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Abstract. We give a positive lower bound for the principal curvature of the

strict convex level sets of harmonic functions in terms of the principal curvature
of the domain boundary and the norm of the boundary gradient. We also

extend this result to a class of semi-linear elliptic partial differential equations

under certain structure condition.

1. Introduction. The convexity of the level sets of the solutions of elliptic partial
differential equations is a classical subject. For instance, Ahlfors [1] contains the
well-known result that level curves of Green function on simply connected convex
domain in the plane are the convex Jordan curves. In 1931, Gergen [8] proved
the star-shapeness of the level sets of Green function on 3-dimensional star-shaped
domain. In 1956, Shiffman [20] studied the minimal annulus in R3 whose boundary
consists of two closed convex curves in parallel planes P1, P2. He proved that the
intersection of the surface with any parallel plane P , between P1 and P2, is a convex
Jordan curve. In 1957, Gabriel [7] proved that the level sets of the Green function
on a 3-dimensional bounded convex domain are strictly convex, see also the book
by Hormander [9]. Lewis [13] extended Gabriel’s result to p-harmonic functions
in higher dimensions. Caffarelli-Spruck [6] generalized the results [13] to a class
of semilinear elliptic partial differential equations. Using the idea of Caffarelli-
Friedman [4], Korevaar [12] gave a new proof on the results of [13, 6] by applying
the constant rank theorem of the second fundamental form of the convex level sets
of p-harmonic function. A survey of this subject is given by Kawohl [11]. For more
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recent related extensions, please see the papers by Bianchini-Longinetti-Salani [3]
and Bian-Guan-Ma-Xu [2].

Now we turn to the curvature estimates of the level sets of the solutions of el-
liptic partial differential equations. For 2-dimensional harmonic function and min-
imal surface with convex level curves, Ortel-Schneider [19], Longinetti [14] and [15]
proved that the curvature of the level curves attains its minimum on the bound-
ary. Jost-Ma-Ou [10] and Ma-Ye-Ye [18] proved that the Gaussian curvature and
the principal curvature of the convex level sets of 3-dimensional harmonic function
attains its minimum on the boundary.

In this paper, using the strong maximum principle, we obtain a principal cur-
vature estimates for the strictly convex level set of higher dimensional harmonic
function and a class of semilinear elliptic partial differential equations. Our cur-
vature estimate is in terms of the principal curvature of the boundary and the
boundary gradient of the solution of elliptic partial differential equations.

Now we state our result.

Theorem 1.1. Let Ω be a bounded domain in Rn, n ≥ 2, a ≤ u ≤ b and u ∈
C4(Ω)

⋂
C2(Ω̄) be a solution for

∆u = f(x, u) ≥ 0 in Ω. (1.1)

Assume |∇u| 6= 0 in Ω. If the level sets of u are strictly convex with respect to
normal Du, and let k1 be the least principal curvature of the level sets. Consider
the following two assertions (A1) and (A2):

(A1) The function |Du|k1 attains it minimum on the boundary;
(A2) The function |Du|−2k1 attains it minimum on the boundary.

Then we have the following:
Case 1: Suppose f = 0, then (A1) is valid.
Case 2: Suppose f = f(u). If fu ≤ 0, then (A1) is valid; if fu ≥ 0, then (A2) is

valid.
Case 3: Suppose f = f(x). If F (t, x) := t3f(x) is a convex function for (t, x) ∈

(0,+∞)× Ω (or for f > 0 and f−
1
2 is concave), then (A1) is valid.

Case 4: Suppose f = f(x, u). If fu ≤ 0 and Fu(t, x) := t3f(x, u) is a convex
function for (t, x) ∈ (0,+∞)× Ω for every choice of u ∈ (a, b), then (A1) is valid.

If the level sets of the solution u in the above Theorem 1.1 are strictly convex
with respect to normal Du, then it is proved in [16, 17] that the norm of gradient
|∇u| attains its maximum and minimum on the boundary. Combining this fact
with Gabriel and Lewis theorem [7, 13], we have the following consequence.

