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Abstract

We give an expository survey on the subject of the Yamabe-type problem and
applications. With a recent technique in hand, we also present a simplified proof of
the result by Chang-Gursky-Yang on 4-manifolds.
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1 Introduction

One of the fundamental contribution of José Escobar in mathematics is his work on
the solution of the Yamabe problem on manifolds with boundary. In this paper, we
will describe some recent development on a class of fully nonlinear elliptic equations of
second order in conformal geometry, which in the special case when the equation is semi-
linear is the Yamabe equation. We will also discuss the state of the art of this type of
fully nonlinear equations on compact manifolds with boundary with natural matching
boundary conditions. The problem of finding solutions of these equations corresponds to
the problem of prescribing some (Ricci) curvatures under a conformal change of metrics
on a Riemannian manifold with some prescribed boundary curvature. Thus the problem
can be viewed as a generalization of the Yamabe problem.

Recall on a Riemannian manifold (M™, g), the full Riemannian tensor Rm decomposes

as
Rm=W @ AQ@g,

where W denotes the Weyl tensor,

1 R

A = (Ric —

n—2 =1
denotes the Schouten tensor, and @ is the Kulkarni-Nomizu wedge product (see [3], p

110).
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Under a conformal change of metrics g, = e ?“g, the Weyl curvature changes point-
wisely as W,, = e ?“W,. Thus all the information of the Riemannian tensor under a
conformal change of metrics is reflected by the change of the Schouten tensor:

\V4 2
Ay = Ay + {Vu+ du® du — %g} (1)

It is thus natural to study the equation (1) and to consider the eigenvalues of the Schouten
tensor. Denote oy (A,) the k-th elementary symmetric function of the eigenvalues of the
Schouten tensor. By this we mean

1
o1(4g) =D A= mRm
O'Q(Ag) = Z/\Z)\j
1<J
1 2 2
=5 (77 Ag]” = [A,[)
n 9 1
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on(A,) =det(A,).

The equation
Uk(Agu) =f (2)

for a given function f, is a fully nonlinear, Monge-Ampere-type equation which in the
case, when k£ = 1 and when f is the constant function, is the Yamabe equation. We remark
that in a Riemannian setting, the correct version of equation (2) should be written as

Uk(gvlegJ =/ (3)

where g7' A, denotes the (1,1) tensor g*(A,);.

For a symmetric n x n matrix M, we say M € T'} in the sense of Garding ([20]) if
0r(M) > 0 and M is in the connected component of {o; > 0} containing the identity
matrix. There is a rich literature concerning the Dirichlet problem of solving the equation

or(V?u) = f, (4)

for a given positive function f (see [7], [33], [19], [6]). Some of the techniques in these
work can be modified to study equation (3). However, there are features of the equation
(3) that are distinct from those of the equation (4); some of which we will explain in
Section 2 of this article.

When the manifold (M, g) is locally conformally flat, and when k& # %, Viaclovsky
[45] showed that the equation (3) when f is the constant function is the Euler-Lagrange
equation of the functional [ oy(4,,)dv,,. In the exceptional case when k& = n/2, the
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integral [ oy (Ay)dv, is a conformal invariant. We say g € I'} (or g in the positive k-
cone) if the corresponding Weyl-Schouten tensor A,(z) € '} for every point z € M.
We remark that when £ = 1 the Yamabe equation for prescribing scalar curvature is a
semilinear equation; hence the condition for g € I'] is the same as requiring the conformal
Laplacian operator L = —%A + R, to be positive. It turns out that the existence of
a metric with g € T} for k& > % implies the positivity of the Ricci curvature of g ([29],
[12], [24]). Hence the condition gives a constraint on the topology of the manifold.

To study the above fully nonlinear version of the Yamabe problem on manifolds with
boundary, we first recall that for most compact manifolds with boundary Escobar [18]
proved that we can conformally deform the metric to constant scalar curvature with van-
ishing mean curvature on the boundary. This tells us that the mean curvature equation is
a matching boundary condition for the Yamabe equation. A fundamental question which
arises at this stage is to define a notion of suitable boundary value problems for the given
fully nonlinear equation (3). In other words, we need to find "natural” matching bound-
ary curvatures for the o, (A4,) curvature defined on the manifold. Some of recent progress
in this direction and existence results of the corresponding boundary value problem of
fully nonlinear equations will be discussed in Section 4 below; see also [16].

