文章编号:0253-2409(2012)09-1067-07

负载的 Ni 催化剂上植物油脂加氢脱氧制备第二代生物柴油

左华亮^{1,2},刘琪英¹,王铁军¹,史 娜¹,刘建国^{1,2},马隆龙¹

(1. 中国科学院广州能源研究所 可再生能源与天然气水合物重点实验室, 广东 广州 510640;

2. 中国科学院研究生院,北京 100049)

摘 要: 在半连续反应器中,以棕榈酸甲酯为植物油脂模型化合物,进行了加氢脱氧制取高品质生物柴油燃料的研究。采用 浸渍法制备了 HY \SiO₂ \γ-Al₂O₃ 及 SAPO-11 四种载体负载的 Ni 催化剂,采用 XRD \NH₃-TPD \H₂-TPR \BET \SEM 等技术进 行催化剂表征。结果表明,Ni/SAPO-11 催化剂由于 SAPO-11 表面呈现的弱酸和中强酸性质,在保持较高的加氢脱氧反应性 的同时,抑制了裂解反应的发生,具有较好的催化性能。进一步对 SAPO-11 上不同的 Ni 负载量、反应温度、反应压力等进行 了研究,发现当 Ni 负载量为 7%,反应温度为 220 ℃,压力为 2MPa 时,催化剂具有较高的催化性能,棕榈酸甲酯的转化率达到 了 99.8%, C₉₋₁₆烷烃的总选择性为 92.71%。

关键词: 植物油脂; 棕榈酸甲酯; 加氢脱氧; Ni 基催化剂; 第二代生物柴油

中图分类号: TQ645.1 文献标识码: A

Catalytic hydrodeoxygenation of vegetable oil over Ni catalysts to produce second-generation biodiesel

ZUO Hua-liang^{1,2}, LIU Qi-ying¹, WANG Tie-jun¹, SHI Na¹, LIU Jian-guo^{1,2}, MA Long-long¹

(1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion,

Chinese Academy of Sciences, Guangzhou 510640, China;

2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: A series of Ni catalysts supported on HY, SiO₂, γ -Al₂O₃ and SAPO-11 were prepared by incipientwetness impregnation and characterized by XRD, NH₃-TPD, H₂-TPR, BET and SEM techniques. Their catalytic performance in hydrodeoxygenation (HDO) of vegetable oil to produce the second-generation biodiesel was evaluated in a semi-batch reactor by using methyl palmitate as a model compound. Owning to the weak and medium acidic properties of SAPO-11, the Ni/SAPO-11 catalyst exhibits high activity in the HDO of methyl palmitate and capability of inhibiting the feedstock and long-chain alkanes from being cracked. The effect of Ni loading, reaction temperature and pressure on the HDO behavior over Ni/SAPO-11 catalyst was considered. Under 220 °C and 2 MPa, Ni/SAPO-11 catalyst with a Ni loading of 7% performs best in HDO; the conversion of methyl palmitate and the selectivity towards C_{9~16} alkanes reach 99.8% and 92.71%, respectively. **Key words**: vegetable oil; methyl palmitate; hydrodeoxygenation; Ni catalysts; second-generation biodiesel

生物柴油作为一种车用液体燃料,近年来得到 了许多研究者的关注^[1~5]。生物柴油成分为脂肪酸 甲酯,通常由植物油脂(甘油三酯)与甲醇通过酯交 换反应得到^[6~9]。然而,与传统的化石燃料相比,生 物柴油因具有明显的缺点(相对较高的凝点和浊 点、化学稳定性差、能量密度较低、与石化柴油不完 全兼容等)而限制了它的广泛应用^[10~13]。因此,为 了克服生物柴油的这些缺点,近年来,许多研究 者^[10,14~21]研究了利用催化剂对脂肪酸、脂肪酸甲酯 和甘油三酯等进行加氢脱氧,制备与现有石化柴油 完全兼容的烃类柴油,这个技术也被称之为第二代 生物柴油技术。 在第二代生物柴油技术研究工作中,催化剂活 性组分主要集中在贵金属 Pt、Pd 及过渡金属 Ni、Ni-Mo、Co-Mo、Ni-W等,载体主要有 γ-Al₂O₃、活性碳、 SiO₂和 SBA-15等^[10,15~17,19,21]。虽然 Pt、Pd等贵金 属在该反应中展现了较好的催化性能,但由于其价 格的昂贵限制了其大规模的工业应用。更多研究者 将目光转向了廉价高效的过渡金属催化剂体系。 Senol和 Ryymin等^[14~16,22,23]在固定床反应器中研 究了硫化态的 NiMo/γ-Al₂O₃和 CoMo/γ-Al₂O₃催化 剂催化庚酸甲酯加氢脱氧反应,最终得到了高产率 的烃类化合物。反应机理研究表明,烃类产物反应 途径主要有以下两种途径,庚酸甲酯的加氢脱氧反

