文章编号:1000-8055(2014)03-0585-11

doi:10.13224/j. cnki. jasp. 2014.03.015

高维反向旋转双转子系统的建模方法 及动力特性

杨喜关,罗贵火,唐振寰,王 飞 (南京航空航天大学能源与动力学院,南京 210016)

摘 要:为了弥补有限元方法预测含局部非线性的双转子系统动力特性的不足,借助有限元软件和固定 界面模态综合法,建立了高维双转子系统非线性动力学模型,随后利用 Newmark 算法思想提出了一种隐式 时域求解该问题的方法,该方法的求解效率主要取决于非线性力处的自由度个数.在考虑挤压油膜阻尼器非 线性力和中介轴承非线性力的基础上,研究了双不平衡激励作用下的反向旋转双转子系统的非线性动力响 应特性.研究表明:系统响应中除内、外转子自转频率外,出现了2个自转频率的组合频率;随中介轴承径向游 隙的增加,系统转速分岔图中出现了分岔和混沌现象,且临界转速略有下降;系统轴心轨迹呈花瓣状,与试验 结果基本吻合.

关键 词:反向旋转双转子;挤压油膜阻尼器;中介轴承;模态综合法;有限元;非线性振动
 中图分类号: V231.96
 文献标志码: A

Modeling method and dynamic characteristics of high-dimensional counter-rotating dual rotor system

YANG Xi-guan, LUO Gui-huo, TANG Zhen-huan, WANG Fei (College of Energy and Power Engineering,

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: To make up the deficiency of the finite element method in predicting dynamic characteristics of the dual-rotor system with local nonlinear, high-dimensional nonlinear dynamic model of dual-rotor system was established with finite element software and fixed interface modal synthesis method; subsequently an implicit time-domain method was presented to solve the problem using the Newmark algorithm ideas, and the computational efficiency of this method was largely dependent on the number of degrees of freedom at nonlinear forces' location. Considering the nonlinear forces of squeeze film damper and inter-shaft bearing, the nonlinear dynamic response characteristics of the counter-rotating dual rotor system under dual imbalance force were studied. The study shows that there are some combinations of these two rotation frequencies in system response, in addition to rotation frequencies of the internal and external rotors. Besides, bifurcation and chaos emerge in system speed bifurcation diagram and the critical speeds decrease slightly with the increasing inter-shaft bearing radial clearance. The axis orbit of the system will be of a petal shape, which is basically consistent with the experimental results.

Key words: counter-rotating dual rotor; squeeze film damper; inter-shaft bearing; modal synthesis method; finite element; nonlinear vibration

收稿日期:2013-01-16 作者简介:杨喜关(1984一),男,河南卫辉人,博士生,主要从事转子动力学研究.

对于航空发动机高性能、高可靠性的追求,使 得反向旋转双转子技术、挤压油膜阻尼器和中介 轴承技术得到了应用,但是这些新技术的应用使 得转子系统的动力特性更加复杂.为了更精确地 预测转子系统的动力学行为,需要开展复杂反向 旋转双转子系统非线性动力模型建模方法和动力 特性的研究.

国内外关于反向旋转双转子系统的研究报道 较少.21世纪前,国外一些学者对反向旋转双转 子系统的动力特性进行了相关研究^[1-3],但多集中 于线性领域.国内,冯国权等^[4-5]先后对反向旋转的 双转子系统的临界转速和不平衡响应计算进行了 分析;胡绚等^[6]采用传递矩阵法开展了一种具有中 介轴承的反向旋转双转子结构的稳态响应分析和 试验研究;罗贵火等^[7-8]从理论和试验两方面入手, 在简化双转子系统模型的基础上,分析了轴承非线 性特性对反向旋转双转子系统振动特性的影响.

近期,有许多学者开展了同向旋转双转子系 统的非线性动力特性研究.周海仑等^[9]以航空发 动机双转子系统的简化模型为研究对象,建立了 含碰摩故障的双转子-滚动轴承-机匣耦合动力学 模型,对双转子系统动力学响应进行了分析和验 证.文中转子模型较为简化,未能考虑陀螺力矩的 影响;邓四二等^[10]利用有限元方法建立同向旋转 双转子-滚动轴承耦合系统的非线性动力学模型, 进行了转子系统稳定性研究,该模型未考虑挤压 油膜阻尼器的影响,且直接在物理空间中求解,求 解规模较大,效率较低.胡清华等^[11]建立了含2 个角接触球轴承和2个深沟球轴承(其中一个为 中介轴承)的双转子系统的非线性动力学模型,模 型中考虑了角接触球轴承支承转子的5个自由度 的运动,同时考虑了轴承的变刚度、弹性变形及接 触力等因素的影响,该研究虽然考虑了较详细的 轴承模型,但转子系统过于简化.

传统的求解技术在处理复杂高维的双转子系统的非线性动力特性时有一定缺陷.国外,Sun等^[12-13]在对轴承和挤压油膜阻尼详细建模的基础上,对叶片丢失的双转子系统的瞬态特性进行了仿真,并基于模态截断的理论对该问题的求解算法进行了改进.同时期,英国学者 Hai和 Bonello^[14-15]考虑挤压油膜阻尼器的非线性特性的影响,在多转子发动机整机振动方面做了一系列的工作,分别从时域和频域两个方面开展了整机建模方法的研究.国内对复杂转子系统的非线性动力特性的研究报道较少.