In this paper, we will discuss existence and uniqueness results concerning solutions
of the equation (3), and some generalization to compact manifolds with boundary. In
Section 2 of this paper, we will give a brief survey of some known results in the past
few years for equation (3) on compact manifolds without boundary. In Section 3, we
will present a streamlined version of the proof of one of the main results in [12],[11],
[30], which corresponds to the existence of a solution for the equation (3) when f is the
constant function for k=2 and n=4. The proof depends on some a priori local estimates
of the equation, which was first established in ([26]) and later simplified and generalized
to more general equations by the second author ([14]). This latter version of the proof
has the advantage that it establishes local C? estimates directly from local C° estimates;
thus obtaining C! estimates as a consequence.

In Section 4, we will first recall some work of Escobar on the Yamabe problem and
then we summarize the work by the second author of the equation (3) on manifolds with
boundary. We remark that the matching boundary curvature proposed here is again a
nonlinear version of the mean curvature equation, but in the special case—i.e., when the
boundary is umbilic— the boundary curvature condition is reduced to the condition on the
mean curvature. In general, boundary value problems for this type of generalized Yamabe
problem remain largely open.

2 Existence of solutions on closed manifolds

In this section, we will briefly survey some of the recent development in the study of the
equation
19y ' Ag,) = 1 (5)



under a conformal change of metrics g, = e 2*g € [g] on closed manifolds (M™",g). We
will break the existence results into two different categories: the existence result starting
from the sign of some integral conformal invariants, and the existence results starting
from the assumption that g is already in T'}.

(A) Existence result from the sign of some integral invariants.

We recall that for the Yamabe problem, the Yamabe constant is defined as

Y(M,[g]) = inf /Rgudvgu.

gu€lg],Volg, =1

One can solve the equation R,, = constant, with the sign of the constant depending on
the sign of the Yamabe constant Y (M, [g]) ([47], [43], [2], [40]).

Thus, a natural question is whether there are some natural geometric conditions on the
sign of some conformal invariants like that of the Yamabe constant under which equation
(5) is solvable. It turns out that this question has a partial satisfactory answer in the
special case when k = 2, n = 4. In this case, we first observe that the integral [ o9(A,)dv,
is itself a conformal invariant quantity. To see this fact, we recall the Chern-Gauss-Bonnet
formula in dimension four

8wx (M) = /

[ (4a(a,) + {17, (6

The term |W,|dv, is pointwisely conformally invariant and the term y (M) is a topological,
and hence conformal invariant. In this case, it is possible to find a criterion:

Theorem 1. (Chang-Gursky-Yang [11]) For a closed 4-manifold (M, g) satisfying the
following conformally invariant conditions:

(1) Y(M,g) > 0, and

(ii) [ o2(Ay)dvy > 0;

there exists a conformal metric g, € Ty, and moreover the equation (5) is solvable.

Remark: The original proof [11] of the existence result above depends on the solution
of a family of fourth order equations involving the Paneitz operator ([38]), and some
associated 4th order () curvature named after Branson. There is a vast literature on the
study of @) curvature; the readers are referred to ([1] and [8]) for some of the recent progress
of this subject. The equation (2) becomes elliptic on 4-manifolds which admit a metric
g € T';. In the article ([12]), when the manifold (M, g) is not conformally equivalent to
(S%, g.), we provide a priori estimates for solutions to the equation (3) where f is any
given positive smooth function; the estimates were established through a contradiction
argument. To do so, we assume that there is a sequence of solutions with no a priori
bounds. Then we use a blow up analysis to deduce that the limiting metric is an entire
solution of the equation (3) on the Euclidean space (R*, dz?). The next step is to establish
a Liouville Theorem to identify all the solutions of the equation (5) on (R*, dx?)—and all



of them with the conformal invariant [ o9(A,)dv, the same as that of the standard metric
on (R* dz?) or (S%, g.). This in term implies that the manifold is conformally equivalent
to (S%, g.), a contradiction to our assumption. Finally, we apply the degree theory for
fully nonlinear elliptic equations by Y. Li ([34]) to the following path of equations

02(Ag,) =tf +(1-1) (7)

to deform the original metric to the one with constant o(A,).