联系作者: 马隆龙, E-mail: mall@ms.giec.ac.cn。

收稿日期: 2011-11-09;修回日期: 2012-01-27。

基金项目:国基 NSFC/JST 重大国际合作项目(51161140331);国家重点基础研究发展规划(973 计划, 2012CB215304)。

应,经庚醛和庚醇中间产物,通过加氢、脱水等步骤 生成;庚酸甲酯水解得到的庚酸中间产物通过脱羰/ 脱羧反应,再经加氢、脱水等反应生成。虽然这些 NiMo和CoMo催化剂在植物油脂的加氢脱氧制备 液体烃类燃料反应中具有较高的催化性能,但在催 化剂预处理和反应过程中必须不断加入含硫试剂以 保持催化剂的硫化态,导致产物中硫含量增加,这对 燃料产品是不利的。因此,制备无硫催化剂以实现 该过程的高效转化仍然是一个挑战。

本实验以 Ni 为活性组分,采用浸渍法制备了 Ni/HY、Ni/SiO₂、Ni/γ-Al₂O₃、Ni/SAPO-11 催化剂, 采用 XRD、NH₃-TPD、H₂-TPR、BET 和 SEM 等手段 对所制备的 Ni 催化剂的物化性质进行了表征,并在 以棕榈酸甲酯加氢脱氧制备烃类柴油燃料的模型反 应中比较这些催化剂的性能。在优化 SAPO-11 载 体上进一步研究了 Ni 负载量、反应温度及反应压力 等因素的影响。

1 实验部分

1.1 实验材料

四种载体 NaY(Si/Al=2.91)、SiO₂、γ-Al₂O₃及 SAPO-11(Si/Al=0.11、Al/P=1)分子筛由天津凯美 思特科技发展有限公司提供;棕榈酸甲酯(分析 纯)、十九烷(分析纯)由上海晶纯实业有限公司提 供;环己烷(分析纯)、硝酸镍(分析纯)等购自天津 福晨化学试剂厂。

1.2 催化剂的制备

NaY用1 mol/L NH₄NO₃ 水溶液于 353 K 离子 交换三次,经干燥、焙烧得到催化剂载体 HY 分子 筛。所有的负载型 Ni 催化剂均通过浸渍法制备得 到。在载体筛选工作中,Ni 负载量均为 7%,考察 Ni 负载量的影响时负载量设为 2%、5%、7% 及 9%。室温下,载体在一定量的硝酸镍水溶液中持续 搅拌浸渍 10 h,然后在 393 K 下将水分蒸干并转移 至马弗炉中,823 K 空气气氛中焙烧 3 h 即制得所需 催化剂。催化剂使用前均用 5% H₂/N₂ 混合气在 723 K下还原 3 h。

1.3 催化剂的表征

NH₃-TPD 实验在自行搭建的装置上进行,催化 剂先在 873 K 下用氮气预处理 30 min,然后在 393 K 下吸附氨气至饱和,用氦气吹扫多余的氨气至检测 器基线水平,最后在 30 mL/min 氦气流下程序升温 至 873 K(升温速率 10 K/min)并记录检测器信号。

H₂-TPR 实验在同样的装置上进行,催化剂先在

623 K下用氮气预处理 30 min,然后冷却至室温,最 后在 5% H₂/N₂ 混合气 30 mL/min 流量下由室温程 序升温至 973 K,氢气的消耗由检测器检测并记录。 催化剂 XRD 测试采用 PRO MPD (PANalytical) 衍 射仪,CuK α (λ = 0.154 06 nm)靶,管电压 40 kV,管 电流 40 mA。催化剂 SEM 测试采用 Hitachis-4800 扫描电子显微镜观测其形貌。孔径分布用美国 Micrometrics ASAP-2010 吸附仪测定, –196 ℃进行 N,吸附,BET 公式计算比表面积。

