Energy-Bounded Reliability Modeling for Wireless Sensor Networks

ZHOU Qiang^{*}, XIONG Huargang, ZHANG Yourguang

(School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China)

Abstract :The wireless sensor network (WSN) system is a kind of system in which the consumer energy of a task is strictly bounded. This paper proposed a model of the system and a model of the task which consider energy consume based on task, introduced the energy factor function, and also established a reliability model of WSN based on task. Finally, an illustration of modeling of representative hierarchical cluster topology in WSN was also presented. This method suggested that the method studied has a directive influence to both task division and topology selection of WSN system.

Key words :wireless sensor network; reliability model; task reliability; energy-bounded

EEACC:6150P;0170N

基于能量约束的无线传感器网络可靠性研究

周 强^{*},熊华钢,张有光

(北京航空航天大学 电子信息工程学院,北京,100083)

摘 要:针对传感器网络系统(WSN)对任务完成所需能量有约束的特点,首先建立了 WSN 系统的网络模型和任务模型,引 入了能量权函数,建立了基于任务的无线传感器网络系统可靠性模型,最后针对无线传感器网络的典型层次簇拓扑结构,给 出了建模实例。该方法为 WSN 系统的任务级划分与拓扑结构的选择和优化提供依据和参考。

关键词:无线传感器网络;可靠性模型;任务可靠度;能量因素 中图分类号:TP393;TP919.2 文献标识码:A

信息技术正推动着一场新的军事变革。无线传 感器网络(Wireless Sensor Network,简称 WSN)以 其随机布设、自组织、适应恶劣环境下信息的获取和 采集,在核、化学、军事等领域具有广泛的应用潜力。 在这些特殊的应用环境下,通常要求系统能够满足 关键任务的可靠性要求。WSN 属于典型的分布式 网络系统,与集中式系统不同,前者由密集型、低成 本、随机分布的节点组成的,并具有可靠性高、抗打 击能力强、系统可降级使用、易于扩充等特点,尤其 适合于作战系统在部分节点失效的情况下仍能够完 成特定任务的需要^[1-3]。这类系统的可靠性在保证 系统能否完成正常功能及系统性能方面至关重要。 因此对 WSN 开展可靠性能研究是国内外关注的重 要研究领域之一。

WSN 系统属于能量限制的分布式网络系统, 现有文献考虑具有能量约束条件的 WSN 系统可靠 性建模的并不多见。文献[4-6]从连通性这一最基 本的要求出发研究网络系统冗余和连通可靠性问 题:文献[4]针对 Ad hoc 网络的连通性进行了研究; 文献[5]和文献[6]分别对 WSN 的1点、2 点和多点 文章编号:1004-1699(2008)07-1217-05

连通性来考查系统可靠性。文献[7]对 WSN 进行 了多级簇结构的可靠性描述,采用连通性和覆盖性 对基本簇单元进行可靠性研究。以上文献仅从抗毁 性测度的角度来研究 WSN 系统的可靠性,没有引 入其它影响因素的研究。文献[8-9]将 WSN 网络 系统可靠性与系统的功能联系起来,综合考查连通 性测度以外的多种因素对可靠性的影响。文献[8] 综合考虑连通性测度和安全性测度,对 WSN 系统 可靠性进行评价。文献[9]在考虑连通性测度的基 础上,引入了消息延迟指标,从有效性测度的角度综 合考查系统的可靠性。但是,以上文献均没有引入 能量限制的可靠性模型。

本文针对上述 WSN 系统可靠性建模研究中 没有充分考虑系统的能量因素(WSN 系统中任务 具有能量约束)的不足之处,首先建立了 WSN 系 统的网络模型和任务模型,然后通过在网络系统 可靠性模型中引入能量权函数建立了基于任务的 无线传感器网络系统可靠性模型,最后针对无线 传感器网络的典型层次簇拓扑结构,给出了建模 实例。