In [30], based on some "local estimates” results developed by Guan-Wang ([26]),
Gursky-Viaclovsky ([30]) gave a different proof of the first part of Theorem 1 above.
The local estimates techniques were further simplified and generalized to more general
equations later by S. Chen ([14]). In this paper, we will combine all the techniques above
and present a simple, complete proof of Theorem 1 in the next section.

It turns out that in dimension 4, by some simple algebraic computation, one can see
that any metric in I' has positive Ricci curvatures. Thus, as an immediate consequence
of Theorem 1, we have the following result, which was established earlier by a different
argument by Gursky ([27]).

Corollary 1. A closed manifold (M*, g) satisfying conditions (i) and (ii) in Theorem 1
has vanishing first Betti number.

In terms of geometric applications, this circle of ideas may be applied to characterize
a number of interesting conformal classes in terms of the ratio of the conformal invariant

[ 02(A,)dV, and the Euler number.

Theorem 2. (Chang-Gursky-Yang [13]) Suppose (M, g) is a closed 4-manifold with

Y (M, g) > 0.

(D) If [,; 02(Ag)dvy > 1 [, |W,|* dvgy, then M is diffeomorphic to (S*, g.) or (RP*, g.).
(1) If M is not diffeomorphic to (S*, g.) or (RP*, g.) and [, 02(Ag)dvy = 1 [,, IWy|? du,,
then either

(a) (M, g) is conformally equivalent to (CP?, grs), or

(b) (M, g) is conformal equivalent to ((S* X S')/T, gprod)-

The theorem above is an L? version of an earlier result of Margerin ([37]). The first
part of the theorem should be compared to a result of Hamilton ([32]); where he pioneered
the method of Ricci flow and established the diffeomorphism of M* to the 4-sphere under
the assumption that the curvature operator is positive.

One might ask for a suitable generalization of Theorem 1 to manifolds of even dimen-
sion higher than four. One of the difficulty in doing so is that when n # 4, the functional
[ onj2(Ay)dv, is conformally invariant only when the manifolds are locally conformally
flat ([45]). Similarly, when k& # % and k # 2, the equation (5) is the Euler equation of
the functional [ oy(A,)dv, only when manifolds are locally conformally flat ([4]). Thus,
all the existence results of equation (5) when k£ > 2 (including those mentioned in part
(B) below) in this section are restricted to locally conformally flat manifolds. It is in this
context, Theorem 1 above has been generalized to k& < % ([23]).
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In a recent preprint ([21]), Ge-Lin-Wang established some existence result for equation
(5) under some sign condition of some conformal invariants which they have defined, and
the condition that the scalar curvature be pointwisely positive. Their result also includes
some existence result of conformal metrics with % = constant, with the sign of the

constant not necessarily positive.

(B) Existence results assuming that g is in '}

There has been a lot of progress in this direction, via different approaches. In the case
of 1 < k < n, assuming (M, g) is locally conformally flat, the existence of a metric g, € [g]
satisfying (5) has been proved by Y.Li and A. Li ([35]). They also have established the
Liouville theorem ([36]). Similar existence results have also been established by Guan-
Wang ([25]) using the parabolic flow method; see also Shen-Trudinger-Wang ([42]) for
another evolutionary approach for the cases k < 7. In the case when k > 7, the existence
result was established by Gursky-Viaclovsky [31] for all manifolds; their proof is a beautiful
interplay between the analytic and geometric aspects of the equation, and depends heavily
on the geometric property that in these cases, the Ricci curvature of the metric g is
positive. Trudinger-Wang [44] also established some Harnack inequality for metrics in
positive k-cone in this case.

There are many other work related to the study of the o(A,) equation, for example
the study of the singular set of the o} equations on punctured domains ([22]), and the
classification of the singular solutions on annular domains ([10]).

We would like to add that with the possible exception of [21], the existence result for
solutions of this geometric type of o5 equation is largely restricted to metrics in positive
k-cone. When a metric is in the negative k-cone (for example, when k£ = 2, R; < 0 and
02(4,) > 0), it is known that on any compact manifold, there are a priori C* and C*
estimates for solutions of the equation (2) depending on the data of the function f, but
there is no local C? estimates (c.f., the example by Heinz-Levy in [41], also a modification
in [42]). The reader is referred to the recent survey articles by Gursky ([28]) and by
Viaclovsky ([46]) for a more complete survey for the current status of the problem.

