doi: 10. 3969/j. issn. 2095 - 0780. 2013. 04. 011

HPLC-MS/MS 法测定水产品中硫酸粘菌素、杆菌肽 及维吉尼霉素 M₁ 的残留量

罗方方1,2,钱卓真2,林荣晓3,吴成业2

(1. 集美大学生物工程学院,福建 厦门 361021; 2. 福建省水产研究所,福建 厦门 361012; 3. 福建农林大学,福建 福州 350002)

摘要: 建立了水产品中硫酸粘菌素(CS)、杆菌肽(BTC)及维吉尼霉素 $M_1(VBGMM_1)$ 3 种多肽类抗生素残留量检测的 HPLC-MS/MS 法。样品经水溶液[V(甲醇):V(0.1% 甲酸水溶液)=2:5]提取,4%三氯乙酸乙腈除蛋白,乙腈饱和正己烷除脂,过 OASIS HLB(60 mg)小柱净化后,利用 HPLC-MS/MS 法,以选择反应监测模式检测,外标法进行定量分析。CS 和 BTC 在 $0.01 \sim 10.00$ mg·L $^{-1}$ 质量浓度范围内线性良好,VGMM₁ 在 $0.002 \sim 2.000$ mg·L $^{-1}$ 质量浓度范围内线性良好, R^2 均大于 0.995; 3 种多肽类抗生素的检出限分别为 CS $10 \mu g \cdot kg^{-1}$ 、BTC $10 \mu g \cdot kg^{-1}$ 、VGMM₁ $2 \mu g \cdot kg^{-1}$,定量限分别为 $20 \mu g \cdot kg^{-1}$ 、20 $\mu g \cdot kg^{-1}$ 和 $4 \mu g \cdot kg^{-1}$;选择 3 个不同浓度水平做加标回收,平均回收率在 $72.3\% \sim 103.9\%$,相对标准偏差为 $1.10\% \sim 10.92\%$ 。该方法具有操作简便、准确性高、灵敏度高和重现性好等优点,可为检测水产品中这 3 种药物的残留提供相关技术支持。

关键词: 硫酸粘菌素; 杆菌肽; 维吉尼霉素 M₁; 水产品; 液相色谱串联质谱法

中图分类号: TS 254.7

文献标志码: A

文章编号: 2095 - 0780 - (2013)04 - 0062 - 07

Determination of colistin sulfate, bacitracin and virginiamycin \mathbf{M}_1 residues in aquatic products by HPLC-MS/MS

LUO Fangfang^{1,2}, QIAN Zhuozhen², LIN Rongxiao³, WU Chengye²

- (1. College of Biology Engineering, Jimei University, Xiamen 361021, China;
 - 2. Fisheries Research Institute of Fujian, Xiamen 361012, China;
 - 3. Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract: A high performance liquid chromatography tandem mass spectrometric (HPLC-MS/MS) method was established to simultaneously detect colistin sulfuric (CS), bacitracin (BTC) and virginiamycin $M_1(VGMM_1)$ in aquatic products. We extracted the samples with methanol-0.1% formicacid(V: V=2:5), removed their protein with 4% TCA acetonitril, removed fat with acetonitrile saturated n-hexane, and then cleaned them up with OASiS HLB solid phase extraction (SPE) column. Next, we detected the analytes by HPLC-MS/MS under the selected reaction monitoring mode and quantified them by external standard method. Results show that CS and BTC have good linearity between the peak areas in concentrations ranged 0.01 ~ 10.00 mg·L⁻¹, VGMM₁ as well in concentrations ranged 0.002 ~ 2.000 mg·L⁻¹, and the correlation coefficients (R^2) are all more than 0.995. The detection limits of CS, BTC and VGMM₁ are 10 μ g·kg⁻¹, 10 μ g·kg⁻¹ and 2 μ g·kg⁻¹ respectively, and the quantification limits are 20 μ g·kg⁻¹, 20 μ g·kg⁻¹ and 4 μ g·kg⁻¹ respectively. Three samples in three different concentration levels are chosen for recovery, getting a 72.3% ~ 103.9% aver-

收稿日期: 2012-10-12; 修回日期: 2012-12-29

资助项目:福建省省属公益类科研院所基本科研专项(2011R1003-5)

作者简介: 罗方方(1985 -), 女,硕士研究生,从事食品安全与检测研究。E-mail: lzxdlfu2007@ yahoo. cn

通信作者: 吴成业(1953 -), 男, 研究员, 从事水产品加工与检测研究。E-mail: wcy@fjscs. ac. cn

age recovery rate, and a relative standard deviations varying from 1. $10\% \sim 10.92\%$. In conclusion, method proposed has advantages of simplicity, sensitivity and repeatability, which provide technical support for the detection of these 3 kinds of drug residues in aquatic products.