收稿日期:2007-11-10 修改日期:2008-01-14

1 WSN 网络结构和节点模型

1.1 网络结构

无线传感器网络是由大量的密集部署在监控区 域的智能传感器节点构成的一种网络应用系统。通 常传感器节点数量众多,在任意时刻,节点间通过无 线信道连接,采用多跳(multi-hop)、对等(peer to peer)通信方式,自组织网络拓扑结构。传感器节点 间具有很强的协同能力,通过局部的数据采集、预处 理以及节点间的数据交换来完成全局任务。无线传 感器网络系统如图1所示,由大量无线传感器节点 和汇聚节点(sink)^[2]组成。传感器节点散布在指定 的感知区域内,每个节点都可以收集数据,并通过多 跳路由方式把数据传送到 sink,sink 也可以用同样 的方式将信息发送给各节点。sink 直接与 Internet 或通信卫星相连,通过 Internet 或通信卫星实现任 务管理节点(即观察者)与传感器之间的通信^[3]。

图 1 传感器节点模型和网络结构

1.2 节点模型

WSN 的基本组成单位是节点,节点具有传感、 信号处理和无线通信功能,由处理单元、通信单元、 采集单元和供电单元四部分构成,如图1所示。对 于节点间的信息交换通常需要处理单元和通信单元 的参与。由于采集单元只是在源节点发生作用,不 参与转发节点信息交换;因此,假定采集单元始终处 于正常工作情况。

2 WSN 网络任务模型

网络系统中节点间信息的交换过程依赖互连网 络。某一计算任务的完成,不但依赖本地节点的资 源,且要求与其他节点进行通信,获取资源。在 WSN 网络系统中,参与信息交互的节点可以有 2 个、多个或者包括系统中所有的节点,本文考虑 2 个 节点之间进行信息交互的情况。

2.1 基于能量限制的任务模型

定义任务 T 用三元组[S, D, E] 表示,其中 S 代表任务的源节点:

D代表任务的目的节点;

*E*代表任务消息单跳传输(从某一节点不需中继直接传输到下一节点)所需要的最大能量消耗。

因此 $T_{s,D,E}$ 表示源节点为 S,目的节点为 D,消息单 跳传输最大能量消耗为 E的任务。

2.2 任务的可用路径集

将网络系统结构抽象为系统节点和无线通信链路的集合。系统节点包含处理单元和通信单元,由于在WSN中是无线通信链路,其功能通过通信单元来实现;因此,系统由一系列节点单元集(包括处理单元集和通信单元集)构成。任务*T*s.p.E执行过程当中对应的系统节点的有序排列构成了任务的路径,用*T*s.p.E表示。在复杂拓扑网络中任务的路径可能有多个,其数目设为*k*s.p.。

由于 WSN 具有能量约束的特点,所以任务的完 成依赖路径的连通性,也依赖路径上各节点的能量特 性,即并不是所有的连通路径都能保证任务的完成, 能够满足任务完成的路径集合构成任务的可用路径 集。设任务 $T_{S,D,E}$ 的某一路径 $r_{S,D,E}$ (节点顺序为 n_i , n_i ,..., n_i ,..., n_i ,其中 h表示该路径所经历的节点的 数目),用 $E_{n_i',n_{j+1}'}$ 表示该路径中消息从节点 n_i' 单跳传 输至节点 n_{i+1}' 所需的能耗;用 $E_{n_i'}$ 表示节点 n_i' 的可用 能量(power available,简称 PA,节点可用能量就是节 点当前的剩余能量⁽²¹⁾),定义加权函数:

$$F(_{i}) = \begin{cases} 1 & E_{n_{j}^{i}, n_{j+1}^{i}} \leq E_{n_{j}^{i}}(j = 1, 2, ..., h - 1) \\ 0 & \texttt{i} \texttt{the} \texttt{the} \end{cases}$$
(1)

该式表明只有当路径上所有节点的可用能量 *E_{nⁱj}*均不小于任务消息单跳传输能量 *E_{nⁱj}*,*nⁱj*,1</sub>时,该 路径才是可用路径。任务 *T*_{S,D,E} 的可用路径集 *R*_{S,D,E} 为:

$$R_{\rm S,D,E} = \prod_{i=1}^{k_{\rm S,D}} r_{\rm S,D,E}^{i} = \prod_{i=1}^{k_{\rm S,D}} F(i) \cdot r_{\rm S,D}^{i}$$
(2)

