupole bond-
ing mode is subradiant. The destructive interference
between the superradiant and subradiant modes gives
rise to the asymmetric Fano profile of the scattering
spectrum. The weak scattering peak in the nanorod
heterodimers arises from the Fano resonance instead of

Figure 5. Gap-dependent fractional plasmon shifts in the
homodimers of Au nanorods cappedwith hemispheres. The
aspect ratios of the nanorods are (a) 1, (b) 2, (c) 3, and (d) 4.
The coefficients of determination for the fittings are 0.9305,
0.9630, 0.9932, and 0.9859, respectively.
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the dipole�dipole antibonding mode. Therefore it
does not exhibit an anticrossing behavior in the plas-
mon coupling energy diagram.
The asymmetric profiles of the calculated scattering

spectra of the nanorod heterodimers can be well fitted
by a phenomenological model in the form51�54

Csca(ω) ¼
�����ar þ ∑

j¼ 1, 2

�bjΓjeijj

pω � Ej þ iΓj

�����
2

(10)

where Csca represents the scattering signal, ω is the
angular frequency, ar denotes the background con-
tribution, bj, Γj, jj, and Ej represent the amplitude, line
width, phase, and energy of each eigenmode, respec-
tively, and p is Planck's constant divided by 2π. In our
study,we consider only twoplasmonic eigenmodes. One
is thedipole�dipole bondingmode,which is denotedby
the subscript 1, and the other is the dipole�quadrupole
bonding mode, which is denoted by the subscript 2.
The Fano profile is strongly dependent on the

plasmon energy difference and the gap distance be-
tween the two nanorodmonomers in the heterodimer.
Figure 7a shows the calculated scattering spectra of
four representative nanorod heterodimers with the
aspect ratio of one nanorod fixed at 5. Figure 7b shows
the four representative spectra between the nanorods
with aspect ratios of 3.5 and 5 at varying gap distances.
In Figure 7a, as the aspect ratio of the varying nanorod
becomes smaller and thus the dipolar plasmon energy
of the nanorod becomes larger, both the dipole�
dipole and dipole�quadrupole bonding modes shift
to higher energies. At the same time, the intensity of
the higher-energy scattering peak relative to that of
the lower-energy one first grows larger and then gets

smaller. In Figure 7b, as the gap distance is gradually
reduced, the higher-energy scattering peak gets weak-
er relative to the lower-energy one.
We fitted all of the calculated scattering spectra with

the phenomenological model described in eq 10. The
parameters obtained from the fitting are provided in
Tables S10 and S11 in the Supporting Information. We
found that the amplitude ratio, b2/b1, between the two
plasmon eigenmodes can be utilized to describe the
Fano interference strength between them. The closer
the ratio is to 1, the more noticeable the asymmetric
Fano profile will become and thereby the stronger the
interference (Supporting Information, Figure S3). We
therefore extracted b2/b1 and plotted them as a func-
tion of the plasmon energy of the varying nanorod in
Figure 7c and as a function of the gap distance in
Figure 7d. Figure 7c reveals that the 5: 3.5 nanorod
heterodimer has the largest b2/b1 ratio and therefore
the most distinct Fano resonance in the spectrum. The
first increase and then decrease in the amplitude ratio
is believed to result from the shift of the dipolar mode
(1.297�2.466 eV, Supporting Information, Table S1) of
the shorter nanorod from the red side to the blue side
of the quadrupolar mode (1.944 eV, Figure 6b) of the
longer nanorod. This shift causes the variation in
the interference behavior between the two hybridized

Figure 7. Fitting of the normalized scattering spectra of
different Au nanorodheterodimerswith the Fanoprofile. (a)
The aspect ratio of one nanorod is fixed at 5, and that of the
other nanorod is varied from 1 to 5. The gap between the
two nanorods is 7 nm. (b) The aspect ratios of the two rods
are fixed at 3.5 and 5. The gap is varied from 1 to 7 nm. The
blue and red vertical bars indicate the dipolar and quad-
rupolar resonance positions of the longer nanorod, re-
spectively, and the green ones indicate the dipolar
resonance positions of the shorter nanorods. (c) Ratio of the
amplitudes of the two eigenmodes obtained from the
fitting versus the plasmon energy of the nanorod with
varying aspect ratios. (d) Ratio of the amplitudes versus the
gap distance between the two nanorods. The nanorods
have hemispherical ends.