3 Skipping gradient estimates

In this section, we present local estimates by Chen [14] for some fully nonlinear equations.
The main technique we introduce is to derive local C? estimates directly from local C°
estimates, and obtain C' estimates as a consequence. Applying the method of local
estimates, we also give a simplified proof of the main result in Chang-Gursky-Yang [11]
[12].

We begin with prescribing a class of fully nonlinear equations which have similar
structure to the Monge-Ampere equations. Let I' be an open convex cone in R"™ with
vertex at the origin satisfying {A: A\; > 0,Vi} CI' C {A: >, \; > 0}. Suppose that F'(\)
is a homogeneous symmetric function of degree one normalized with F(1,---,1) = 1.



Consider the equation
1
F(V*u+ du ® du — EIVuIQg + A) = fe ™ +Cy (resp. fe* + Cp), (8)

where F' satisfies the following conditions in I":
(S0) F' is positive;

(S1) F is concave (i.e., % is negative semi-definite);
i0A;
(S2) F is monotone (i.e., 2F is positive).
1

The model case is when F =of with ' =T} ={\:0;, > 0,1 <14 <k}.
Theorem 3. (Chen [14]) Let u € C* be a solution to (8). Then

sup (|Vul® + |V2u|) < C(1+ sup e ")  (resp. O(1 + sup e**)),
xGBg TEB, TEB,

where C' = C(r,n, Cy, || fllc2(s,), infp, f).

The idea of proof is to derive the Hessian bounds directly from C° bounds. There is a
magic cancellation phenomenon coming from the structure of this kind of equations. The
idea of skipping gradient estimates has appeared before in the literature in the study of
complex Monge-Ampere equations by Yau [48]. The equation (8) has a more complicated
structure. In below we will show that the same idea of skipping gradient estimates also
apply to this type of real valued fully nonlinear equations.

Proof. For simplicity, we present the proof when ¢ is flat. For non-flat metrics, the
computations are the same up to negligible lower order terms.
Let A = V?u + du ® du — 5|Vul*g. The condition I'l C T gives

- —2
0<trgA=Au-— z 5 [Vul.
Thus, Au is positive and
|Vul? < CAw. (9)
We will show that Aw is bounded. Let H = n(Au+|Vu|?) = nK. Denote r? := Y a2.

Let n(r) be a cutoff function such that 0 <np <1, 7= 11n Eg and 7 = 0 outside E:r,

1
and also |Vy| < C= and |V?p| < &. Without loss of generality, we may assume r = 1
and K = Au+ [Vu|> > 1.

At the maximal point xg, we have

H; =nK +nkK; =0, (10)

and
Hij =0y K +niKj + n; K + 0Ky = (i — 20 ') K + nK;



is negative semi-definite. Using the positivity of F'¥, we get
0> F9Hy = F((ny; — 2n"'ninj) K + nKyj) > nFVEK; — C Y FUK, (11)
where we use conditions on 7.
Now we compute FK;; :
FIK;; = F9 (ugy + 2uug; + 2uug).

We denote I = F9uy and 11 = FY(2u,u; + 2uju;j). For term I, we notice that

A

2
Ajju = Wiy + 2ugug + wigy + wing — (Wt + uig) gij-

Then R
I = F9(Ajju — 2wy — 2ugug + (ufy + uktien)gij),

where FY(uuzy) = FY(ujuy) because F is symmetric. Now using (10) to replace uy;
and Ukl yields

I = F9 A5+ F9(—2upuy — 2u;(—2uuy; — %K) + (IV2ul]? + ug(—2uuy, — %K))gﬁ).
By (9) and the conditions on 7, we have

I Z Fijzzlij,ll +Fij(—2uliulj —|—4ujululi + (\V2u|2 — 2ukululk)gij) — C Z F”'ﬂf% (1 + ]V2u]%)

For term II, we use the formula
Aiji = Uijr + uitg + U — UgUkgig

to obtain B )
II = FZJ (2uliulj + QUZ(AUJ — QUinl -+ ukuklgij)).