其中,任务 *T*s.p.E 的第 *i* 条路径 *r*ⁱs.p.E 由节点单元集 (包括处理单元集和通信单元集)组成,分别以 *P*ⁱ_{rs.p.E} 和 *C*ⁱ_{rs.p.E} 表示

$$P_{r_{\rm S,D,E}}^{i} = \{ p_{r_{\rm S,D,E}}^{i} / p_{r_{\rm S,D,E}}^{i} / r_{\rm S,D,E}^{i} \}$$
(3)

$$\vec{r}_{r_{\rm S,D,E}} = \{ c^i_{r_{\rm S,D,E}} / c^i_{r_{\rm S,D,E}} - \vec{r}^i_{\rm S,D,E} \}$$
(4)

任务 T_{S,D,E} 的处理单元集表示为

$$P_{T_{S,D,E}} = \sum_{i=1}^{k_{S,D}} P_{T_{S,D,E}}^{i}$$
(5)
通信单元集表示为

$$C_{T_{S,D,E}} = \sum_{i=1}^{k_{S,D}} C_{T_{S,D,E}}^{i}$$
 (6)

3 WSN 可靠性模型

3.1 前提和假设

对于由 M 个节点组成的 WSN 系统,假设:

网络系统中的处理单元和通信单元都不可 靠,但是只有正常工作和故障两种状态,处理单元与 通信单元的故障相互独立,失效率可以不同。

系统中的任务数为 m,从而构成系统的任务 集 = { $T_{S,D,E}^{k} / k = 1, 2, ..., m$ }。

3.2 单一任务的可靠度

任务 $T_{S,D,E}$ 的完成可以具有多条冗余路径,任 务 $T_{S,D,E}$ 的第 i 条路径 $r_{S,D,E}^{i}$ 的可靠度 $R_{r_{S,D,E}^{i}}$ 定义为 路径 $r_{S,D,E}^{i}$ 的处理单元集 $P_{r_{S,D,E}}^{i}$ 和通信单元集 $C_{r_{S,D,E}}^{i}$ 正常工作的概率,即

 $R_{r_{S,D,E}}^{i} = \Pr\{r_{S,D,E}^{i}\} = \Pr(P_{r_{S,D,E}}^{i}) \cdot \Pr(C_{S,D,E}^{i}) \quad (7)$ 任务 $T_{S,D,E}$ 的可靠度 $R_{T_{S,D,E}}$ 定义为任务的路径 集 $R_{S,D,E}$ 中至少有一条路径正堂工作的概率 即

根据相容事件的概率公式¹¹⁰⁷,上式可表示为

$R_{T_{\mathrm{S},\mathrm{D},\mathrm{E}}} = \Pr\left\{\sum_{i=1}^{\kappa_{\mathrm{S},\mathrm{D}}}\right\}$	$\left r_{\mathrm{S},\mathrm{D},\mathrm{E}}^{i} \right\rangle$	$= \prod_{i=1}^{3,D} Pr$	$\{r_{S,D,E}^{i}\}$ -
k _{S,D}	k _{S,D}		
$\Pr\{r_{S,D,E}^{i}, r_{S,D,E}^{j}\}$	+	$\Pr\{r_{S,D,E}^{i}$	ν ^j rs,d,e
i < j = 2	<i>i</i> < <i>j</i> < <i>h</i> =	= 3 k _e p	
$r_{S,D,E}^{h}$ + + (- 1) $k_{S,D}$	• Pr{	$r_{s,D}^{i}$ $r_{s,D,E}^{i}$	(9)

4 实例分析

WSN 系统拓扑组织非常灵活,在不同的应用 中往往采用不同的拓扑形式,拓扑选择对任务乃至 系统可靠性有重要的影响,因此对拓扑形式进行可 靠性评价在 WSN 系统总体设计中占有至关重要的 地位。通常,面对 WSN 节点规模较大的特点,需要 构建适宜的拓扑结构,层次化簇是无线传感器网络 拓扑的有效方式,这里讨论的簇是由唯一根节点发 起形成的"单晶"方式^[11],各级簇头具有树结构(如 图 2 所示)。针对图 2 所示的典型 WSN 网络簇拓 扑^[7],利用本文所述基于任务的方法对其进行可靠 性建模分析。图 2 所示的分簇式传感器网络结构分 为两个层次: 从层 L₁ 到层 L₂ 各级簇头; 最低 级别簇内结构。