1.4 催化反应

棕榈酸甲酯的加氢脱氧反应在一个半连续带电 磁搅拌器高压釜中进行,釜外配备一个电加热套以 提供热源,釜出口安装一个冰水冷凝器以冷却反应 产物。取1.0g新鲜还原的催化剂和30.0g棕榈酸 甲酯加入到反应釜中,先后分别用氩气和氢气排尽 釜内的空气(3~5次),然后用定压阀将釜内压力控 制在设定压力,氢气流量为50mL/min。开启加热 套将釜温逐渐升至设定反应温度,反应时间为 360 min,搅拌器转速设为1000 r/min。反应中每隔 30 min 取气相产物一次,气相产物中的 CO、CO,、 CH₄用上海科创 GC9800TP 型气相色谱仪分析, TDX01 填充柱和 TCD 检测: 烃类以及二甲醚用上海 科创 GC9800FP 型气相色谱仪分析, Porapak Q 柱, FID 检测,以 CH₄ 关联气相产物。实验结束后,停止 加热,待反应系统冷却至室温后打开反应釜,取出液 体产物并用环己烷溶解,用安捷伦4890-GC/MS(色 谱柱为 DB-5 毛细管柱, 30 m×0.25 mm×0.25 μm, 40 ℃保持 2 min,5 ℃/min 升至 280 ℃,保持 3 min) 进行定性分析:用岛津 2010 气相色谱(色谱柱为 RTX WAX 毛细管柱, 30 m×0.25 mm×0.25 μm, 60 ℃保持 3 min, 5 ℃/min 升至 235 ℃, 保持 10 min) 定量分析,用正十九烷为内标物。

棕榈酸甲酯的转化率 x_{A} 以及产物 i 的选择性 s_{i} 定义如下:

$$x_{\rm A} = \frac{m_0 - m_1}{m_0} \times 100\% \tag{1}$$

$$s_i = \frac{n_i \times a_i}{\sum_{i=1}^{i} n_i \times a_i} \times 100\%$$
(2)

*m*₀ 表示初始加入棕榈酸甲酯的质量,*m*₁ 表示 反应结束后残留棕榈酸甲酯的质量;*n*_i 为产物 i 的 物质的量,*a* 为产物分子的碳原子数目。

- 2 结果与讨论
- 2.1 催化剂的表征

2.1.1 XRD 表征

图1比较了 SAPO-11 上不同 Ni 负载量的 XRD 谱图。在所有的谱图中都可以看到 SAPO-11 分子 筛的特征衍射峰,表明经过浸渍、焙烧等制备过程 后,其分子筛结构没有显著改变。Ni 负载量低于 2%,XRD 谱图上没有检测到对应 NiO 的特征峰,表 明此时 NiO 高度分散于 SAPO-11 表面,或者其晶粒 粒径低于 XRD 的检测限。随着 Ni 负载量的增加, NiO 的特征峰出现,且其衍射峰强度(20 = 37.2°、 43.2°和 62.8°)随着负载量的增加而增大。NiO 特 征峰强度的增大表明随着负载 NiO,晶粒粒径变大。 此外,在谱图中没有发现明显的镍铝尖晶石的特征 衍射峰,表明在催化剂的制备过程中,镍铝尖晶石没 有产生。

2.1.2 SEM 表征

图 2 为载体 SAPO-11 (图 2 (a))及 7% Ni/ SAPO-11 (图 2 (b)和 2 (c))的 SEM 照片。从图 2 (a)可以看出,没有负载 Ni 的载体 SAPO-11 为粒 径为1~3μm的大块颗粒。对7% Ni/SAPO-11,NiO相 对均匀的分布在载体的表面,图片中的清晰的小白 点即为 NiO 粒子(图 2(b))。为了更清楚地看到 NiO 晶体在载体表面的形态,采用了更大的放大倍 数,如图 2(c)所示,NiO 晶体具有正八面体形貌,粒 径约为 20~80 nm。

图 1 SAPO-11 上不同 Ni 负载量催化剂的 XRD 谱图 Figure 1 XRD patterns of various Ni/SAPO-11 catalysts a: SAPO-11; b: 2% Ni /SAPO-11; c: 5% Ni /SAPO-11; d: 7% Ni /SAPO-11; e: 9% Ni/SAPO-11

图 2 SAPO-11 和 7% Ni/SAPO-11 的 SEM 照片 Figure 2 SEM images of various catalysts

(a): SAPO-11; (b): 7% Ni/SAPO-11(10 K magnification); (c): 7% Ni/SAPO-11(200 K magnification)

2.1.3 BET 及孔结构表征

表1列出了 Ni/SAPO-11 催化剂上不同 Ni 负载 量的比表面积和孔结构数据。载体 SAPO-11 的总 比表面积为 85.6 m²/g,其中,外比表面积为 29.7 m²/g,说明 SAPO-11 载体的比表面积主要由其 微孔贡献。随着镍负载量的增加,催化剂的总比表 面积急剧减小并稳定在 33 m²/g 左右,而外比表面 积基本保持不变且与总表面积数据接近。另一方 面,介孔孔容也由 0.096 cm³/g 逐渐减小为 0.078 cm³/g。这表明,载体 SAPO-11 的较小孔径不 能提供足够的空间来容纳镍粒子,从而导致大部分 镍粒子堆积孔口,堵塞 SAPO-11 的微孔道,导致比 表面积显著减小。由表1 还可以发现,当镍负载量 小于 7% 时,随着镍负载量的增加,外比表面积有轻 微的增加,这可能主要归因于载体外表面上不断增 多和持续长大的氧化镍粒子。这些与 XRD 谱图及 SEM 结果一致。