Key words: colistin sulfate; bacitracin; virginiamycin M₁; aquatic products; liquid chromatography tandem mass spectrometry

硫酸粘菌素(CS)、杆菌肽(BTC)和维吉尼霉 素 M₁(VGMM₁)均属于多肽类抗生素,具有抗病毒 和真菌感染的作用,常被用于牛、猪、家禽、水产 养殖动物等的兽药和饲料中, 以促进动物生长和预 防动物疾病[1-3]。抗生素作为畜禽饲料添加剂在动 物体内的残留可通过动物可食组织进入人体,进而 危害人类的健康, 因此许多国家规定了此类药物的 最高残留限量。中国也规定了动物组织、牛奶等此 类药物的最高残留限量: CS 在猪、牛、羊、兔、 鸡的脂肪、肌肉、肝中为 150 μg·kg⁻¹, 肾中为 200 μg·kg⁻¹; BTC 在猪、牛、禽的可食组织中为 500 μg·kg⁻¹; VGMM₁ 在猪的脂肪、肌肉、肝中分 别为 100 μg·kg⁻¹、300 μg·kg⁻¹、400 μg·kg⁻¹, 在禽类的脂肪、肌肉、肝中分别为 100 μg·kg⁻¹、 300 μg· kg⁻¹、200 μg·kg^{-1 [4]}, 但没有规定在水产 品中的残留限量。

国内外有关此类药物残留检测的报道多集中在动物组织^[5-11]、饲料^[12-13] 和牛奶^[14-17] 样品中,而有关水产品中此类药物的研究检测方法鲜有报道。为保障中国水产品质量安全,研究 HPLC-MS/MS 法同时检测水产品中的 CS、BTC 和 VGMM₁ 具有实际意义。

1 材料与方法

1.1 仪器与试剂

液质 联 用 仪(Thermo Fisher 公 司 出 品); ZZDCH16 水浴氮气吹干仪(广州智真生物科技有限公司出品); KQ-600DB 型数控超声波清洗器(昆山市超声仪器有限公司出品); DT5-5 离心机(北京时代北利离心机有限公司出品); 固相萃取净化柱(Oasis HLB,Waters 公司出品); CAPCELL PAK $C_{18}(2.0 \text{ mm} \times 150 \text{ mm}, 5 \text{ μm}, \text{SHLSEIDO}$ 公司出品), 0.45 μm 滤膜。

CS 标准品, 纯度为 78.3% (Dr. Ehrenstorfer. GmbH 公司出品), BTC 标准品, 纯度为 77.0% (Dr. Ehrenstorfer. GmbH 公司出品), VGMM₁ 标准品, 纯度为 95% (Sigma-Aldrich 公司出品); 甲醇、

乙腈、正己烷、甲酸均为色谱纯(美国 Tedia 公司出品);三氯乙酸分析纯(中国医药上海化学试剂公司出品);试验用水为 Milli-Q synthesis (Milli-Q 超纯水系统)制备的超纯水。

1.2 标准溶液的配制

准确称取适量的 CS、BTC 和 VGMM₁ 标准品,CS 和 BTC 用 0.1% 的甲酸水溶液溶解配制成 200 mg·L⁻¹的标准储备液,VGMM₁ 用甲醇溶解配制成 200 mg·L⁻¹的标准储备液,-18 $^{\circ}$ 保存。分析时分别用相应定容液稀释到所需浓度使用。