图 2 分簇式传感器网络结构

设任务 $T_{1,sink}$ 表示源点为 1、宿点为 sink 的任 务,其中 1 为第 L_n 层中最低层簇内的节点,任务 $T_{1,sink}$ 所对应的路径如下表 1 所示,根据簇拓扑的特 点,这些路径对应的簇层为 L_n L_{n-1} ... L_1 sink;因此,除最低层簇以外,各级簇头采用树型结 构,该部分的路径不变,始终为 h_{n-1} , ..., h_1 , sink,而 最低层簇内可采用多种复杂结构,任务可存在多个 路径(如图 2 和表 1 所示):路径 1,2,3,6, h_n 、路径 1,2,5,8, h_n 、路径 1,4,5,6, h_n 等。因此,任务 $T_{i,sink}$ 的可靠度分两个部分,可表示为下式:

 $R_{T_{i,sink}} = R_{T_{h(n-1),sink}}$ $R_{T_{i,h(n)}}$ (10) 其中, n 表示簇的深度, $h(w) = h_w (w = 1, ..., n);$ $R_{T_{h(n-1)},sink}$ 表示路径在簇头部分的可靠度; 而 $R_{T_{i,h(n)}}$ 表示最低层簇内(简称簇内)的可靠度。由簇的定义 和式(7) 有

$R_{T_{h(n-1), sink}}$	=	$\Pr(P_{r_{h(n-1), sink}})$	• Pr ($C_{r_{h(n-1), sink}}$)	(11)
径及其箍层				

表 1	任务的路径及其族层

路径标号	路径	路径对应的簇层
1	1 ,2 ,3 ,6 , h_n , h_{n-1} ,, h_1 , sink	$L_{n} > L_{r} > \dots > L_{1} > \dots > sink$
2	1 ,2 ,5 ,8 , h_n , h_{n-1} ,, h_1 ,sink	$L_{n} > L_{r} > \dots > L_{1} > \dots > sink$
3	1,4,5,6, h_n , h_{rr1} ,, h_1 , sink	$L_{n} > L_{r} > \dots > L_{1} > \dots > \dots > L_{1} > \sin k$
	其它路径	$L_{n} > L_{n-1} > \dots > L_{1} > \sinh k$

下面从簇内和系统两个层次进行 WSN 网络簇 拓扑的可靠度研究,针对簇内可将其看作一个包含 任务集的子系统,按照前述基于能量限制的可靠性 建模方法开展研究。

这里,考查图 2 所示的 WSN 网络系统中任务 集 = { $T_{1,sink,2}$, $T_{3,sink,2}$, $T_{7,sink,2}$ } (m = 3) 的可靠 性。根据式(11) 该任务集 对应于簇内子系统的任 务集 = { $T_{1,h(m),2}$, $T_{3,h(m),2}$, $T_{7,h(m),2}$ } (m = 3)。为便 于讨论,做以下假定: 假设所有通信单元和处理单元具有相同的失 效率;又为了反映部件失效率对系统可靠度的影响, 将待考查单元失效率的动态范围设为 1e1~1e3。

假设当前簇内节点的可用能量^[2]分别为(见 图 3): $E_1 = E_3 = E_4 = E_5 = E_6 = E_8 = 2; E_2 = E_7$ = 1;各级簇头的可用能量分别为: $E_{h(n)} = E_{h(n-1)} =$... = $E_{h(1)} = E_{sink} = 2;$ 消息单跳传输所需的能耗分 别为: $E_{2,3} = E_{2,5} = E_{5,6} = E_{7,8} = 1.5; E_{1,2} = E_{1,4} =$ $E_{4,7} = E_{5,8} = E_{4,5} = E_{3,6} = E_{8,h(n)} = E_{6,h(n)} = 2_{0}$ 根据本文中的可靠性建模方法,按照图2最低 簇内组织结构(网状形式)路由规则,找出任务的源 节点到目的节点的路径(包括处理单元集和通信单 元集),得到各个任务源节点和目的节点之间的处理 单元集和通信单元集,如表2至表4所示。通过编 制计算机程序,分别求得,各种单元在上述失效率的 水平时,各个任务的可靠度。

1220

从表 2 中可以看出,在任务 *T*_{1.*h*(*n*).2} 的所有路径 中,只有路径 4 和路径 5 的能满足该任务的能量限制 要求,其它路径虽然在路由规则下具有连通性,但是 不能满足任务的能量限制要求,因此在计算系统基于 任务的可靠度时应予以排除。同理,表 3 至表 4 也分别 给出了任务 *T*_{3.*h*(*n*).2} 和任务 *T*_{7.*h*(*n*).2} 的路径及其可用 性情况。根据式(7) - 式(9),可计算得到各任务的可靠 度结果,如任务 $T_{1,h(n),2}$ 的可靠度计算公式为式(12)。