表 1 Ni/SAPO-11 上不同 Ni 负载量的比表面积和孔结构 Table 1 Textural properties of Ni/SAPO-11 catalysts with different Ni loadings

Catalyst	$A/(\mathbf{m}^2 \cdot \mathbf{g}^{-1})$	$A_{\rm exb}/({\rm m}^2 \cdot {\rm g}^{-1})$	$v/(\mathrm{cm}^3 \cdot \mathrm{g}^{-1})$
SAPO-11	85.6	29.7	0.096
2% NiSAPO-11	33.5	31.6	0.086
5% NiSAPO-11	33.3	32.5	0.081
7% NiSAPO-11	33.5	33.0	0.083
9% NiSAPO-11	33.0	28.6	0.078

surface area: calculated by BET method;

external surface: calculated from desorption branch by BJH method; mesoporous volume: calculated from desorption branch by BJH method

2.1.4 H₂-TPR 表征

SAPO-11 上不同 Ni 负载量催化剂的 H₂-TPR 曲 线见图3。还原区域温度的不同主要归因于镍的分 散以及镍与载体间相互作用的强弱。Rynkowski 等[24]研究了负载在载体上的具有双峰性质的氧化 镍物种,它们由两种状态的氧化镍组成,自由状态的 氧化镍(低温还原)以及镍-载体相互作用的镍(高 温还原)。所有 Ni/SAPO-11 催化剂的 H₂-TPR 谱图 均在720和870K左右分别出现两个还原峰,说明 Ni/SAPO-11 表面也同时存在弱相互作用(自由状 态)和强相互作用(直接与载体接触且以共价键连 接)的 Ni²⁺物种^[25]。从图 3 还可以看出,低负载量 (2%)的 Ni 物种主要以强相互作用为主: 随着 Ni 负 载量升高,对应于弱相互作用和强相互作用的 Ni 物 种均增加,但弱相互作用的 Ni 物种增加的更快,对 9% Ni/SAPO-11 催化剂,其表面主要为弱相互作用 的 NiO 粒子。这表明在 Ni 的负载过程中, Ni²⁺首先 通过氧桥(Ni-O-Al 和 Ni-O-P)共价连接于 SAPO-11 表面,形成与载体强相互作用的 Ni²⁺物种,然后多余 的 Ni²⁺在共价连接的 Ni 物种上集聚形成 NiO 晶粒。 H₂-TPR 的这一结果与 XRD 和 SEM 表征结果一致。

图 3 SAPO-11 上不同 Ni 负载量催化剂的程序升温还原谱图 Figure 3 H₂-TPR profiles of Ni/SAPO-11 catalysts with different Ni loadings a: 9% Ni/SAPO-11; b: 7% Ni/SAPO-11; c: 5% Ni/SAPO-11; d: 2% Ni /SAPO-11

2.1.5 NH₃-TPD 表征

图 4 比较了不同载体负载的 Ni 催化剂的 NH₃-TPD 谱图。对 Ni/SiO₂ 催化剂而言,仅在 460 K 温度 下出现一个脱附峰,并且其面积很小,表明 Ni/SiO₂ 催化剂具有很弱的表面酸性且酸量较小。与 Ni/ SiO₂ 相比, Ni/γ-Al₂O₃ 催化剂表面酸量增大,且在 535 K 和 655 K 处出现两个 NH₃ 脱附峰,分别对应 于弱酸和中强酸中心,与文献报道结果一致^[26]。对 Ni/SAPO-11 催化剂,一个低温峰出现在 475 K,另一 个高温肩峰出现在 555 K,分别对应于弱酸和中强 酸位。Parlitz 等^[27]采用 NH₃-TPD 研究了 SAPO-5 和 SAPO-11 的酸性质,认为低温脱附峰(197 ℃)归因 于弱酸位(Brönsted 或者 Lewis 酸),而较高温度 (237~252 ℃)出现的脱附峰则归因于较强的酸性 位(Brönsted 酸),这是由于 Si 原子进入了 AIPO₄ 分 子筛骨架取代 P 元素而产生的。Ni/HY 催化剂的 NH₃-TPD 脱附曲线表明,其具有更大的酸量和更强 的酸强度(750 K 出现的 NH₃ 脱附峰),且表面同时 存在弱酸和强酸中心。