本文借助有限元软件,基于固定界面模态综 合法,考虑各支承处的挤压油膜阻尼器和中介轴 承的非线性力,提出一种建立高维反向旋转双转 子系统非线性动力学模型的方法,并改进 Newmark 算法,提高非线性动力学方程计算效率,在 此基础上进行反向旋转双转子系统的不平衡响应 特性研究.

1 反向旋转双转子系统模型

1.1 反向旋转双转子试验器

为研究双转子系统的动力特性,根据现有航 空发动机中的五支点双转子系统结构特点,设计 了双转子试验器,图 1 为五支点双转子系统结构 简图.试验器的内、外转子分别模拟燃气涡轮发动 机中的低压转子和高压转子,盘 1 和盘 2 分别模 拟低压、高压压气机,盘 3 和盘 4 分别模拟高压、 低压涡轮,内、外转子通过中介轴承V连接.轴承I, II,III,IV处均采用"轴承+鼠笼式弹性支承+挤压 油膜阻尼器"的结构.本文的研究中,认为轴承I,II,

图 1 五支点双转子系统结构简图 Fig. 1 Structure diagram of dual rotor system with five support points

Ⅲ,Ⅳ为刚性,考虑支承处弹性支承的线性刚度、挤 压油膜阻尼器的非线性力和中介轴承的非线性力; 用 ω 和 ω 分别表示内、外转子的转速,内、外转子 以一定的转速比运转,转子运转过程中仅转子圆盘 处存在不平衡作用力;忽略转子系统的外部阻尼和 材料阻尼,考虑各圆盘处的陀螺力矩.

1.2 挤压油膜阻尼器非线性力模型

挤压油膜阻尼器工作时油膜环不旋转,轴颈 只有平动(公转)没有转动(自转),假设轴颈中心 Q,绕油膜环中心 Q。的作进动运动,进动角用 ϕ 表示,进动角速度用 $\dot{\phi}$ 表示,见图 2.图 2 中 e表 示轴颈偏心距,用 c表示阻尼器径向间隙,令 ϵ = e/c,称为轴颈偏心率;用 R表示挤压油膜阻尼器 半径,L表示挤压油膜阻尼器长度, μ 为滑油的动 力黏度.

film ring center in squeeze film damper

根据短轴承假设和 Reynolds 边界条件 可得^[16]

$$\begin{aligned} F_{x} &= -\frac{\mu RL^{3}}{c^{2} (x^{2} + z^{2})^{1/2}} \cdot \\ \begin{bmatrix} x(\dot{\epsilon}I_{2} + \epsilon\dot{\psi}I_{1}) - z(\dot{\epsilon}I_{1} + \epsilon\dot{\psi}I_{3}) \end{bmatrix} \\ F_{z} &= -\frac{\mu RL^{3}}{c^{2} (x^{2} + z^{2})^{1/2}} \cdot \\ \begin{bmatrix} z(\dot{\epsilon}I_{2} + \epsilon\dot{\psi}I_{1}) + x(\dot{\epsilon}I_{1} + \epsilon\dot{\psi}I_{3}) \end{bmatrix} \end{aligned}$$
(1)
$$\vec{x} \oplus \epsilon = \frac{\sqrt{x^{2} + z^{2}}}{c}, \ \dot{\epsilon} = \frac{x \dot{x} + z \dot{z}}{c \sqrt{x^{2} + z^{2}}}, \ I_{1}, \ I_{2}, \ I_{3} \ \mathcal{H} \end{aligned}$$

Sommerfeld 积分.

1.3 中介轴承非线性力模型^[7]

中介轴承内、外圈同时旋转,且直接连接高、 低压转子,轴承的非线性特性会直接影响双转子 系统振动.图3给出了中介轴承内、外圈存在位移 时的位置关系.O为内、外圈初始位置的圆心,O₁ 和 O₂ 分别为内圈和外圈移动后的圆心,u₁ 和 u₂

图 3 中介轴承内、外圈位置关系示意图 Fig. 3 Diagram of position relationship of inner and outer rings in inter-shaft bearing

分别为内圈和外圈的径向位移,0;为第 j 个滚子的角度位置.r₁ 为内圈滚道半径,r₂ 为外圈滚道 半径,x₁,z₁ 为 u₁ 在水平方向和垂直方向的投 影;x₂,z₂ 为 u₂ 在水平方向和垂直方向的投影.

进行如下的假设:滚动体与内、外圈之间为纯 滚动,保持架的转动速度与滚动体的公转速度相 同.在 t时刻第 j 个滚动体的转动角度 θ_i 为

$$\theta_j = \frac{2\pi}{N_b}(j-1) + \omega_{bm}t \qquad j = 1, 2, \cdots, N_b$$

(2)

式中 $\omega_{bm} = (\omega_1 r_1 + \omega_2 r_2) / (r_1 + r_2), 为滚子的公转速度, N_b 为滚子个数.$

第 j 个滚动体的径向弹性接触变形为

$$u_{\theta j} = (x_1 - x_2) \sin \theta_j + (z_1 - z_2) \cos \theta_j - \gamma/2$$
(3)

式中 γ 为轴承的径向游隙. 当 $u_{ij} \leq 0$ 时,表明该滚 动体的径向弹性接触变形为 0.

根据 Hertz 接触定理可得中介轴承的非线性力,其 x,z两个方向的分量为

$$\begin{bmatrix} \mathbf{Q}_{x} \\ \mathbf{Q}_{z} \end{bmatrix} = -k_{n} \sum_{j=1}^{N_{b}} u_{\theta j+}^{10/9} \begin{bmatrix} \sin \theta_{j} \\ \cos \theta_{j} \end{bmatrix}$$
(4)

式中当 $u_{ij} \leq 0$ 时, $u_{0+} = 0$, 当 $u_{0j} > 0$ 时, $u_{0j+} = u_{0j}$, k_n 为滚子与套圈的接触刚度.