图 3 簇内节点当前能量及消息单跳传输能耗

 $R_{T_{1,h(m),2}} = \Pr\{ \begin{array}{l} i_{i=1} \\ i_{i=1} \end{array}^{i_{i,h(m),2}} = \Pr(\begin{array}{l} n_{1,h(m),2} \\ i_{i,h(m),2} \end{array}) + \\ \Pr(\begin{array}{l} r_{1,h(m),2} \\ r_{1,h(m),2} \end{array}) - \\ \Pr(\begin{array}{l} r_{1,h(m),2} \\ r_{1,h(m),2} \end{array}) + \\ (12)$

表 2 任务 T1.h(w).2 的路径及其处理单元集和通信单元集

序号	路径	处理单元集	通信单元集	能量权 f(i)	是否可用
1	$1, 2, 3, 6, h_n$	p_1 , p_2 , p_3 , p_6 , $p_{h(n)}$	C_1 , C_2 , C_3 , C_6 , $C_h(n)$	0	Ν
2	$1, 2, 5, 6, h_n$	p_1 , p_2 , p_5 , p_6 , $p_{h(n)}$	C1 , C2 , C5 , C6 , Ch(n)	0	Ν
3	$1, 2, 5, 8, h_n$	p_1 , p_2 , p_5 , p_8 , $p_{h(n)}$	C1 , $C2$, $C5$, $C8$, $Ch(n)$	0	Ν
4	$1, 4, 5, 8, h_n$	p_1 , p_4 , p_5 , p_8 , $p_{h(n)}$	$C1$, $C4$, $C5$, $C8$, $Ch(\mathit{n})$	1	Y
5	$1, 4, 5, 6, h_n$	p_1 , p_4 , p_5 , p_6 , $p_{h(n)}$	$C1$, $C4$, $C5$, $C6$, $Ch(\mathit{n})$	1	Y
6	$1, 4, 7, 8, h_n$	p_1 , p_4 , p_7 , p_8 , $p_{h(n)}$	$\mathcal{C}1$, $\mathcal{C}4$, $\mathcal{C}7$, $\mathcal{C}8$, $\mathcal{C}h(\mathit{n})$	0	Ν
	其它路径	•••	•••	均为 0	Ν

表 3	任务	T _{3, h(n),2} 的路径及其处理单元集和通信单元集
-----	----	---

序号	路径	处理单元集	通信单元集	能量权 f(i)	是否可用
1	$3, 6, h_n$	p_3 , p_6 , $p_{h(n)}$	C_3 , C_6 , $C_{h(n)}$	1	Y
2	$3, 6, 5, 8, h_n$	p_3 , p_6 , p_5 , p_8 , $p_{h(n)}$	C_3 , C_6 , C_5 , C_8 , $C_{h(n)}$	1	Y
3	3,6,5,4,7,8, <i>h</i> _n	p_3 , p_6 , p_5 , p_4 , p_7 , p_8 , $p_{h(n)}$	C3 , C6 , C5 , C4 , C7 , C8 , Ch(n)	0	Ν
4	3, 6, 5, 2, 1, 4, 7, 8, <i>h</i> _n	p_3 , p_6 , p_5 , p_2 , p_1 , p_4 , p_7 , p_8 , $p_{h(n)}$	$\mathcal{C}3$, $\mathcal{C}6$, $\mathcal{C}5$, $\mathcal{C}2$, $\mathcal{C}1$, $\mathcal{C}4$, $\mathcal{C}7$, $\mathcal{C}8$, $\mathcal{C}h(\mathit{n})$	0	Ν
5	$3, 2, 5, 6, h_n$	p_3 , p_2 , p_5 , p_6 , $p_{h(n)}$	C3 , $C2$, $C5$, $C6$, $Ch(n)$	0	Ν
6	$3, 2, 5, 8, h_n$	p_3 , p_2 , p_5 , p_8 , $p_{h(n)}$	\mathcal{C}_3 , \mathcal{C}_2 , \mathcal{C}_5 , \mathcal{C}_8 , $\mathcal{C}_{h(n)}$	0	Ν
7	$3, 2, 5, 4, 7, 8, h_n$	p_3 , p_2 , p_5 , p_4 , p_7 , p_8 , $p_{h(n)}$	\mathcal{C}_3 , \mathcal{C}_2 , \mathcal{C}_5 , \mathcal{C}_4 , \mathcal{C}_7 , \mathcal{C}_8 , $\mathcal{C}_{h(n)}$	0	Ν
8	3,2,1,4,7,8, <i>h</i> _n	p_3 , p_2 , p_1 , p_4 , p_7 , p_8 , $p_{h(n)}$	\mathcal{C}_3 , \mathcal{C}_2 , \mathcal{C}_1 , \mathcal{C}_4 , \mathcal{C}_7 , \mathcal{C}_8 , $\mathcal{C}_{h(n)}$	0	Ν
9	3,2,1,4,5,8, <i>h</i> _n	p_3 , p_2 , p_1 , p_4 , p_5 , p_8 , $p_{h(n)}$	$\mathit{C3}$, $\mathit{C2}$, $\mathit{C1}$, $\mathit{C4}$, $\mathit{C5}$, $\mathit{C8}$, $\mathit{Ch(n)}$	0	N
10	$3, 2, 1, 4, 5, 6, h_n$	$p_3, p_2, p_1, p_4, p_5, p_6, p_{h(n)}$	C_3 , C_2 , C_1 , C_4 , C_5 , C_6 , $C_h(n)$	0	Ν