图 4 Ni 不同载体催化剂的氨气程序升温脱附谱图 Figure 4 NH₃-TPD profiles of various supported Ni catalysts a: 7% Ni/HY; b: 7% Ni/Al₂O₃; c: 7% Ni/SAPO-11; d: 7% Ni/SiO₂

2.2 催化性能

以棕榈酸甲酯加氢脱氧制备烃类柴油燃料为模 型反应,作者在半连续的反应釜中研究了上述 Ni 基 催化剂的反应性能。文献报道结果表 明^[16,20,23,28~30],植物油脂及其模型化合物(脂肪酸、 脂肪酸酯以及甘油三酯)加氢脱氧反应主要包括加 氢、脱水、脱羰/脱羧、裂解和水解等,是一个复杂的 反应网络,而且液体烷烃主要按照植物油脂加氢以 及脂肪酸脱羰/脱羧两条途径生成。在本实验的反 应产物中检测到了 DME、CO、CO2、C1~16+烷烃、棕榈 酸等,此外液相产物中还检测到了微量的十五烷醇、 十六烷醇和十六烷醛,其含量均在0.01%以下。反 应结果显示,棕榈酸甲酯加氢脱氧的产物种类较为 相似,原料中氧的去除主要以 DME、CO、CO,等产物 脱除。气相产物中有 DME 存在,它是由甲醇分子间 脱水反应生成的。在反应结束时,液相产物中检测 到少量的水,这表明反应过程中脱水反应的发生,也 可以为棕榈酸甲酯水解反应提供条件。

2.2.1 不同载体的催化性能比较

表 2 列出了不同载体负载的 Ni 基催化剂上棕 榈酸甲酯加氢脱氧反应转化率及产物分布。由表 2 可以看出,在弱酸中心的 7% Ni/SiO₂ 催化剂上,棕 榈酸甲酯的转化率为 49.3%,烷烃产物收率为 48.5%,此外裂解产物 C₁₋₄和 C₅₋₈的选择性分别为 7.69% 和 14.36%。在具有强酸中心的 7% Ni/HY 催化剂上棕榈酸甲酯的转化率高达 98.5%,但裂解 反应严重,其中,较大部分的原料都被裂解成为小分 子烃类(56.63% 的产物集中在 C₁₋₈烷烃),C₉₋₁₆目 标产物的选择性仅为 37.16%。这表明 HY 的强酸 性位导致该反应裂解活性显著增加,与文献报道一 致^[31,32]。而在表面以弱酸和中强酸中心为主的 7% Ni/γ-Al₂O₃和 7% Ni/SAPO-11 催化剂上,棕榈酸甲 酯的转化率和目标产物(C_{9~16}烷烃)的选择性均大 于 90%,裂解产物明显得到抑制,烷烃的收率也较 高,表明其具有较好的催化性能。其中,在 SAPO-11 载体上,棕榈酸甲酯转化率接近 100%,C_{9~16}烷烃产 物选择性为 92.71%,由此可见,对棕榈酸甲酯加氢 脱氧制取烃类柴油组分而言, SAPO-11 载体最为 有利。

表 2 不同载体催化剂催化反应

Table 2	Catalytic	results	of	various	supported	Ni	catalysts
---------	-----------	---------	----	---------	-----------	----	-----------

Catalvat	Conversion		Products distribution w_{mol} / %								
Catalyst	x/%	DME	СО	CO_2	$C_{1 \sim 4}$	$C_{5 \sim 8}$	C _{9~16}	$C_{16^{+}}$	palmitic acid	products w/%	
7% Ni/SiO ₂	49.3	0.05	1.43	0.13	7.69	14.36	69.45	6.92	0.00	48.5	
7% Ni/ γ -Al $_2O_3$	90.9	1.11	0.80	0.03	2.02	0.15	91.34	4.08	0.50	88.7	
7% Ni/SAPO-11	99.8	1.12	0.83	0.01	2.21	0.00	92.71	3.11	0.00	97.8	
7% Ni/HY	98.5	0.07	0.20	0.11	45.43	11.20	37.16	4.42	1.46	96.7	