Combining term I and term II together, we find that
Finij Z Fiinlel —|— Fij(—2uliulj —|— 4ujuluh~ —|— (|V2u|2 — 2ukululk)gzj)
‘f‘Fij (2uliulj + 2114141‘]"[ — 4uiuﬂul + 2ukuklulgij) — C Z F“T]_%(l + |V2U|%>

Now comes the key observation of the proof: three terms from I cancel out three terms
from II. Thus, after the cancellations we arrive at



Now returning to (11), applying n on both sides and using (12) produces

0 > 9’FIK;—CY F'nK
> ﬁZFiinj,u + 772Fij|V2U’291j + 772Fij(2ulleij,l) - CZ FU (14| Vul + U%‘V%‘%):

where we have used the fact that K < C|V?u| 4 C and (9). By the concavity of F, we
have F9 A;;; > (fe ). Hence,

0 > 7Y FUV2ul +n?(fe™ )y + 22w (fe ) — €Y FU1 +n|V2ul + 02 |V2ul?)

> NPV - C = Cn|V2ul — Cn2 [V2ul?),

where in deriving the second inequality we have applied the inequality Y, F* > 1. This
gives (1|V?ul)(xo) < C. Thus, for x € Bz, we conclude that H = Au +|Vul® is bounded.
As a result, Au and |Vu|* are both bounded. To get the Hessian bounds, consider
the maximum of 7(V?u + du ® du) over the set (z,&) € (By,S"). We can perform similar
computations as before using the inequality n|Vu|? < C' to obtain the Hessian bounds. [

In the special case when F' = ak% , Theorem 3 was proved by Guan-Wang [26] for the
case when F = fe™?* and later observed by Gursky-Visclovsky [30] for the case when
F = fe

Now we are in the position to give a simplified proof of the main result in [11] [12]. The
proof presented here combines the result in Theorem 3 and some techniques introduced
by Gursky-Viaclovsky in their works [30] [31]. The following is a more general theorem
than Theorem 2.1.

Theorem 4. (Chang-Gursky-Yang [11] [12]) Let (M, g) be a compact connected four-
manifold. Suppose that (M, g) is not conformally equivalent to (Sy,g.), where g. is the
standard metric on the sphere. If Y (M, [g]) and [, 0o are both positive, then giwen a
positive function f there exists a metric g € [g] such that o2(A;) = f.

Proof. The proof consists of two parts: in (A), we deform the metric such that the oy
curvature is positive; in (B), we deform it again such that oy = 1.

(A). Let the background metric g be the Yamabe metric such that R, is a positive

constant. Let A" = A+ £(tryA)g. Under a conformal change § = e~ "¢,

- 1 1—1
A= AL = Viu+ du® du — §|Vu|29 + T(Au — |Vul*)g + A".
We can choose a large number © such that

1 ]
xr@:ﬂm%+g&m
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1
is positive definite. Let f(x) = 0§ (A,®). Thus, we have A;® € I'j and f is positive.
Consider the following path of equations for —© <t < 1:

1 1 1—-t
o3 (Vu + du ® du — §|Vu|29 + T(Au — [Vu]?)g + AL) = f(x)e™. (13)

We will use the continuity method. Let S = {t € [-©,1] : 3 a solution u € C**(M) to
(13) with A* € I'7}. At t = —O, we have u = 0 is a solution. Hence, S is nonempty. At a
solution wu, the linearized operator L' : C**(M) — C*(M) is invertible and the implicit
function theorem implies that S is open. To show § is closed, it remains to establish a
priori estimates for solutions to (13).

At the maximal point xy of u, we have |Vu| = 0 and V2u(:150) is negative semi-definite.

Hence, Au(xg) < 0. By the Newton-MacLaurin inequality, 02 < ‘/Téal. Then

A 6 o 6 6
(g71Ah < %Ul(glAt) = %(3 —2t)(Au — |Vul?) + %trg A, < C.

N o=

f(Io)(f%(rO) =0

Hence, u is upper bounded. Now by Theorem 3, we have |Vu| < C. Therefore, sup,, u <
infyru + C. To get C° estimates, we only need to show that sup,,u is lower bounded.
Integrating the equation gives

C€4supMu 2/ f264udv"q:/ 02(91At>d%:/ Uz(gflAt)deg,
M M M

where in the second equality we use dV; = e~**dV,. Note that o5(§ ' A") = oa(A) +2(1 —
£)(2 — t)o2(A) and by assumption, the conformal invariant Jy; 02 is positive. Thus, the
above formula becomes

Cetsmpn > / (02(A) + ;(1 —1)(2 — )02 (A))dV, > / oa(A)dV; = / o2(Ag)dVy > 0.