1.3 样品前处理

样品制备为取样品可食部分,用组织捣碎机捣碎,搅拌均匀,放入密封袋,贴上样品信息标签, -18 ℃储存备用。

提取与净化是准确称取已制备好的样品 2.00 g (精确至 0.01 g) 置于 50 mL 具塞塑料离心管中, 加入1 mL 4% 三氯乙酸乙腈溶液, 涡旋 30 s, 加入 提取液[V(甲醇):V(0.1% 甲酸溶液)=2:5]10mL, 涡旋1 min, 超声波超声5 min, 3 500 r·min⁻¹ 离心 5 min, 取上清液至另一 50 mL 离心管中, 样 品残渣再加入10 mL 提取液重复提取1次,合并上 清液。合并上清液于50 mL 离心管加入乙腈饱和正 己烷 10 mL, 震荡 20 次, 3 500 r·min⁻¹, 离心 5 min, 弃去上层液体, 下层液体再加入 10 mL 已经 饱和正己烷重复操作除脂。将除脂后下层液体过 Oasis HLB(60 mg)小柱净化。小柱先用甲醇、水各 3 mL 进行预活化、上样、用 10 mL 水洗涤、再用 3 mL 甲醇洗脱, 收集洗脱液于玻璃试管中。将洗脱 液在 40 ℃ 水浴中氮气吹干, 用样品溶解液 [V (0.1% 甲酸水溶液): V(乙腈) = 8:2]1 mL 复溶, 混匀,过0.45 µm 滤膜,供液相色谱串联质谱仪 测定。

1.4 仪器测定

色谱条件为色谱柱 CAPCELL PAK C_{18} 柱(2.0 mm×150 mm, 5 μ m); 流动相为 0.1% 甲酸水溶液(A)+0.1% 甲酸乙腈(B), 梯度洗脱程序见表 1; 流速为 200 μ L·min⁻¹; 柱温 20 $^{\circ}$ C; 进样量为 15 μ L。

表 1 梯度洗脱程序

Tab. 1 Gradient elution process

	0.1% 甲酸/%	0.1% 甲酸乙腈 /%						
t/min	0.1% acetate-acid	0.1% acetate-acid acetonitrile						
0	90	10						
2	90	10						
4	25	75						
9	25	75						
10	90	10						
12	90	10						

质谱条件为电喷雾(ESI)离子源;扫描方式为正离子扫描;检测方式为选择反应监测(SRM);电喷雾电压为 4 500 V;鞘气为氮气,压力为 35 psi,辅助气为氮气,流速为 0.6 L·min⁻¹;碰撞气为氩气;离子源温度为 300 ℃;在线切换阀 0~4 min 至废液,4~9 min 进质谱分析,9~12 min 至废液。定性离子对、定量离子对、碰撞气能量见表 2。

表 2 3 种抗生素定性离子对、定量离子对、碰撞能量

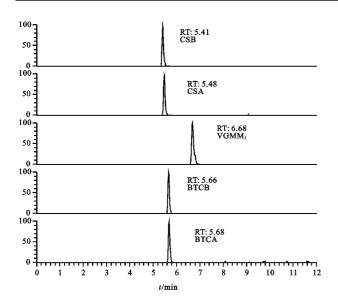
Tab. 2 Quality SRM transition, quantity SRM transition and collision energy of 3 antibiotics

化合物 compound	定性离子对/m/z quality SRM transition	定量离子对/m/z quantity SRM transition	碰撞能量/eV collision energy		
杆菌肽(BTC)	712/198. 81	712/198. 81	39		
	712/226.67		30		
	705/198.81	705/198.81	39		
	705/252.76		48		
硫酸粘菌素(CS)	391/384.77	391/384.77	11		
	391/378. 84		14		
	386/379.95	386/379.95	10		
	386/374.09		14		
维吉尼霉素 M ₁ (VGMM ₁)	525. 3/337. 0	525. 3/337. 0	20		
	525. 3/355. 0		15		

2 结果与讨论

2.1 流动相的确定

BTC 和 CS 易溶于酸性水溶液,微溶于甲醇、乙腈等有机试剂。VGMM₁ 易溶于甲醇、乙腈、乙酸乙酯、氯仿、乙醚等极性溶剂。文献报道分离此类药物的流动相一般主要有铵盐-乙腈(甲醇)^[7,11-12]或者酸性水溶液-乙腈(甲醇)^[5-6,8-10,13-17]。该试验中比较了 0.1% 甲酸水溶液-甲醇、0.3% 乙酸水溶液-甲醇、0.1% 甲酸水溶液-乙腈、10 mmol·L⁻¹乙酸铵-乙腈和 0.1% 甲酸水溶液-0.1% 甲酸乙腈 5 种流动相的分离效果。结果表明,使用 0.1% 甲酸水溶液-0.1% 甲酸水溶液-0.1% 甲酸水溶液-0.1% 甲酸水溶液-0.1% 甲酸乙腈作为流动相时目标物的响应值较好、分离情况良好,故选择 0.1% 甲酸水溶液-0.1% 甲酸乙腈作为流动相。