2 固定界面模态综合法及求解方法

2.1 系统动力学模型的建立

释放主轴承和中介轴承处的约束,建立释放 约束后的转子系统有限元模型,并从中提取转子 系统的质量矩阵 M 和刚度矩阵 K 设有限元模型 的节点个数为 n.则双转子系统的运动方程可写为

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{G}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{F}^{\mathrm{e}} + \mathbf{F}^{\mathrm{f}}$$
(5)

式中 $M \in \mathbb{R}^{4n \times 4n}$, $G \in \mathbb{R}^{4n \times 4n}$ 和 $K \in \mathbb{R}^{4n \times 4n}$ 分别为质 量矩阵、陀螺矩阵和刚度矩阵; $\mathbf{F} \in \mathbb{R}^{4n \times 1}$ 和 $\mathbf{F}^{f} \in \mathbb{R}^{4n \times 1}$ 分别为不平衡力向量和各支承处作用力向 量; $u = [x_1, z_1, \theta_{x1}, \theta_{x1}, \dots, x_n, z_n, \theta_{xn}, \theta_{xn}]^T$ 为位移 列阵, $u \in \mathbb{R}^{4n \times 1}$; 向量 \mathbf{F}^{e} 和 \mathbf{F}^{f} 中, 力作用处的自 由度对应的元素为各作用力的值, 其余元素为 0.

用 J 表示界面自由度的全体; P 表示轮盘自 由度(不平衡力和陀螺力矩作用处)的全体, I 表示 剩余的内部自由度的全体,则式(5)进行分块可得

$$\begin{bmatrix} \mathbf{M}_{II} & \mathbf{M}_{IP} & \mathbf{M}_{IJ} \\ \mathbf{M}_{PI} & \mathbf{M}_{PP} & \mathbf{M}_{PJ} \\ \mathbf{M}_{JI} & \mathbf{M}_{JP} & \mathbf{M}_{JJ} \end{bmatrix} \begin{bmatrix} \ddot{u}_{I} \\ \ddot{u}_{P} \\ \ddot{u}_{J} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{PP} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{u}_{I} \\ \dot{u}_{P} \\ \dot{u}_{J} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{II} & \mathbf{K}_{IP} & \mathbf{K}_{IJ} \\ \mathbf{K}_{PI} & \mathbf{K}_{PP} & \mathbf{K}_{PJ} \\ \mathbf{K}_{JI} & \mathbf{K}_{JP} & \mathbf{K}_{JJ} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{I} \\ \mathbf{u}_{P} \\ \mathbf{u}_{J} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{F}_{P}^{e} \\ \mathbf{F}_{J}^{f} \end{bmatrix}$$
(6)

假定各轮盘的不平衡量的初始相位角相同, 则不平衡力向量为

 $\mathbf{F}_{P}^{e} = \begin{bmatrix} \mathbf{f}_{K1}^{eT}, \mathbf{0}^{T}, \mathbf{f}_{K2}^{eT}, \mathbf{0}^{T}, \mathbf{f}_{K3}^{eT}, \mathbf{0}^{T}, \mathbf{f}_{K4}^{eT}, \mathbf{0}^{T} \end{bmatrix}^{T} (7)$ $\boldsymbol{\mathfrak{K}} \oplus \mathbf{f}_{Ki}^{e} = \begin{bmatrix} \mathbf{f}_{xi}^{e} \\ \mathbf{f}_{zi}^{e} \end{bmatrix}^{e} = m_{i}e_{i}\omega_{l}^{2} \begin{bmatrix} \cos \phi_{i} \\ \sin \phi_{i} \end{bmatrix}, \ l = 1, 2, \boldsymbol{\mathfrak{K}} \oplus$

m_i, *e_i*, *φ_i* 分别为各轮盘的质量、偏心距和自转角. 陀螺矩阵可写为

个圆盘处的极转动惯量.

对界面自由度按主轴承和中介轴承自由度进 行分块,则对接界面作用力向量为

的刚度.

2.2 模型降维

采用固定界面模态综合法对双转子系统进行 模型降维.用 E 表示 I 和 P 的合集.则物理坐标 与模态坐标的变换关系为

$$\begin{bmatrix} \boldsymbol{u}_{\mathrm{E}} \\ \boldsymbol{u}_{\mathrm{J}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_{\mathrm{k}} & \boldsymbol{\Phi}_{\mathrm{c}} \\ \boldsymbol{0} & \boldsymbol{I}^{\mathrm{m}} \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{\mathrm{k}} \\ \boldsymbol{u}_{\mathrm{J}} \end{bmatrix} = \boldsymbol{T} \begin{bmatrix} \boldsymbol{q}_{\mathrm{k}} \\ \boldsymbol{u}_{\mathrm{J}} \end{bmatrix} \quad (10)$$

式中 $\Phi_k \in \mathbb{R}^{n_e \times n_k}$ 为主模态矩阵, $\Phi_e \in \mathbb{R}^{n_e \times n_i}$ 为约束 模态矩阵, $q_k \in \mathbb{R}^{n_k \times 1}$ 为主模态坐标, \mathbb{I}^m 表示单位 矩阵, n_e , n_i 和 n_k 分别为内部自由度个数、界面自 由度个数和保留模态个数.