reaction condition: T=493 K, p=2.0 MPa, t=360 min

2.2.2 Ni/SAPO-11 的催化性能

在 SAPO-11 进一步考察了不同 Ni 负载量对棕 榈酸甲酯加氢脱氧反应的影响,结果见表 3。当 Ni 的负载量由 2%增加到 7%时,棕榈酸甲酯的转化率 由 60%持续增加到 99.8%而达到峰值,烷烃收率也 由 56.6%持续增加到 97.8%,其中,在 2%增加到 5%过程中,转化率有一个明显的提升。类似的,当 Ni 的负载量由 2%增加到 7%时,目标产物(C_{9~16}烷 烃)的选择性逐渐的由 84.35%增加到 92.71%。而 当 Ni 负载量进一步由 7% 增加到 9% 时,棕榈酸甲 酯的转化率基本保持不变,而目标产物的选择性由 92.71% 稍降至 91.65%。随着 Ni 负载量的增加, 气相 C_{1~4}烷烃产物的选择性稍有增加,但其含量均 控制在 4% 以内,这主要归因于 Ni/SAPO-11 催化剂 的弱、中强酸性质和较少的酸性活性中心可有效抑 制裂解反应的发生,从而得到较高的长链烷烃选 择性。

表 3 SAPO-11 上不同 Ni 负载量的催化反应 Table 3 Catalytic results of Ni/SAPO-11 with different Ni loadings

Catalyst	Conversion			Yield of alkane					
Catalyst	x/%	DME	СО	CO ₂	C _{1~4}	C _{5~8}	C _{9~16}	C ₁₆ +	products w/%
2% Ni/SAPO-11	60.0	4.38	1.33	0.00	0.84	0.00	84.35	9.09	56.6
5% Ni/SAPO-11	93.0	1.58	1.54	0.00	3.20	0.00	88.20	0.67	85.6
7% Ni/SAPO-11	99.8	1.12	0.83	0.01	2.21	0.00	92.71	3.11	97.8
9% Ni/SAPO-11	99.2	1.30	1.36	0.04	2.88	0.00	91.65	2.74	96.5

reaction condition: T=493 K, p=2.0 MPa, t=360 min

2.2.3 反应温度、压力对 7% Ni/SAPO-11 催化性 能的影响

表4及表5分别列出了不同反应温度及反应压 力对催化反应结果的影响。由表4可以看出,当反 应温度为190℃时,催化剂加氢脱氧活性较低,棕榈 酸甲酯转化率为38.7%,烷烃产物收率仅为13.8%, 液体产物大部分为棕榈酸。提高反应温度,转化率 得到大幅提高,同时,小分子烷烃(C_{1-8})产物的选择性由 190 ℃的1.79% 增加到 250 ℃的 6.64%,这表明裂解反应随反应温度的增加而有所增加, C_{9-16} 烷烃产物选择性下降主要是由于裂解产物增加所致。当反应温度为 220 ℃,该反应既保持了较高的转化率,同时 C_{9-16} 的选择性也最高,220℃为最佳反应温度。

表 4 7%Ni/SAPO-11 上不同反应温度的催化反应

Table 4 Catalytic results of 7% Ni/SAPO-11 at different reaction temperatures

Temperature	Conversion		Products distribution $w_{\rm mol}/\%$								
t∕°C	x/%	DME	СО	CO ₂	$C_{1 \sim 4}$	C _{5~8}	C _{9~16}	C ₁₆ +	palmitic acid	products w/%	
190	38.7	2.17	0.76	0.01	1.64	0.15	29.58	4.32	61.45	13.8	
220	99.8	1.12	0.83	0.01	2.21	0.00	92.71	3.11	0.00	97.8	
250	99.5	3.51	1.54	0.46	5.14	1.50	81.52	5.72	0.50	93.4	

reaction condition: p = 2.0 MPa, t = 360 min

表 5 7% Ni/SAPO-11 上不同反应压力的催化反应 Table 5 Catalytic results of 7% Ni/SAPO-11 at different reaction pressures

_				5					1			
	Pressure	Conversion		Products distribution $w_{\rm mol}/\%$								
	P/MPa	x/%	DME	CO	CO_2	$C_{1 \sim 4}$	C _{5~8}	C _{9~16}	C ₁₆ +	palmitic acid	products w/%	
	1.0	49.1	3.94	0.66	0.00	2.96	0.16	20.58	3.35	68.76	13.3	
	2.0	99.8	1.12	0.83	0.01	2.21	0.00	92.71	3.11	0.00	97.8	
	4.0	98.7	4.13	0.92	0.07	8.11	0.08	82.60	3.14	0.97	92.7	

reaction condition: T = 493 K, t = 360 min

由表5可知,当反应压力为1 MPa时,棕榈酸甲 酯转化率为49.1%,烷烃产物收率为13.3%,反应 活性较低,这可能是由于反应压力较低时,在反应体 系中,氢气与原料及催化剂的接触不充分所致。当 提高反应压力后,棕榈酸甲酯转化率及烷烃产物收 率均得到大幅提高,但压力过高,裂解产物有所增 加,因此,2 MPa 的氢气压力为该反应较优的反应 压力。