M

This gives a lower bound of sup,, u.

Once we have C° bounds, by Theorem 3, we get C? estimates. The equation becomes
uniformly elliptic and concave. Higher order regularity then follows from standard elliptic
theories. As a result, at ¢ = 1, there exists a solution such that g, (A") = g4(A) > 0.

(B). We still denote the metric obtained in (A) by ¢. Let A = V2u + du ® du —
$|Vul|?g + A,. Now we want to solve

1 1
03 (V?u + du @ du — §|Vu|2g +Ay) = f(z)e

with A € I'J. Let ¢(t) € C'[0,1] satisfies 0 < ¢ < 1, (0) = 0, and ¢ = 1 for t >
Consider the following path of equations for 0 <t < 1 with A+ S, eTs:

N —=

1 1 2
03 (V2u + du ® du — §|Vu]29 +A,+5,)=(1- t)(/M e Y5 + ((t) fe ™, (14)

10



where S, = (1—¢ (t))(\/ié\/g% g—A,). We will use the Leray-Schauder degree theory. If the
degree is nonzero at t = 0 and we have a priori estimates for (14), by homotopy-invariance,
there exists a solution at ¢t = 1.

It is not hard to show that the degree is nonzero at ¢ = 0. In fact, by maximal principle
u = 0 is the unique solution to

%Vu%—du@du——Vu g+—V5g /6_5“ 3
o3 ( [Vl 7 ) = (M )

The linearized operator P : C?%(M) — C*(M) at u = 0 is

P(<Z>)=—A¢>+2V / "

which is invertible. Consequently, the problem reduces to establishing a priori estimates.
Again using Theorem 3, we only need to derive C° estimates.

We begin by proving the boundedness of the integral term in (14). At the maximum
point zo, then Vu = 0, and V?u is negative semi-definite. Therefore,

(1 )( /M e)E < (1 1) /M e 4 C(t) (o) e
o} (VPu(o) + Ay o) + 5,(20)) < 0} (Ag o) + Sy(x0)) < €. (15)

Now we prove that infy; u > —C. Since the proof is easier for ¢ € [0,1 — ¢] for any
small fixed e, we present here the proof when ¢t — 1.
We will apply the blow-up argument. Suppose on the contrary there is a sequence of

solutions {u'} with ¢; — 1 such that u’(p;) = inf u* — —oo and p; — po. Let ¢; = einfe’ _,

40 and ¢ be the injectivity radius of (M ,g). For simplicity, we denote the metric e~y

by g; and the Schouten tensor A; by A;.
Using the normal coordinates at p;, we define the mapping

T,:B(0,£)CR*— M
T — exp, (&) =¥,
where exp is the exponential map. On R*, define the metric g; = ¢; >7*g and the function

@' = u'(7;(x)) — In¢;. Denote the metric e 2" g; by g;. Then @'(0) = u'(p;) — In¢; = 0 and
@'(x) > 0. Moreover, since t; — 1, we have ((t;) = 1. Therefore, @’ satisfies

1 . . . 1 . i 2 ~;
o (V3 i @y, dit = 5[V, 0P+ Ag) = 1= 1)( [ )+ (T e
M

on B(0, £) in R%. Note that g; tends to the Euclidean metric ds®. By (15), the integral
term in the above equation is bounded. Hence, by Theorem 3 and the fact that @* > 0,

we get 4 4
sup (|Vg,a'| + \V;ﬂzl) < C(r).

B(0,r)
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Integrating from zero, we have

S(up)(lﬂil + Vg a'[* + [Vg,a']) < C(r).
B(0,r

Since f(7;(x)) — f(po), the equation is uniformly elliptic and concave. Thus, we have
C*> bounds. Then {@‘} converges uniformly on compact sets to a solution u € C* of

1 1
o3 (Vu+du®u — §|Vu|2ds2) = f(po) e 2,

where the derivatives are with respect to ds?. By the uniqueness theorem [11], the metric
e~ 2ds% must come from the pulling-back of the standard metric g, on the sphere. Hence,

Am? — / 0o(Az,)dV;, = / oo(A;)dV;, < / 0o(A;)dV;,, < 4r?.
B(0,%) B(pi.d) M

This gives a contradiction as [, 02(A)dV, < 4w* when (M, g) is not conformally equivalent
to (S, ge).