对转子系统有限元模型的界面自由度进行全 约束,并对其进行模态求解,可获得质量归一化后 的主模态矩阵Φ_k和主模态频率Ω_k;系统的约束 模态为

$$\boldsymbol{\Phi}_{c} = - \left(\mathbf{K}_{EE} \right)^{-1} \mathbf{K}_{EJ}$$
(11)

将式(10)代人系统的运动方程(式(6)),并在 方程两端前乘 **T**^T,则有

$$\begin{bmatrix} \mathbf{I} & \mathbf{M}_{EJ} \\ \mathbf{M}_{JE} & \mathbf{M}_{JJ} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}}_{k} \\ \ddot{\mathbf{u}}_{J} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{EE} & \mathbf{G}_{EJ} \\ \mathbf{G}_{JE} & \mathbf{G}_{JJ} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{q}}_{k} \\ \dot{\mathbf{u}}_{J} \end{bmatrix} + \\ \begin{bmatrix} \mathbf{K}_{EE} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{JJ} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{k} \\ \mathbf{u}_{J} \end{bmatrix} = \mathbf{F}^{*} + \mathbf{F}^{*} \tag{12}$$

$$\mathbf{T}^{*} \mathbf{T}^{*} = \mathbf{M}_{JE}^{T} = \mathbf{\Phi}_{k}^{T} (\mathbf{M}_{EE} \mathbf{\Phi}_{c} + \mathbf{M}_{EJ})$$

$$\mathbf{M}_{LJ} = \mathbf{M}_{JJ} + \mathbf{M}_{JE} \mathbf{\Phi}_{c} + \mathbf{\Phi}_{c}^{T} (\mathbf{M}_{EE} \mathbf{\Phi}_{c} + \mathbf{M}_{EJ})$$

$$\mathbf{G}_{EJ} = \mathbf{G}_{JE}^{T} = \mathbf{\Phi}_{k}^{T} \mathbf{G}_{EE} \mathbf{\Phi}_{c} + \mathbf{\Phi}_{k}^{T} \mathbf{G}_{EJ}$$

$$\mathbf{G}_{JJ} = \mathbf{G}_{JJ} + \mathbf{G}_{JE} \mathbf{\Phi}_{c} + \mathbf{\Phi}_{c}^{T} (\mathbf{G}_{EE} \mathbf{\Phi}_{c} + \mathbf{G}_{EJ})$$

$$\mathbf{G}_{EE} = \mathbf{\Phi}_{k}^{T} \mathbf{G}_{EE} \mathbf{\Phi}_{k}$$

$$\mathbf{K}_{EE} = \mathbf{A}$$

$$\mathbf{K}_{LE} = \mathbf{A}$$

$$\mathbf{K}_{JJ} = \mathbf{K}_{JJ} + \mathbf{K}_{JE} \mathbf{\Phi}_{c} - \mathbf{k}_{J}$$

$$\mathbf{A} = \underset{1 \leq k \leq n_{k}}{\operatorname{max}} (\mathbf{\Omega}_{k}^{2})$$

$$\mathbf{F}^{*} = \begin{bmatrix} \mathbf{0} \\ \mathbf{F}_{T}^{n} \end{bmatrix}$$

$$\mathbf{F}^{*} = \begin{bmatrix} \mathbf{0} \\ \mathbf{F}_{E}^{n} \end{bmatrix}$$

至此,双转子系统的维数由式(1)的 4*n*个缩 减为式(12)的 *n_k*+*n_j*个.

2.3 转子系统模型参数的获取及数值求解

2.3.1 利用 ANSYS 进行模型参数的准备

由于质量矩阵 **M**、刚度矩阵 **K**、主模态矩阵 **Φ**_k和主模态频率 **Ω**_k的获取需要借助有限元软 件,本文利用 ANSYS 软件和 Matlab 软件进行上 述参数的准备,具体思路见图 4.

ANSYS中,模态分析时采用 LANB 或 QR

图 4 转子系统建模的流程图

Fig. 4 Flow chart of rotor system modeling

法可生成完整的质量矩阵,用 HBMAT 命令输出 结构刚度矩阵、质量矩阵.由于其文件记录格式为 Harwell-Boeing 文件格式,需编程还原为满矩阵 存储,进而得到本文所需要的质量矩阵 M、刚度 矩阵 K.同时,由 HBMAT 命令可获得刚度矩阵 和质量矩阵的各行列与模型各节点自由度之间的 映射关系.

利用 APDL(ANSYS parametric design language)程序,可从 ANSYS 中导出结构的模态频 率及振型数据,并由 HBMAT 命令得到的映射关 系对振型数据进行重新排列,得到对应的主模态 矩阵 Φ_k 和主模态频率 Ω_k .

随后利用固定界面模态综合法完成对系统的 降维,得到模态空间的运动方程,采用改进的 Newmark 算法对该方程进行求解.