3 结 论

通 过 浸 渍 法 制 备 了 HY、SiO₂、γ-Al₂O₃ 及SAPO-11四种载体负载的Ni催化剂,并以棕榈酸 甲酯加氢脱氧制取烃类液体燃料为模型反应研究了 他们的催化性能。结果表明,由于 Ni/SAPO-11 催 化剂表面具有合适的酸性强度及适中数量的酸性 位,在该反应中显示了最好的催化活性和 C_{9~16}烷烃 产物选择性。当 Ni 的负载量为 7% 时,棕榈酸甲酯 转化率达到 99.8%, C_{9~16}烷烃的总选择性为 92.71%。催化剂的酸性太强或者太弱所得结果均 较差,Ni/SiO₂酸性太弱则反应活性太低,而 Ni/HY 酸性太强则易导致大量裂解副产物产生。优化实验 结果表明,反应温度为 220 ℃,压力为 2 MPa 时为该 反应较优的反应操作条件。

参考文献

- SHARMA Y C, SINGH B, UPADHYAY S N. Advancements in development and characterization of biodiesel: A review [J]. Fuel, 2008, 87 (12): 2355-2373.
- [2] AGARWAL A K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines [J]. Prog Energy Combust Sci, 2007, **33**(3): 233-271.
- [3] MARCHETTI J M, MIGUEL V U, ERRAZU A F. Possible methods for biodiesel production [J]. Renewable Sustainable Energy Rev, 2007, 11(6): 1300-1311.
- [4] 林炎平, 陈学榕, 黎邵华, 廖燕华, 黄彪. 超声波辅助固体酸催化塔尔油脂肪酸制备生物柴油[J]. 燃料化学学报, 2011, **39**(7): 513-518.

(LIN Yan-ping, CHEN Xue-rong, LI Shao-hua, LIAO Yan-hua, HUANG Biao. Preparation of biodiesel by ultrasonic assisted esterification of Tall oil fatty acid over solid acid catalyst[J]. Journal of Fuel Chemistry and Technology, 2011, **39**(7): 513-518.)

- [5] 李丽萍,陈冠益,黄业千. 固定化细胞磁稳定流化床反应器制备生物柴油[J]. 农业工程学报,2011,(10):238-242.
 (LI Li-ping, CHEN Guan-yi, HUANG Ye-qian. Biodiesel production in magnetically stabilized fluidized bed reactor by whole-cell bio-catalyst
 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,(10):238-242.)
- [6] BARAKOS N, PASIAS S, PAPAYANNAKOS N. Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst[J]. Bioresource Technol, 2008, 99(11): 5037-5042.
- [7] ALONSO D M, MARISCAL R, MORENO-TOST R, POVES M D Z, GRANADOS M L. Potassium leaching during triglyceride transesterification using K/-Al₂O₃ catalysts[J]. Catal Commun, 2007, 8(12): 2074-2080.
- [8] 颜芳, 袁振宏, 吕鹏梅, 罗文, 杨玲梅, 邓利. 亚铁锌双金属氰化络合物固体催化剂催化合成生物柴油[J]. 燃料化学学报, 2010,38 (3): 281-286.

(YAN Fang, YUAN Zhen-hong, LV Peng-mei, LUO Wen, YANG Ling-mei, DENG Li. Synthesis of biodiesel by Fe(II)-Zn double-metal cyanide complexes [J]. Journal of Fuel Chemistry and Technology, 2010, **38**(3): 281-286.)

[9] 靳福全, 孟丽君, 王晶晶, 李霞, 刘强. 蓖麻油生物柴油的减压蒸馏及气-质谱分析[J]. 中国油脂, 2011,(8): 69-73.

(JIN Fu-quan, MENG Li-jun, WANG Jing-jing, LI Xia, LIU Qiang. Vacuum distillation and GC/MS analysis of castor biodiesel[J]. China Oils and Fats, 2011, (8): 69-73.)