Figure 6. (a) Scattering spectrum and the plasmon hybri-
dization diagram for a nanorod heterodimer. The nanorods
have hemispherical ends. Their aspect ratios are 3.5 and 5.
The gap distance is 7 nm. (i) and (iii) indicate the wave-
lengths of the two peaks, and (ii) indicates the valley
between them. (b) Scattering spectrum of the shorter
nanorod monomer (black circles) excited by a plane wave
and the absorption spectrum of the longer nanorod
monomer (red circles) excited by a dipole source. The
absorption spectrum of the longer nanorod was calculated
by replacing the shorter nanorod in the heterodimer with
the dipole source at the center. In this way, both the
quadrupolar (I) and dipolar (II) plasmonmodes of the longer
nanorod can be excited. (c) Charge distributions of the
plasmon modes of the longer nanorod and hybridized
plasmon modes in the heterodimer on the central cross
sections of the nanorods.
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modes. Moreover, for the 5:3.5 nanorod heterodimer,
the Fano line shape becomes clearer as the gap
distance is gradually increased (Figure 7d). The b2/b1
ratio is essentially determined by the relative strengths
between the dipole�dipole and dipole�quadrupole
bonding modes around their overlapping spectral
region. The relative strengths of the two bonding
modes are in turn affected by the gap distance and
the aspect ratios of the nanorod monomers, the latter
of which determine the energy levels before the
hybridization. The variations of the b2/b1 ratios ob-
served in our study reflect the interplay of the different
factors on the Fano interference strength.

CONCLUSIONS

We have made a systematic investigation through
FDTD calculations on the plasmon coupling energy
diagrams of the dimers of Au nanorods that have
varying aspect ratios and different capping ends. The
nanorods are placed in a linear end-to-end manner.
Their gap distance is also varied. All of the energy
diagrams exhibit an anticrossing behavior. They can be
rescaled into one universal curve and thereby de-
scribed with a simple hyperbolic scaling formula. A
model based on two coupled mechanical oscillators
has been employed to assist in understanding
the hyperbolic scaling law. Moreover, the symmetry

breaking in Au nanorod heterodimers induces unam-
biguously a Fano profile in their scattering spectra. The
calculated charge distributions reveal that the Fano
resonance results from the interactions between the
different plasmon eigenmodes in the nanorod hetero-
dimers. The spectral position of the obtained Fano dip
and the relative amplitudes between the interfering
plasmon eigenmodes are found to be dependent on
the aspect ratios of the nanorod monomers and the
gap distance. From our point of view, the discovered
hyperbolic scaling law will be applicable for the capa-
citive plasmon coupling between Au nanorods that
have diameters of ∼5�50 nm and lengths of
∼10�200 nm. Such a range covers the sizes of typical
colloidal Au nanorods that are prepared chemically.
Quantum tunneling will take effect when the gap
distance is less than∼1 nm, and phase retardation will
cause the excitation of multipolar plasmonmodes and
the hybridization of different plasmonmodes for larger
metal nanocrystals. Our results will be very useful in
predicting the coupled plasmon energies of Au nano-
rod dimers for their applications in plasmon-enhanced
spectroscopies, biological sensing, and nanoantennas.
In addition, the variability of the Fano profiles in Au
nanorod heterodimers offers an approach for the de-
sign of the Fano resonance, which can lead to new
switchable metamaterials.

METHODS
During the FDTD calculations, an electromagnetic pulse in the

wavelength range from 500 to 1200 nm was launched into a box
containing the target nanostructure to simulate a propagating
planewave interactingwith the nanostructure. The refractive index
of the surroundingmediumwas taken to be 1.33 to simulatewater.
Thedielectric functionofgoldwas representedwithaDrudemodel:

εD(ω) ¼ ε¥ � ωD
2

ω2 þ iγDω
(11)

The parameters in eq 11 are the high-frequency dielectric
constant ε¥ = 9.5, the plasma frequency ωD = 13589.6 THz, and
the Drude damping constant γD = 104.92 THz.
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