2.2 色谱柱的选择

试验中比较了 UITIMATE XB- C_{18} (5 μ m, 2.1 mm \times 150 mm)、Agilent ZORBAX Rx- C_{18} (5 μ m,

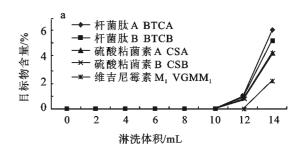
2.1 mm × 150 mm)和 CAPCELL PAK- C_{18} (5 μ m, 2.0 mm × 150 mm)3 种色谱柱对 CS、BTC 和 VGMM₁的分离效果。结果表明 CAPCELL PAK- C_{18} 柱对药物的分离较好,且得到的色谱峰对称性好,峰型尖锐。前两者 CS 峰型有裂峰和拖尾现象,故试验确定选用 CAPCELL PAK- C_{18} 柱(5 μ m, 2.0 mm × 150 mm)。

2.3 质谱条件的优化

试验用 0.50 mg·L⁻¹的多肽标准溶液对质谱条件进行了一系列优化。由于在负离子模式下响应值较低,故选用正离子扫描方式。然后分别进行一级质谱分析、二级质谱分析和选择反应监测分析,接着对碰撞能量、电喷雾电压、离子源温度、辅气压力、鞘气压力进行优化,确定定性定量离子对,兼顾各成分的灵敏度,试验建立了最佳质谱条件。优化结果见表 2。各成分的选择反应监测(SRM)色谱图见图 1。

0.002 mg·L⁻¹)SRM 色谱图

Fig. 1 SRM chromatogram of standard reference materials of 3 antibiotics (CS 0.01 mg \cdot L $^{-1}$, BTC 0.01 mg \cdot L $^{-1}$, VGMM $_1$ 0.002 mg \cdot L $^{-1}$)


2.4 提取方法的选择

试验比较了 0. 1% 甲酸水溶液-甲醇和 0. 1% 甲酸水溶液-乙腈对提取效果的影响,结果基本无差异,从经济和毒性两方面考虑,选用 0. 1% 甲酸水溶液-甲醇作为提取剂。比较了不同比例的提取剂的提取效果,确定最佳体积比为 V(0. 1% 甲酸水溶液): V(甲醇) = 5:2。由于提取剂提取完分析时杂质峰干扰较大,故在前期提取时加入 4% 三氯乙酸乙腈除蛋白,结果杂质峰干扰降低,且 CS 响应值增大。试验对不同提取次数进行了比较,提取 1次各组分回收率均达 95% 左右,提取 2 次各组分基本提取完全,增加提取次数,各组分回收率不再变化。

试验比较了不同体积比的 0.1% 甲酸溶液与甲醇(乙腈)(5:5, 7:3, 8:2, 9:1)、V(0.3% 乙酸):V(乙腈)=8:2、乙腈、超纯水作为样品溶解液时对 3 种检测物质保留时间和响应值的影响。结果表明 V(0.1% 甲酸):V(乙腈)=8:2 时 3 种药物的响应值比较高,峰型尖锐,无拖尾现象。

2.5 净化方法的选择

CS、BTC、 $VGMM_1$ 样品净化方法主要采取 C_{18} 和 HLB 固相萃取柱。该试验比较了 3 种不同固相

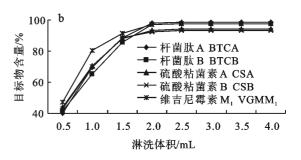


图 2 淋洗曲线和洗脱曲线 Fig. 2 Wash curve and elution curve

萃取柱 (L- C_{18} 、VARIAN Bond Elut C_{18} 和 Oasis HLB)的提取效果,结果 Oasis HLB 提取效果最好;随后比较了 3 种不同规格的 Oasis HLB 萃取小柱 (60 mg、200 mg、500 mg)的萃取效果,显示三者 的回收率和净化效果相当。考虑经济因素,试验采用 Oasis HLB 60 mg 的固相萃取柱净化样品。