表 4	任务	$T_{7, h(n)}$	2的路	径及其	处理单	元集和通	・通信単え	ī集
-----	----	---------------	-----	-----	-----	------	-------	----

序号	路径	处理单元集	通信单元集	能量权 f(i)	是否可用
1	$7, 8, h_n$	p_7 , p_8 , $p_{h(n)}$	C7 , $C8$, $Ch(n)$	0	Ν
2	$7, 8, 5, 6, h_n$	p_7 , p_8 , p_5 , p_6 , $p_{h(n)}$	C7 , $C8$, $C5$, $C6$, $Ch(n)$	0	Ν
3	$7, 8, 5, 2, 3, 6, h_n$	p7, p8, p5, p2, p3, p6, ph(n)	C7 , C8 , C5 , C2 , C3 , C6 , Ch(n)	0	Ν
4	$7, 8, 5, 4, 1, 2, 3, 6, h_n$	p_7 , p_8 , p_5 , p_4 , p_1 , p_2 , p_3 , p_6 , $p_{h(n)}$	C_7 , C_8 , C_5 , C_4 , C_1 , C_2 , C_3 , C_6 , $\mathit{C}_{\mathit{h(n)}}$	0	Ν
5	$7, 4, 5, 8, h_n$	p_7 , p_4 , p_5 , p_8 , $p_{h(n)}$	\mathcal{C}_7 , \mathcal{C}_4 , \mathcal{C}_5 , \mathcal{C}_8 , $\mathcal{C}_{h(n)}$	0	Ν
6	$7, 4, 5, 6, h_n$	p_7 , p_4 , p_5 , p_6 , $p_{h(n)}$	C7 , C4 , C5 , C6 , Ch(n)	0	Ν
7	$7, 4, 5, 2, 3, 6, h_n$	p7, p4, p5, p2, p3, p6, ph(n)	C7 , C4 , C5 , C2 , C3 , C6 , $Ch(\mathit{n})$	0	Ν
8	$7, 4, 1, 2, 3, 6, h_n$	p_7 , p_4 , p_1 , p_2 , p_3 , p_6 , $p_{h(n)}$	$\mathcal{C}7$, $\mathcal{C}4$, $\mathcal{C}1$, $\mathcal{C}2$, $\mathcal{C}3$, $\mathcal{C}6$, $\mathcal{C}h(\mathit{n})$	0	Ν
9	7,4,1,2,5,6, <i>h</i> ⁿ	p_7 , p_4 , p_1 , p_2 , p_5 , p_6 , $p_{h(n)}$	$\mathit{C7}$, $\mathit{C4}$, $\mathit{C1}$, $\mathit{C2}$, $\mathit{C5}$, $\mathit{C6}$, $\mathit{Ch(n)}$	0	Ν
10	7 1 1 2 5 8 h	n- n, n, n, n- n, n, ()		0	N