2.3.2 数值求解方法

采用 Newmark 算法对式(12)进行求解.为 了改进 Newmark 算法,提升计算效率,将式(12) 写成如下形式:

$$\ddot{\boldsymbol{q}}_{k} + \boldsymbol{G}_{EE} \, \dot{\boldsymbol{q}}_{k} + \boldsymbol{K}_{EE} \, \boldsymbol{q}_{k} =$$

$$\boldsymbol{\Phi}_{k}^{\mathrm{T}} \, \boldsymbol{F}_{E}^{\mathrm{e}} - \bar{\boldsymbol{M}}_{EJ} \, \ddot{\boldsymbol{u}}_{J} - \bar{\boldsymbol{G}}_{EJ} \, \dot{\boldsymbol{u}}_{J} \qquad (13a)$$

$$\bar{\boldsymbol{M}}_{JJ} \, \ddot{\boldsymbol{u}}_{J} + \bar{\boldsymbol{G}}_{JJ} \, \dot{\boldsymbol{u}}_{J} + \bar{\boldsymbol{K}}_{JJ} \, \boldsymbol{u}_{J} =$$

 $\mathbf{F}_{J}^{r} + \mathbf{\Phi}_{e}^{T} \mathbf{F}_{E}^{r} - \mathbf{M}_{JE} \ddot{\mathbf{q}}_{k} - \mathbf{G}_{JE} \dot{\mathbf{q}}_{k}$ (13b) 由式(13)可以看出:式(13a)为内部自由度缩 减运动方程,无非线性力,采用显式 Newmark 算 法求解;式(13b)为界面自由度运动方程,由于存 在挤压阻尼器和中介轴承的非线性力,采用隐式 取时间区间 $[t_n, t_{n+1}]$,其中 $t_{n+1} = t_n + \Delta t$.利用 Newmark 算法的假设,可得如下表达式:

 $= a \mathbf{c}$

 $oldsymbol{q}_{\mathrm{k}}^{n+1}$

 $\dot{oldsymbol{q}}_{\mathrm{k}}^{n\!+\!1}$

 \ddot{u}_{I}^{n+1}

$$\mathbf{A}_{k}^{n+1} - \mathbf{A}_{q}^{n}$$
 (14a)

$$b \, \boldsymbol{q}_{\mathbf{k}}^{n+1} - \boldsymbol{B}_{\mathbf{q}}^{n} \tag{14b}$$

(14c)

 $\mathbf{I} = a \, \mathbf{u}_J^{n+1} - \mathbf{A}_J^n$

$$\dot{\boldsymbol{u}}_{J}^{n+1} = b \, \boldsymbol{u}_{J}^{n+1} - \boldsymbol{B}_{J}^{n} \qquad (14\mathrm{d})$$

其中

Newmark 算法求解

$$\mathbf{A}_{q} = \frac{1}{\alpha (\Delta t)^{2}} \mathbf{q}_{k}^{n} + \frac{1}{\alpha \Delta t} \dot{\mathbf{q}}_{k}^{n} + \left(\frac{1}{2\alpha} - 1\right) \ddot{\mathbf{q}}_{k}^{n}$$
$$\mathbf{A}_{J} = \frac{1}{\alpha (\Delta t)^{2}} \mathbf{u}_{J}^{n} + \frac{1}{\alpha \Delta t} \dot{\mathbf{u}}_{J}^{n} + \left(\frac{1}{2\alpha} - 1\right) \ddot{\mathbf{u}}_{J}^{n}$$
$$\mathbf{B}_{q} = \frac{\beta}{\alpha \Delta t} \mathbf{q}_{k}^{n} + \left(\frac{\beta}{\alpha} - 1\right) \dot{\mathbf{q}}_{k}^{n} + \left(\frac{\beta}{\alpha} - 2\right) \frac{\Delta t}{2} \ddot{\mathbf{q}}_{k}^{n}$$
$$\mathbf{B}_{J} = \frac{\beta}{\alpha \Delta t} \mathbf{u}_{J}^{n} + \left(\frac{\beta}{\alpha} - 1\right) \dot{\mathbf{u}}_{J}^{n} + \left(\frac{\beta}{\alpha} - 2\right) \frac{\Delta t}{2} \ddot{\mathbf{u}}_{J}^{n}$$

其中 $a = \frac{1}{\alpha (\Delta t)^2}, b = \frac{\beta}{\alpha \Delta t}, \alpha, \beta$ 为按积分精度和稳定性要求而决定的参数.

将式(14)代入式(13),经整理可得表达式

$$\boldsymbol{q}_{k}^{n+1} = \boldsymbol{S}_{q}^{-1}(\boldsymbol{\Phi}_{k}^{T} \boldsymbol{F}_{E}^{e,n+1} - \boldsymbol{V}_{q} \boldsymbol{u}_{J}^{n+1} + \boldsymbol{W}_{q})$$

(15a)
 $(\boldsymbol{S}_{J} - \boldsymbol{V}_{J} \boldsymbol{S}_{q}^{-1} \boldsymbol{V}_{q}) \boldsymbol{u}_{J}^{n+1} = \boldsymbol{F}_{J}^{\text{sfd},n+1} +$
 $(\boldsymbol{\Phi}_{c}^{T} - \boldsymbol{V}_{J} \boldsymbol{S}_{q}^{-1} \boldsymbol{\Phi}_{k}^{T}) \boldsymbol{F}_{E}^{e,n+1} - \boldsymbol{V}_{J} \boldsymbol{S}_{q}^{-1} \boldsymbol{W}_{q} + \boldsymbol{W}_{J}$
(15b)