试验采用超纯水作为淋洗液,淋洗的目的是在保留目标物的前提下最大程度的将干扰物洗去。试验用不同体积的超纯水淋洗,收集淋洗液检测,绘制淋洗曲线(图2-a)。加入10 mL的淋洗液时目标物质无损失;加入12 mL洗脱液时BTC的损失量最大(0.93%);加入14 mL时BTC损失达6.23%。故选择淋洗液的体积为10 mL,此时可较大程度的去除干扰物且保留分析物。

试验洗脱液选用极性较强的甲醇,有利于目标物从 HLB 小柱上洗脱下来。收集不同洗脱体积下的洗脱液,检测目标物含量,绘制洗脱曲线(图 2-b)。可知当洗脱体积为 2.5 mL 时基本可以将目标物全部洗脱下来。为了较充分地将目标物洗脱下来,选择 3 mL 的甲醇作为最终洗脱液体积。

2.6 样品基质效应的消除

化学分析中样品中存在待测物以外的物质, 对待测物会造成增强或抑制的效果。为了考察 样品基质效应的影响,笔者做了2组对比试验。 第一组为用定容液作为稀释液配成的 3 种物质的混标,第二组为用制备好的空白试样提取液作为稀释液配成的 3 种物质的混标。当基质效应(ME)值等于或接近 100 时不存在基质效应;当 ME 值大于 100 时基质对待测化合物有离子增强作用;当 ME 值小于 100 时基质对待测化合物

有离子抑制作用。样品基质对目标化合物的影响作用见表 3。基质效应对 CS 和 BTC 影响比较明显。为了消除基质效应的影响,所以选择阴性样品制备的提取液先加入 5 倍的标准品再用定容液稀释 5 倍检测,使样品液和标准品具有一致的离子化条件。

表 3 不同条件下基质效应的计算结果

Tab. 3 Calculation results of matrix effect under different conditions

 化合物	峰面积	基质效应/%			
compound	Set 1	Set 2	matrix effect		
硫酸粘菌素 A CSA	122 648	160 512	130. 9		
硫酸粘菌素 B CSB	56 680	140 229	247. 4		
杆菌肽 A BTCA	166 165	317 457	191. 0		
杆菌肽 B BTCB	105 641	398 120	376. 9		
维吉尼霉素 M ₁ VGMM ₁	164 619	167 799	101. 9		

2.7 线性范围、检出限和定量限

准确移取适量标准储备液,用空白样品提取液分别配成 BTC 和 CS 质量浓度为 $0.01~\text{mg} \cdot \text{L}^{-1} \setminus 0.05~\text{mg} \cdot \text{L}^{-1} \setminus 0.50~\text{mg} \cdot \text{L}^{-1} \setminus 1.00~\text{mg} \cdot \text{L}^{-1} \setminus 2.50~\text{mg} \cdot \text{L}^{-1} \setminus 5.00~\text{mg} \cdot \text{L}^{-1} \setminus 10.00~\text{mg} \cdot \text{L}^{-1}$, $VGMM_1$ 质量浓度为 $0.002~\text{mg} \cdot \text{L}^{-1} \setminus 0.010~\text{mg} \cdot \text{L}^{-1} \setminus 0.100~\text{mg} \cdot \text{L}^{-1} \setminus 0.200~\text{mg} \cdot \text{L}^{-1} \setminus 0.500~\text{mg} \cdot \text{L}^{-1} \setminus 1.000~\text{mg} \cdot \text{L}^{-1} \setminus 2.000~\text{mg} \cdot \text{L}^{-1}$ 。 以 CSA、CSB、BTCA、BTCB 和 VGMM₁ 的峰面积为纵坐标,质量浓度为横坐标绘制标准曲线,计算线性回归方程,线性相关系数(R^2)。标准曲线方程,线性相关系数及检出限,定量限数

据见表4。

2.8 方法的准确度和精密度

2. 8. 1 不同加标水平的回收试验 采用标准添加法,在不含 3 种多肽类抗生素的凡纳滨对虾($Penaeus\ vannamei$)样品中添加 CS、BTC 质量浓度为 0. 02 mg· L⁻¹、0. 20 mg· L⁻¹、1. 00 mg· L⁻¹和 VGMM₁质量浓度为 0. 004 mg· L⁻¹、0. 040 mg· L⁻¹、0. 200 mg· L⁻¹,进行 3 个水平回收率试验。每个添加浓度做 6 个平行试验,结果见表 5。在 3 个添加水平上 3 种多肽的平均回收率为 72. 3%~103. 9%,相对标准偏差在 10. 92% 以内。该方法重现性良好。