Corollary 1.2. Let u ∈ C∞(Ω̄) satisfy




∆u = 0 in Ω = Ω0\Ω̄1,
u = 0 on ∂Ω0,
u = 1 on ∂Ω1,

(1.2)

where Ω0 and Ω1 are bounded convex smooth domains in Rn, n ≥ 2, Ω̄1 ⊂ Ω0. Let
k1 be the least principal curvature of the level sets of u in Ω, then we have the
following estimates

min
Ω

k1 ≥ min
∂Ω

k1
min∂Ω0 |Du|
max∂Ω1 |Du| .
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We give an application to the following semilinear elliptic boundary value prob-
lem, its strict convexity of the level sets had been obtained in Caffarelli-Spruck [6]
and Korevaar [12].

Corollary 1.3. Let u ∈ C4(Ω) ∩ C2(Ω̄) satisfy




∆u = f(u) in Ω = Ω0\Ω̄1,
u = 0 on ∂Ω0,
u = 1 on ∂Ω1,

(1.3)

where Ω0 and Ω1 are bounded convex smooth domains in Rn, n ≥ 2, Ω̄1 ⊂ Ω0. We
assume f is C2 increasing function and f(0) = 0, and let k1 be the least principal
curvature of the level sets of u in Ω, then we have the following estimates.

min
Ω

k1 ≥ min
∂Ω

k1(
min∂Ω0 |Du|
max∂Ω1 |Du| )

2.

Assuming |∇u| 6= 0, Bianchini-Longinetti-Salani [3] proved the convexity of the
level sets of solution u for some semilinear elliptic equation in convex ring with
Dirichlet boundary conditions as in (1.3). It follows from the constant rank theorem
of the second fundamental form of the convex level sets in [12], that the level sets
are strictly convex. For the Poisson equation, our structure condition is the same
as theirs.

Now we outline the proof of the Theorem 1.1. Let {aij} be the symmetry cur-
vature matrix on the strict convex level sets defined in (2.4), and let {aij} be its
inverse matrix. We consider the auxiliary function

ϕ(x, ξ) := |Du|θaijξiξj , where ξ = (ξ1, ...ξn−1) ∈ Rn−1, |ξ| = 1.

For suitable choice θ, we shall derive the following elliptic inequality

∆ϕ ≥ 0 mod ∇ϕ in Ω, (1.4)

here we have suppressed the terms containing the gradient of ϕ with locally bounded
coefficients, then we apply the strong maximum principle to obtain the results.

In section 2, we first give brief definition on the convexity of the level sets, then
obtain the curvature matrix aij of the level sets of a function, which appeared in
[2, 5]. In section 3, we treat the semilinear elliptic partial differential equation and
complete the proof of Theorem 1.1. The main technique in the proof of theorems
consists in rearranging the third derivatives terms using the equation and the first
derivatives condition for ϕ.

2. The curvature matrix of level sets. In this section, we shall give the brief
definition on the convexity of the level sets, then introduce the curvature matrix
(aij) of the level sets of a function, which appeared in [2]. Firstly, we recall some
fundamental notations in classical surface theory. Assume a surface Σ ⊂ Rn is given
by the graph of a function v in a domain in Rn−1:

xn = v(x′), x′ = (x1, x2, · · · , xn−1) ∈ Rn−1.

Definition 2.1. We define the graph of function xn = v(x′) is convex with re-
spect to the upward normal ~ν = 1

W (−v1,−v2, · · · ,−vn−1, 1) if the second fun-

damental form bij =
vij

W
of the graph xn = v(x′) is nonnegative definite, where

W =
√

1 + |∇v|2.
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The principal curvature κ = (κ1, · · · , κn−1) of the graph of v, being the eigen-
values of the second fundamental form relative to the first fundamental form. We
have the following well-known formula.

Lemma 2.2. ([5]) The principal curvature of the graph xn = v(x′) with respect to
the upward normal ~ν are the eigenvalues of the symmetric curvature matrix

ail =
1
W

{
vil − vivjvjl

W (1 + W )
− vlvkvki

W (1 + W )
+

vivlvjvkvjk

W 2(1 + W )2

}
, (2.1)

where the summation convention over repeated indices is employed.

Now we give the definition of the convex level sets of the function u. Let Ω be a
domain in Rn and u ∈ C2(Ω), its level sets can be usually defined in the following
sense.

Definition 2.3. Assume |∇u| 6= 0 in Ω, we define the level set of u passing through
the point xo ∈ Ω as Σu(xo) = {x ∈ Ω|u(x) = u(xo)}.