其中

$$\mathbf{W}_{q} = \mathbf{M}_{EE}\mathbf{A}_{q}^{n} + \mathbf{G}_{EE}\mathbf{B}_{q}^{n} + \mathbf{M}_{EJ}\mathbf{A}_{J}^{n} + \mathbf{G}_{EJ}\mathbf{B}_{J}^{n}$$
$$\mathbf{W}_{J} = \mathbf{M}_{JJ}\mathbf{A}_{J}^{n} + \mathbf{G}_{JJ}\mathbf{B}_{J}^{n} + \mathbf{M}_{JE}\mathbf{A}_{q}^{n} + \mathbf{G}_{JE}\mathbf{B}_{J}^{n}$$
$$\mathbf{V}_{q} = a\mathbf{M}_{EJ} + b\mathbf{G}_{EJ}$$

$$\mathbf{V}_{J} = a \, \mathbf{M}_{JE} + b \, \mathbf{G}_{JE}$$
$$\mathbf{S}_{q} = a \, \mathbf{M}_{EE} + b \, \mathbf{G}_{EE} + \mathbf{K}_{EE}$$
$$\mathbf{S}_{J} = a \, \mathbf{M}_{JJ} + b \, \mathbf{G}_{JJ} + \mathbf{K}_{JJ}$$

由于非线性力的存在,式(15b)为非线性代数方程组,采用 Newton-Raphson 法来求解,可得 u_J^{+1} ,进而由式(15a)可得 q_k^{n+1} .由于式(15b)的维 数等于非线性力处的自由度个数,所以,在每个时刻非线性方程组的计算规模仅与非线性力处的自 由度个数有关,可大大提高计算效率.

通过式(10)可得转子系统任意节点处的位移 响应、速度响应和加速度响应,进而可分析转子系 统的响应特性及不同参数的影响规律.

3 反向旋转双转子系统不平衡响应 的计算分析

根据双转子试验器转子的详细结构参数,在 ANSYS软件中,采用基于 Timoshenko 梁理论单 元 BEAM189和 mass22号单元,分别建立内、外 转子的有限元模型.内转子节点个数为 301,外转 子节点个数为177,见图 5.内、外转子以转速比为 1.6反向旋转.采用固定界面模态综合法对系统 自由度进行缩减时取前40阶模态,截止模态频率 为4209.5516Hz.

各鼠笼弹性支承刚度的取值见表 1;各轮盘的不平衡量的分布见表 2;中介轴承型号为 SKF6002,其具体参数见表 3;挤压油膜阻尼器参数见表 4,采用 4109 航空润滑油.

3.1 转子系统的不平衡响应分析

为反映内、外转子之间的耦合响应,不失一般性,以盘3和盘4处的响应为例,分析内、外转子的不平衡响应.从零初始条件开始,以当前转速的计算结果作为下一转速的初始条件,计算内转子转速为 0~400 rad/s 范围内的转子稳态不平衡响应.

图 6 和图 7 分别为盘 4 和盘 3 处的稳态三维 频谱图.因为内、外转子均存在不平衡激励,且各 界面自由度上存在非线性力,所以转子系统的响 应中出现较丰富的频率成分.由图 6 和图 7 可以 看出

表 2 各轮盘的不平衡量

图 5 反向旋转双转子系统有限元模型及详细结构

Fig. 5 Finite element model and detailed structure of counter-rotating dual rotor system

表 1 弹性支承刚度					Table 2 Unbalance value of every disk				
Table	1 Elasti	c support	stiffness			内车	专子	外车	专子
	支承I	支承Ⅱ	支承Ⅲ	支承Ⅳ		盘1	盘 4	盘 2	盘 3
刚度/ 10 ⁵ (N/m)	2.21	14.5	9.29	2.21	不平衡量/ 10 ⁻⁵ (kg・m)	2	4	1	2

表 3 中介轴承参数

Table 3 Parameters of inter-shaft bearing							
内圈半径 r_1/mm	外圈半径 r_2/mm	滚子个数 N _b	接触刚度 $k_n/10^9$ (N/m ^{3/2})	径向游隙 γ/μm			
数值 9.37	14.13	9	7.055	6			
表 4 挤压油膜阻尼器参数 Table 4 Parameters of squeeze film damper							
		内转子		外转子			
	阻尼器 1	阻尼器 2	阻尼器 4	阻尼器 3			
阻尼器半径 R/mm	20	25	18	35			
阻尼器宽度 D/mm	15	15	15	20			
阻尼器径向间隙 c/10 ⁻² mm	n 10	10	10	8			
动力黏度 μ/10 ⁻² (Pa•s)			1.0752				
$ \begin{array}{c} & 1 \\ & 0 $							
2.0 E 1.5 OIIIII 1.0 ((2,-0)/2) ((2,-0)/2) ((2,-0)/2) ((2,-0)/2) ((2,-0)/2) ((2,-0)/2) ((3,-	$\omega_2 (3\omega_1 + \omega_2)/2 (3\omega_2 + \omega_2)/2$	$p_1)/2 \ 2\omega_1 + \omega_2 \ 2\omega_2 + \omega_1 + \omega_2 \ 2\omega_2 + \omega_1 + \omega_2 \ 2\omega_2 + \omega_2 \ \omega_2 + \omega_2 \ \omega_2$	$D_1 = 3\omega_1 + 2\omega_2$ $D_1 = 3\omega_1 + 2\omega_2$ $D_1 = 3\omega_1 + 2\omega_2$ $D_2 = 3\omega_1 + 2\omega_2$ $D_3 = 3\omega_1 + 2\omega_2$ $D_4 = 3\omega_2 + 2\omega_2$ $D_4 = 3\omega_1 + 2\omega_2$ $D_4 = 3\omega_2$ $D_4 = 3\omega_2$ $D_4 = 3\omega_2$ $D_4 = 3\omega_2$ $D_4 = 3\omega_2$	600			

图 7 盘 3 的三维频谱图(游隙为 6 µm) Fig. 7 3-D spectrogram of disk 3 (clearance of 6 µm)

 由于中介轴承的存在,内、外转子之间的 响应相互耦合,盘3和盘4有着相似的三维稳态 频谱图,盘3和盘4处的响应在整个转速范围内 均存在内、外转子的自转频率ω和ω,分别对应 内、外转子的不平衡激励,这两者的贡献在系统的 响应中占绝对优势.