表 4 线性方程、相关系数、检出限和定量限

Tab. 4 linear equation, correlation coefficient, limit of detection, limit of quantification

化合物 compound	线性方程 linear equation	相关系数(R ²) correlation coefficient	检出限∕µg•kg⁻¹ LOD	定量限/µg·kg ⁻¹ LOQ	
硫酸粘菌素 A CSA	y = 130 744 + 129 666x	0. 999 3	10	20	
硫酸粘菌素 B CSB	$y = -81\ 165.\ 6 + 130\ 043x$	0. 999 4	10	20	
杆菌肽 A BTCA	$y = 444 \ 357 + 54 \ 915.7x$	0.9962	10	20	
杆菌肽 B BTCB	y = 290763 + 55770.1x	0.9962	10	20	
维吉尼霉素 M ₁ VGMM ₁	$y = 202\ 557 + 267\ 853x$	0. 999 3	2	4	

%

表 5 凡纳滨对虾中添加回收率与精密度试验数据(n=6)

Tab. 5 Recovery and precision of drugs spiked in P. vannamei

项目 item	加标水平/μg·kg ⁻¹ spiked level		硫酸粘菌素 A CSA			杆菌肽 B BTCB	维吉尼霉素 M ₁ VGMM ₁	
回收率/% recovery	20 20 4		79. 20	91. 6	100. 0	102. 8	86. 4	
	200	200	40	83. 40	79. 8	101.7	103. 9	86. 6
	1 000	1 000	200	77. 00	72. 3	94. 9	100. 0	83. 4
相对标准偏差/% RSD	20	20	4	10. 92	5. 57	5. 18	3. 10	6.09
	200	200	40	8. 32	6. 22	2. 38	2. 68	5. 98
	1 000	1 000	200	2. 90	2. 73	8. 81	1. 10	3. 01

表 6 不同水产品中添加回收率与精密度试验数据(n=6)

Tab. 6 Recovery and precision of drugs spiked in different aquatic products

化合物 compound	罗非鱼 T. nilotica		草鱼 C. idellus		点带石斑鱼 E. coioides		日本鳗鲡 A. japonica		凡纳滨对虾 P. vannamei		杂色鲍 H. diversicolor		锯缘青蟹 S. serrata	
	回收率	RSD	回收率	RSD	回收率	RSD	回收率	RSD	回收率	RSD	回收率	RSD	回收率	RSD
硫酸粘菌素 A CSA	93.7	1. 92	102.8	3. 69	100. 5	1. 90	88. 4	7. 05	88. 4	4. 36	82. 4	2. 86	80. 3	4. 44
硫酸粘菌素 B CSB	88. 0	4. 77	94. 3	1. 78	96.0	1. 82	85.3	8. 20	83. 3	5.00	80. 8	1.82	80. 3	4. 61
杆菌肽 A BTCA	97.7	2. 28	103. 3	2. 31	92. 5	4. 95	101.7	3.04	102. 6	2. 52	95. 2	4. 43	94. 2	2. 17
杆菌肽 B BTCB	107. 5	2. 91	94.8	2. 93	104. 4	7.40	103.7	3. 39	106.0	1.59	101.5	5. 39	102. 7	2. 09
维吉尼霉素 M ₁ VGMM ₁	87. 0	1.06	86.8	2. 68	86.4	2. 05	81.8	7. 53	81.9	5.36	76. 9	5.00	78. 9	4. 01

2. 8. 2 不同样品加标回收试验 分别选取不含 3 种多肽抗生素的罗非鱼($Tilapia\ nilotica$)、草鱼($Ctenopharyngodon\ idellus$)、点带石斑鱼($Epinephelus\ coioides$)、日本鳗鲡($Anguilla\ japonica$)、凡纳滨对虾、杂色鲍($Haliotis\ diversicolor$)和锯缘青蟹($Scylla\ serrata$),在 CS、BTC 添加质量浓度为 0. 20 mg·L⁻¹, $VGMM_1$ 添加质量浓度为 0. 040 mg·L⁻¹的水平上做加标回收率试验,结果见表 6。可知 3 种多肽的平均回收率为 76. 9%~107. 5%,相对标准偏差在 8. 20% 以内。