从而可得任务 *T*_{1.*k*(*n*).2}的可靠度计算结果,再由 式(10) ~式(12) 可进一步计算出 *T*_{1,sink,2}的可靠度 结果,并由此得到任务集 和 中各任务的可靠 度。图 4 至图 5 给出簇深 *n* = 5 时,部件单元失效率 (*e* = 1 - *r*;*e* 表示失效率;*r* 表示可靠率) 与任务可靠 度的关系图。

图中表明以下结果:

随着通信单元和处理单元失效率的增大,各 任务的可靠度不断降低;这说明,通过提高基本单元 的可靠性可改善任务可靠度指标。

任务 T_{3,h(5),2} 和 T_{7,h(5),2}(或 T_{3,sink,2} 和 T_{7,sink,2}) 在不考虑能量因素限制时,具有相同的可靠度,这是 与两者的拓扑对称性相一致的。

当考虑能量因素限制时,任务 T3,h(5),2(或

T_{3, sink,2})的可用路径减少到2条(如表3所示),与无能 量因素限制时相比可靠度有一定的降低,说明能量限 制对该种任务的有一定影响。

当考虑能量因素限制时,由于任务 *T*_{7,*h*(5),2}(或 *T*_{7,sink,52})没有一条可用路径,则其可靠度为0,不能完 成任务,说明能量限制对该种任务的影响是巨大的。

5 结论

WSN 系统可靠性建模的目的是为了指导可靠 性指标的正确分配以及系统拓扑组织的评价。本文 在分布式系统可靠性建模研究的基础上,充分考虑 WSN 系统具有能量限制、系统规模大、分布式的特 点,建立了基于能量约束的任务的网络系统可靠性

周 强(1974-),男,博士后,主要研究方 向为总线网络互连技术、平台电子综 合,zhouqiang_ee @buaa.edu.cn 模型。通过针对典型 WSN 簇结构的实例分析可以 看出,并不是系统内所有的路径都是能量限制任务 的实际可用路径。通过引入能量权函数建立了基于 任务的无线传感器网络系统可靠性模型,该方法使 得在分配 WSN 系统等具有能量约束条件的网络控 制系统的可靠性时可以充分结合系统的实际要求, 更全面地反映系统特性。进而对 WSN 系统的任务 级划分与拓扑结构的选择和优化提供依据和参考。

参考文献:

- Akyildiz I F, Su W, et al. Wireless Sensor Networks: A Survey[J]. Computer Networks, 2002,38(4): 393-422.
- [2] 孙利民,李建中,陈渝.无线传感器网络[M].北京:清华大学 出版社,2005.
- [3] 李凤保,李凌.无线传感器网络技术综述[J].仪器仪表学报, 2005,26(S8):559-561.
- [4] Feng Xue, Kumar P R. The Number of Neighbors Needed for Connectivity of Wireless Networks [J]. Wireless Networks. 2004,10(2):169-181.
- [5] 孙永进,孙雨耕.等.无线传感器网络1点和2点连通可靠性研究[J].传感技术学报,2004,17(3):379-385.
- [6] 张强,无线传感器网络 k 点连通可靠性的研究[J]. 传感技术 学报,2005.18(3):439-444.
- [7] Xing Liudong, Akhilesh Shrestha. QoS Reliability of Hierarchical Clustered Wireless Sensor Networks[C]// Proceedings of The 25th IEEE Intl. Performance Computing and Communications Conference, 2006:641-646.
- [8] Xing L. Integrated Modeling for Fault-Tolerant Sensor Networks Reliability and Security [C]// The 52nd Annual Reliability & Maintainability Symposium (RAMS06), Newport Beach, CA, January 2006.
- [9] Hosam M. F. AboElFotoh, S. S. Iyengar, Krishnendu Chakrabarty. Computing Reliability and Message Delay for Cooperative Wireless Distributed Sensor Networks Subject to Random Failures [J]. IEEE Transactions on Reliability, 2006,54(1):145-155.
- [10] 章国栋,陆延孝,等.系统可靠性与维修性的设计与分析 [M].北京:国防工业出版社,1997:72-77.
- [11] Callaway E H. Wireless Sensor networks: Architectures and Protocols[J]. Auerbach Publications, 2004, 12 (6):88-90.
- [12] Akyildiz I F, Stuntebeck E P. Wireless underground Sensor Networks: Research Challenges [J]. Ad Hoc Networks, 2006, 4(6):669-686.