2)由于挤压油膜阻尼器和中介轴承的非线 性力的存在,盘3和盘4在某些转速范围内均出 现了两者的组合频率 $(3\omega_1 + \omega_2)/2, (3\omega_2 + \omega_1)/2,$ $2\omega_1 + \omega_2, 2\omega_2 + \omega_1$ 和 $2\omega_2 + 3\omega_1, \pm 3$ 的响应频率 中还出现了 $(\omega_2 - \omega_1)/2.$

3) 在该转速范围内依次出现了以外转子为 主激励和内转子为主激励的1阶主共振,分别对 应以各自转子为主激励的1阶临界转速,由于陀 螺力矩的影响,两个主共振频率不同.由不平衡激 励频率 ω₁ 和 ω₂ 的响应振幅最大值所对应的转速 可得主共振转速的具体数值:内转子为主激励的 共振转速为 197.5 rad/s,外转子为主激励的共振 转速为 200 rad/s.

本文中内、外转子转速比为 1.6, 所以在分析 双频激励的反向旋转双转子系统响应分岔图时, 取点周期为5倍内转子不平衡激励周期.图8分 别为盘4和盘3随转子转速分岔图.由图8可知: 整个转速范围中内、外转子基本处于周期运动状态,但内转子转速在300 rad/s和外转子在转速 400 rad/s附近,内、外转子分别出现分岔现象.

为了更全面地观察和分析转子系统的响应, 绘制外转子为主激励的临界转速前、两个1阶临 界转速之间和内转子为主激励的临界转速后3个 典型转速时的轴心轨迹,见图9和图10.分析图9 和图10有如下结论:由于两个不平衡激励频率的 存在,使得内、外转子的轴心轨迹呈花瓣状;但由 于响应中两个激励频率的组合频率的存在,使得 内、外转子的轴心轨迹存在一定毛刺.

3.2 中介轴承的径向游隙对转子系统响应特性 的影响

径向游隙是中介轴承的重要参数之一,为分 析中介轴承径向游隙对转子系统响应的影响,本 文计算了中介轴承径向游隙为 2、6,10 μm 时的盘 4 和盘 3 随转子转速分岔图,见图 11、图 8 和 图 12.

图 8 盘 4 和盘 3 随转子转速分岔图(径向游隙为 6 μm)

Fig. 8 Bifurcation diagram of disk 4 and disk 3 with rotor speed (radial clearance of 6 µm)

图 9 盘 4 处的轴心轨迹(径向游隙为 6 μm) Fig. 9 Axis orbit of disk 4 (radial clearance of 6 μm)

图 10 盘 3 处的轴心轨迹(径向游隙为 6 µm)

Fig. 10 Axis orbit of disk 3 (radial clearance of 6 µm)

比较图 11、图 8 和图 12 可知:在较小的中介 轴承径向游隙(2μm)时,整个转速范围内转子系 统均处于周期运动状态;随着中介轴承径向游隙 的增加,在 6μm 时,内、外转子的响应中均出现了 分岔现象;中介轴承径向游隙增大到 10μm 时,系 统响应中分岔与混沌现象并存.

所以,较小的中介轴承径向游隙有利于转子 系统的稳定运行,这与文献[7]的结论一致,间接 说明本文模型的正确性. 表 5 为不同的中介轴承径向游隙下,双转子 系统分别以内、外转子为主激励的 1 阶临界转速 表.由表 5 可知随径向游隙的增大,系统的两个临 界转速值均有所降低,但变化幅度较小.

3.3 结果验证

文献[8]的仿真模型与其试验所采用的试验 器有较大的差别,且较简单,反映真实结构的响应 特性有一定的局限性.随着研究的深入,本文基于 有限元方法和模态综合法获取详细的双转子试验

表 5 不同径向游隙下转子系统的临界转速 Table 5 Critical speeds of rotor system under different radial clearances

21/	1 阶临界转速/(rad/s)				
$\gamma/\mu{ m m}$	内转子为主激励	外转子为主激励			
2	202.5	208			
6	197.5	200			
10	195	192			

器的运动方程,较文献[8]更能真实反映试验器的 响应特性.本文与文献[8]采用相同的双转子试验 器,所以用文献[8]的仿真和试验结果来验证本文 的方法和结论.

图 13 为文献[8]的仿真结果,图 14 为文献 [8]的试验结果.对比图 13、图 14 和图 9、图 10, 可以明显看出本文的计算结果与试验结果能更好 地吻合.

图 14 文献[8]的试验结果 Fig. 14 Experimental results of Ref. [8]

4 结 论

本文利用 ANSYS 软件建立双转子系统的有 限元模型,从中提取系统质量矩阵和刚度矩阵,进 而根据固定界面模态综合法的思想建立反向旋转 双转子试验器在双不平衡激励作用下的动力学模 型,模型考虑了陀螺力矩、挤压油膜阻尼器非线性 力和中介轴承非线性力的影响.根据含局部非线 性双转子系统动力学方程的特点,改进 Newmark 算法,对转子系统缩减后的动力学方程进行求解, 将每一时间步求解的非线性方程组的维数限定为 非线性力处的自由度数,进而研究了反向旋转双 转子系统的不平衡响应特性.通过本文研究得到 如下结论:

1) 本文的方法可以方便快捷地建立复杂双转子系统的动力学方程,且改进的 Newmark 算法也有较高的计算效率,为实际的反向旋转双转 子系统的建模和非线性动力特性研究提供了一种 便捷的方法.