3 结论

文章建立了水产品中3种多肽类抗生素残留检测的HPLC-MS/MS法。用不同水产品做加标回收验证,平均回收率为76.9%~107.5%,相对标准偏差在8.20%以内,表明该方法具有良好的实用性。该方法具有操做简便、准确性好、灵敏度高、重现性好等优点,能满足国内外检测标准要求,可用于水产品中3种多肽类抗生素的残留检测。

参考文献:

- [1] MOATS W A, LESKINEN L. Determination of virginiamycin residues in swine tissue using high performance liquid chromatography [J]. J Agric Food Chem, 1988, 36(6): 1297-1300.
- [2] 耿志明,陈明,许大光,等.高效液相色谱法测定猪组织中维 吉尼亚霉素 M_1 的残留 [J].中国兽药杂志,2005,39(2):10 -13.
- [3] 孙兴权,李哲,林维宣. 动物源性食品中多肽类抗生素残留检测技术研究进展[J]. 中国食品卫生杂志,2008,20(3):263-266.
- [4] 中华人民共和国农业部. 中华人民共和国农业部公告第 235 号 动物性食品 中兽药最高残留限量 [EB/OL]. (2002-12-24) [2012-06-24]. http://www.moa.gov.cn/zwllm/tzgg/gg/200302/t20030226_59300.html.
- [5] MASCHER D G, UNGER C P, MASCHER H J. Determination of neomycin and bacitracin in human or rabbit serum by HPLC-MS/MS
 [J]. J Pharmaceutical Biomed Anal, 2007, 43(2): 691-700.
- [6] MA Z, WANG JP, GERBER JP, et al. Determination of colistin in human plasma, urine and other biologica samples using LC-MS/ MS[J]. J Chromatogr B, 2008, 862(1/2): 205-212.
- [7] 陈小霞, 岳振峰, 叶卫翔, 等. 液相色谱串联质谱法快速测定 牛奶与鸡蛋中的维吉霉素 M_1 残留量 [J]. 分析测试学报, 2009, 28(11): 1328 1331.

- [8] 林维宣, 孙兴权, 田苗, 等. 动物组织中粘杆菌素、杆菌肽及维吉尼霉素残留量的液相色谱-串联质谱检测[J]. 分析测试学报, 2009, 28(2): 212-215.
- [9] JANSSON B, KARVANEN M, CARS O, et al. Quantitative analysis of colistin A and colistin B in plasma and culture medium using a simple precipitation step followed by LC/MS/MS [J]. J Pharmaceut Biomed Anal, 2009, 49(3): 760-767.
- [10] 苏萌, 艾连峰, 段文仲, 等. 高效液相色谱-串联质谱法测定 动物源食品中粘杆菌素、多粘菌素 B 的残留量[J]. 分析试 验室, 2012, 31(3): 73-77.
- [11] 魏云计,冯民,刘艳,等. 液相色谱-电喷雾电离三重四级杆质谱测定畜禽肝脏中维吉尼亚霉素 M_1 的残留量[J]. 分析试验室,2012,31(4): 50-53.
- [12] 任义广, 曲志勇, 王家春, 等. 液相色谱-质谱/质谱快速测 定饲料中杆菌肽方法的研究[J]. 广州饲料, 2010, 19(10): 28-30.

- [13] 黄永辉. 超高效液相色谱-串联质谱法测定饲料中的维吉尼霉素 M₁[J]. 色谱, 2011, 29(10): 962-966.
- [14] WAN C H, HO C, SIN D W, et al. Detection of residual bacitracin A, colistin A and colistin B in milk and animal tissues by liquid chromatography tandem mass spectrometry [J]. Anal Bioanal Chem, 2006, 385 (1): 181-188.
- [15] 林维宣, 孙兴权, 田苗. 液相色谱-串联质谱法检测牛乳中多 肽类抗生素残留量[J]. 中国乳品工业, 2009, 37(3): 46-48.
- [16] 刘佳佳,金芬,佘永新,等.液相色谱-串联质谱法测定牛奶中5种多肽类抗生素[J].分析化学研究报告,2011,39(5):652-657.
- [17] 刘琪, 孙雷, 张骊. 牛奶中粘菌素和杆菌肽残留的固相萃取超高效液相色谱-串联质谱法测定[J]. 中国兽药杂志, 2011, 45(7): 17-20.