- [10] DO P T, CHIAPPERO M, LOBBAN L L, RESASCO D E. Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al_2O_3 [J]. Catal Lett, 2009, **130**(1/2): 9-18.
- [11] DONNIS B, EGEBERG R, BLOM P, KNUDSEN K. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. understanding the reaction routes[J]. Top Catal, 2009, 52(3): 229-240.
- [12] SENOL O I, RYYMIN E M, VILJAVA T R, KRAUSE A O I. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts[J]. J Mol Catal A, 2007, 277(1/2): 107-112.
- [13] LOTERO E, LIU Y, LOPEZ D E, SUWANNAKARN K, BRUCE D A, GOODWIN J G. Synthesis of biodiesel via acid catalysis[J]. Ind Eng Chem Res, 2005, 44(14): 5353-5363.
- $\begin{bmatrix} 14 \end{bmatrix} SENOL O I, VILJAVA T R, KRAUSE A. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/<math>\gamma$ -Al₂O₃ and CoMo/ γ -Al₂O₃ catalyst: The effect of water[J]. Catal Today, 2005, **106**(1/4): 186-189.
- [15] SENOL O I, VILJAVA T R, KRAUSE A. Hydrodeoxygenation of methyl esters on sulphided NiMo/ γ -Al₂O₃ and CoMo/ γ -Al₂O₃ catalyst [J]. Catal Today, 2005, **100**(3/4): 331-335.
- [16] SENOL O I, RYYMIN E M, VILJAVA T R, KRAUSE A. Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts[J]. J Mol Catal A, 2007, 268(1/2): 1-8.
- [17] LESTARI S, SIMAKOVA I, TOKAREV A, MAKI-ARVELA P, ERANEN K, MURZIN D Y. Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst[J]. Catal Lett, 2008, 122(3/4): 247-251.
- [18] LESTARI S, MAKI-ARVELA P, SIMAKOVA I, BELTRAMINI J, LU G, MURZIN D Y. Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode[J]. Catal Lett, 2009, 130(1/2): 48-51.
- [19] LESTARI S, MAKI-ARVELA P, ERANEN K, BELTRAMINI J, LU G, MURZIN D Y. Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts[J]. Catal Lett, 2010, 134(3/4): 250-257.
- [20] MORGAN T, GRUBB D, SANTILLAN-JIMENEZ E, CROCKER M. Conversion of triglycerides to hydrocarbons over supported metal catalysts[J]. Top Catal, 2010, **53**(11/12): 820-829.
- [21] CHIAPPERO M, DO P, CROSSLEY S, LOBBAN L L, RESASCO D E. Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts[J]. Fuel, 2011, 90(3): 1155-1165.
- [22] SENOL O I, VILJAVA T R, KRAUSE A. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts [J]. Appl Catal A, 2007, **326**(2): 236-244.
- [23] RYYMIN E M, HONKELA M L, VILJAVA T R, KRAUSE A. Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al₂O₃ catalyst[J]. Appl Catal A, 2009, **358**(1): 42-48.
- [24] RYNKOWSKI J M, PARYJJCZAK T, LENIK M. On the nature of oxidic nickel phases in NiO/γ-Al₂O₃ catalysts[J]. Appl Catal A, 1993, 106(1): 73-82.
- [25] HU C-W, YAO J, YANG H-Q, CHEN Y, TIAN A-M. On the inhomogeneity of low nickel loading methanation catalyst[J]. J Catal, 1997, 166(1): 1-7.
- [26] CHANG J, TSUBAKI N, FUJIMOTO K. Effect of addition of K to Ni/SiO₂ and Ni/Al₂O₃ catalysts on hydrothermal cracking of bitumen
 [J]. J Jpn Pet Inst, 2000, 43(5): 357-360. (in Japanese)
- [27] PARLITZ B, SCHREIER E, ZUBOWA H L, ECKELT R, LIESKE E, LISCHKE G, FRICKE R. Isomerization of n-heptane over Pd-loaded silico-alumino-phosphate molecular-sieves[J]. J Catal, 1995, 155(1): 1-11.
- [28] SNARE M, KUBICKOVA I, MAKI-ARVELA P, ERANEN K, MURZIN D Y. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Ind Eng Chem Res, 2006, 45(16): 5708-5715.
- [29] HAN J, SUN H, DING Y, LOU H, ZHENG X. Palladium-catalyzed decarboxylation of higher aliphatic esters: Towards a new protocol to the second generation biodiesel production [J]. Green Chem, 2010, 12(3): 463-467.
- [30] RYYMIN E M, HONKELA M L, VILJAVA T R, KRAUSE A. Competitive reactions and mechanisms in the simultaneous HDO of phenol and methyl heptanoate over sulphided NiMo/γ-Al₂O₃[J]. Appl Catal A, 2010, 389(1/2): 114-121.
- [31] MARTENS J A, JACOBS P A, WEITKAMP J. Attempts to rationalize the distribution of hydrocracked products: I Qualitative description of the primary hydrocracking modes of long chain paraffins in open zeolites[J]. Appl Catal, 1986, **20**(1/2): 239-281.
- [32] MARTENS J A, JACOBS P A, WEITKAMP J. Attempts to rationalize the distribution of hydrocracked products: II Relative rates of primary hydrocracking modes of long chain paraffins in open zeolites [J]. Appl Catal, 1986, 20(1/2): 283-303.