2)带中介轴承的反向旋转双转子系统的内、
 外转子具有较强耦合效应,系统响应中除内、外转
 子自转频率外,还出现了内、外转子自转频率的组

合频率等.可见,非线性系统具有比线性系统更多的共振机会,且系统的响应也不再是线性系统中的各个不平衡激励引起的响应之和.

3)较小的中介轴承径向游隙有利于系统的 稳定运行,且中介轴承径向游隙对转子系统的临 界转速也有影响,但影响较小.

4) 双频激励下的反向旋转双转子系统的轴 心轨迹呈花瓣状,与文献[8]中的试验结果吻合性 较好,验证了本文建模和仿真结果的正确性.

参考文献:

- [1] Lalanne M, Ferraris G. Rotor dynamics prediction in engineering[M]. Chichester, UK: Wiley, 1989.
- [2] Gupta K, Gupta K D, Athre K. Unbalance response of a dual rotor system: theory and experiment [J]. Journal of Vibration and Acoustics, 1993, 115(4):427-435.
- [3] Ferraris G. Prediction of the dynamic behavior of non-symmetric coaxial co-or counter-rotating rotors[J]. Journal of Sound and Vibration, 1996, 195(4):649-666.
- [4] 冯国权,岳承熙,张连祥.对转式双转子发动机机动特性分析[J].航空发动机,1993(5):43-48.
 FENG Guoquan, YUE Chengxi, ZHANG Lianxiang. Dynamic analysis of a two-spool engine with counter rotating rotors[J]. Aeroengine, 1993(5):43-48. (in Chinese)
- [5] 冯国权,张连祥,伊峰. 反向旋转的双转子发动机稳态不平衡响应分析[J]. 哈尔滨工业大学学报,1998,30(增刊): 249-252.
 FENG Guoquan, ZHANG Lianxiang, YI Feng. Stationary unbalance response analysis of a two-spool engine with counter rotating rotors[J]. Journal of Harbin Institute of
- Technology, 1998, 30(suppl.): 249-252. (in Chinese) [6] 胡绚,罗贵火,高德平.反向旋转双转子稳态响应计算分析
- 与试验[J]. 航空动力学报,2007,22(7):1044-1049. HU Xuan,LUO Guihuo,GAO Deping. Numerical analysis and experiment of counter-rotating dual-rotor's steadystate response[J]. Journal of Aerospace Power,2007,22 (7):1044-1049. (in Chinese)
- [7] 罗贵火,胡绚,杨喜关.反向旋转双转子系统非线性特性分析[J].振动工程学报,2009,22(3):268-273.
 LUO Guihuo, HU Xuan, YANG Xiguan. Nonlinear dynamic performance analysis of counter-rotating dual-rotor system[J]. Journal of Vibration Engineering,2009,22(3):

268-273. (in Chinese)

[8] 罗贵火,周海仑,王飞,等.含滚动轴承的同向和反向旋转 双转子系统动力学响应[J].航空动力学报,2012,27(8): 1887-1894.

LUO Guihuo, ZHOU Hailun, WANG Fei, et al. Dynamic response of co-rotating and counter-rotating dual-rotor system supported on ball bearing[J]. Journal of Aerospace Power, 2012, 27(8); 1887-1894. (in Chinese)

- [9] 周海仑,陈果. 航空发动机双转子-滚动轴承-机匣耦合系统 动力学分析[J]. 航空动力学报,2009,24(6):1284-1291.
 ZHOU Hailun, CHEN Guo. Dynamic response analysis of coupling system dual rotor-ball bearing-stator for aero-engine[J]. Journal of Aerospace Power, 2009, 24(6):1284-1291. (in Chinese)
- [10] 邓四二,贺凤祥,杨海生,等.航空发动机双转子-滚动轴承 耦合系统的动力特性分析[J].航空动力学报,2010,25 (10):2386-2395.
 - DENG Sier, HE Fengxiang, YANG Haisheng, et al. Analysis on dynamic characteristics of a dual rotor-rolling bearing coupling system for aero-engine[J]. Journal of Aerospace Power, 2010, 25(10); 2386-2395. (in Chinese)
- [11] HU Qinghua, DENG Sier, TENG Hongfei. A 5-DOF model for aero-engine spindle dual-rotor system analysis [J]. Chinese Journal of Aeronautics, 2011, 24(2): 224-234.
- [12] Sun G, Kaushik N, Palazzolo A B, et al. An efficient algorithm for blade loss simulations using a high fidelity ball bearing and damper model[C]// Proceedings of the ASME Design Engineering Technical Conference. Chicago, US: ASME,2003:1011-1020.
- [13] Sun G,Palazzolo A,Provenza A, et al. Long duration blade loss simulations including thermal growths for dual-rotor gas turbine engine [J]. Journal of Sound and Vibration, 2008,316(1):147-163.
- [14] Hai P M, Bonello P. An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings[J]. Journal of Sound and Vibration, 2008, 318(3): 592-605.
- [15] Bonello P, Hai P M. A receptance harmonic balance technique for the computation of the vibration of a whole aeroengine model with nonlinear bearings[J]. Journal of Sound and Vibration, 2009, 324(1/2):221-242.
- [16] 闻邦椿,顾家柳,夏松波,等.高等转子动力学:理论、技术 与应用[M].北京:机械工业出版社,2000.