Once u is lower bounded, by Theorem 3, sup,, u < infy; u+ C. At the minimum point
70, we have Vu = 0, and V?u is positive semi-definite. Therefore,

Cem2ntu > (1 p)( /M )4 ((0)f (20) €7 = 03 (V2ulo) + Ag(20)) > 0F (A, (z0)) > 0.

This gives an upper bound of inf; u. The proof is complete. O

4 Yamabe-type problem on manifolds with boundary

In this section, we first recall Escobar’s work on the Yamabe problem on manifolds with
boundary. Then we discuss some recent progress on a nonlinear version of the problem
which generalizes Escobar’s results.

Recall that the Yamabe constant for compact manifolds with boundary is a conformal
invariant, defined as

Y (M,0M, = inf RA—i—j{ hy),
( [9]) ge[g]yolgl(/M g oAl g)

where h is the mean curvature. The Yamabe problem on manifolds with boundary consists
in finding a conformal metric § = e~2%g such that the scalar curvature is constant on the
manifold and the mean curvature is zero on the boundary. Recall that the boundary is
umbilic if the second fundamental form L.s = p(x)gag, which is a conformal invariant

property.

Theorem 5. (Escobar [18]) Let (M,g) be a compact manifold with boundary. Suppose
that (M, g) does not satisfy the following condition:

n>6,Wlon =0,W #0 on M and (OM, g) is umbilic. (16)
Then there exists g € [g] such that Ry is constant and hy = 0.
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The proof of Theorem 5 consists in finding a testing function whose ”energy” is smaller
than that of the standard model case, i.e., the round upper-hemisphere. When n > 6, if
either OM is nonumbilic or W is nonzero at some boundary point, one can construct a
local testing function. While in the cases when n = 3,4,5 or when (M, g) is conformally
flat, one constructs a global testing function by using properties the Green’s function.

It has been conjectured for a long time whether the result in Theorem 5 still holds
when (M, g) satisfies the condition (16). The difficulty lies in the fact that when W =0
on the boundary, the local testing function used in the original proof by Aubin [2] on
closed manifolds does not have an energy smaller than that of the standard model case.
For recent progress for this remaining case, the readers are referred to Brendle and Chen
[5].

Now we return to the study of a nonlinear version of the Yamabe problem on manifolds
with boundary. The first fundamental question we ask is the following:

Question 1: Given a curvature polynomial like that of the o,(A,) on the manifold,

what are the natural matching curvatures on the boundary?
When the curvature polynomial is the scalar curvature, the mean curvature is a natural
matching one on the boundary. To study the conformal deformation problem of the oy (A)
curvature on manifolds with boundary, we need to give a criterion to define the matching
curvatures on the boundary. We also have to find some relevant conformal invariants (like
that of the Yamabe constant), which in general involve a more complicated curvature
polynomial than the mean curvature.

To begin with, we consider four dimensional compact manifolds with boundary. Recall
the Gauss-Bonnet formula:

32X (M,0M) = / (W |? + 16(/ oa(Ag) + % B,), (17)
M M oM
where By = $Rh — Rynh — RyaygL®® + $h3 — h|L|* + 2trL?. Similar to the reasoning
in the previous section, we have that [ 02+ % faM B, is a conformal invariant. As a
generalization of Theorem 1, it is natural to study the conformal deformation of a metric
to constant o9(A,) curvature with vanishing B curvature. The first result in this direction
was proved by Chen [17] [16] in her thesis.

Theorem 6. (Chen [16]) Let (M, g) be a compact connected four-manifold with umbilic
boundary. If Y (M,0M, |g]) and [,, 02(Ag) + 5 §,,, By are both positive, then there exists
a metric § € [g] such that 02(Ay) is a positive constant and By is zero.

The metric g found in Theorem 6 satisfies Ric; > 0 and totally geodesic boundary.
Therefore, it gives a topological constraint. Moreover, Theorem 6 can be applied to the
setting of conformally compact Einstein manifolds; see [16].

The proof of Theorem 6 relies on some delicate boundary estimates. The first key
ingredient is to prove that the maximum of the second derivatives can not happen on the
boundary. This is achieved by deriving uniform estimates of the third derivatives on the
boundary. The proof is "non-traditional” in the sense that we do not use the method
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of constructing a barrier function. Instead, we use an idea similar to the Hopf lemma.
Once we have determined that the maximum of the second derivatives happens in the
interior, the second key ingredient is to use the method of skipping gradient estimates as
in Section 3 to prove boundary C? estimates directly from boundary C° estimates.

Now we come back to Question 1 above. The question is partially answered when
k = 2,n = 4, i.e., B curvature is a natural matching boundary curvature for oy(A).
However, the answer is not completely satisfactory as o9(A) is a symmetric function of
the eigenvalues of A, while B does not seem to be as ”symmetric” as o2(A). To this end,
in [16] the following boundary curvatures are defined. Let

82 _ { %0’2,1(14717 L) + Wz(n_g)(fg’o(AT, L) n>4

1
20‘271(AT, L) + %h‘g — %h|L|2 n = 3, ( 8)

where A7 is the tangential part of A and o, ;’s are the mixed symmetric functions; see
[39]. The notion o;; can be viewed as a polarization of o; such that o;;(A, A) = 0,(A);
therefore this is a natural generalization of o;. For k > 3, let

Bt = Zf:_ol C(n, k,i)U%—z‘—u(AT, L) n>2k. (19)

The above definition breaks down when n < 2k since in this case we can not define oy,
on the boundary with dimension less than 2k — 1.

The definitions of B*’s are motivated by the Gauss-Bonnet formulas. More specifically,
when n = 2k, B¥ is the boundary term in the Gauss-Bonnet formula plus some local
conformal invariant. In other words, let Fy(g) = [,, ox(A) + §,,, B*. For n = 4, we have
Fy = 2n°x(M,0M) — = [IW|* + 1 § L4, where L, is some local conformal invariant.

When n = 2k, suppose M is locally conformally flat. Then Fn = (%Z)f X(M,0M) and

the Gauss-Bonnet formulas can be written as
n_q

Lo = [ oy 4 § 3 Cn o147 L)
. M oM i=0 2

see [16].
By using variational characterizations, we can justify that for o3(A), the B*s are
natural curvatures on the boundary.

Theorem 7. (Chen [16]) Let (M, go) be a compact manifold of dimension n > 3 with
boundary.
(a) Suppose n # 4. Then g is a critical point of Fy |m if and only if g satisfies

o2(Ay) = constant in M
B:=0 on OM.

(b) Suppose n > 2k and M s locally conformally flat. Then g is a critical point of Fr | m
if and only if g satisfies
ox(A,y) = constant in M
{ B;f =0 on OM.
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The above variational properties still hold if we add some local conformal invariants
on the boundary to B¥. More precisely, let £ be a local conformal invariant with an
appropriate weight. If we consider a conformal variation of (F; + ¢ £) |m, then a critical
metric g satisfies o3(Ay) = constant on M and B} + £ = 0 on the boundary [16]. For
closed manifolds, such variational properties were proved in [45].

A generalization of the Yamabe problem on manifolds with boundary can be stated
as:

Question 2: Can we find a conformal metric g such that

{ or(4y) =1 in M (20)

8520 on OM?

Again, the existence results are in two different categories: (A) the result starting from the
sign of some integral conformal invariants, and (B) the result starting from the assumption
that g is already in '} .

For (A), when k = 2,n = 4, assume further that the boundary is umbilic. Theo-
rem 6 says that (20) is solvable if Y (M,0M, [g]) > 0 and [, 02(Ay) + 5 $,,, B, > 0. In
[16], for locally conformally flat compact manifolds with umbilic boundary, Theorem 6 is
generalized to k£ > 2 under some conformal invariant condition.

In the case of (B), for locally conformally flat compact manifolds with umbilic bound-
ary, Chen [15] proved that if hy, > 0, then there exists a metric g € [g] such that o4 (A4;) = 1
and the boundary is totally geodesic. Note that in this case, B¥ = 0 if and only if the
boundary is totally geodesic.

In general, Question 2 remains largely open.
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