Now we shall work near the point xo where |∇u(xo)| 6= 0. By the implicit function
theorem, locally the level set Σu(xo) can be represented as a graph

xn = v(x′), x′ = (x1, x2, · · · , xn−1) ∈ Rn−1,

and v(x′) satisfies the following equation

u(x1, x2, · · · , xn−1, v(x1, x2, · · · , xn−1)) = u(xo).

Then the first fundamental form of the level set is gij = δij + uiuj

u2
n

, and W =

(1 + |∇v|2) 1
2 = |∇u|

|un| . The upward normal direction of the level set is

~ν =
|un|

|∇u|un
(u1, u2, · · · , un−1, un). (2.2)

Let
hij = u2

nuij + unnuiuj − unujuin − unuiujn, (2.3)
then the second fundamental form of the level set of function u is bij = vij

W =
− |un|hij

|∇u|u3
n
.

Definition 2.4. For the function u ∈ C2(Ω) we assume |∇u| 6= 0 in Ω. Without
loss of generality we can let un(xo) 6= 0 for xo ∈ Ω. We define locally the level
set Σu(xo) = {x ∈ Ω|u(x) = u(xo)} is convex with respect to the upward normal
direction ~ν if the second fundamental form bij is nonnegative definite.

Remark 2.5. If we let ∇u be the upward normal of the level set Σu(xo) at xo,
then un(xo) > 0 by (2.2). Acccording to the definition 2.4, if the level set Σu(xo)

is convex with respect to the normal direction ∇u, then the matrix (hij(xo)) is
nonpositive definite.

Now we obtain the representation of the curvature matrix (aij) of the level sets
of the function u with the derivative of the function u,

aij =
1

|∇u|u2
n

{
− hij +

uiulhjl

W (1 + W )u2
n

+
ujulhil

W (1 + W )u2
n

− uiujukulhkl

W 2(1 + W )2u4
n

}
. (2.4)

From now on we denote

Bij =
uiulhjl

W (1 + W )u2
n

+
ujulhil

W (1 + W )u2
n

, Cij =
uiujukulhkl

W 2(1 + W )2u4
n

, (2.5)
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and

Aij = −hij + Bij − Cij , (2.6)

then the symmetric curvature matrix of the level sets of u can be represented as

aij =
1

|∇u|u2
n

[− hij + Bij − Cij

]
=

1
|∇u|u2

n

Aij . (2.7)

We end this section with the following Codazzi condition which will be used in the
next sections.

Proposition 2.6. (see [2]) Denote aij,k = ∂aij

∂xk
for 1 ≤ i, j, k ≤ n− 1, then at the

point where un = |∇u| > 0, ui = 0, aij,k is commutative in “i, j, k”, i.e.

aij,k = aik,j .

Proof. Direct calculation shows

aij,k = −u−1
n uijk + u−2

n (uijukn + uikujn + ujkuin). (2.8)

The right hand side of (2.8) is obviously commutative in “i, j, k”.

3. Principal curvature estimates of level set of Poisson equation. In this
section, we prove the Theorem 1.1. We study the following equation

∆u = f(x, u) ≥ 0 in Ω. (3.1)

Proof of Theorem 1.1: Since the level sets of u are strictly convex with respect
to normal Du, the curvature matrix aij of the level sets is positive definite in Ω.
Let aij be the inverse matrix of aij .

We consider the auxiliary function

ϕ(x, ξ) := |Du|θaij(x)ξiξj , where ξ = (ξ1, ...ξn−1) ∈ Rn−1, |ξ| = 1.

For suitable choice θ, we shall derive the following elliptic inequality

∆ϕ ≥ 0 mod ∇ϕ in Ω, (3.2)

where we modify the terms of the gradient of ϕ with locally bounded coefficients.
Then by the standard strong maximum principle, we get the result immediately.

In order to prove (3.2) at an arbitrary point xo ∈ Ω, as in Caffarelli-Friedman
[4], we choose the normal coordinate at xo. We have mentioned in remark 2.5, since
the level sets of u are strictly convex with respect to normal Du, by rotating the
coordinate system suitably by Txo , we may assume that ui(xo) = 0 , 1 ≤ i ≤ n− 1
and un(xo) = |∇u| > 0. And we can further assume ξ = e1, the matrix {uij}(xo)
(1 ≤ i < j ≤ n−1) is diagonal and uii(xo) < 0. Consequently we can choose Txo

to
vary smoothly with xo. If we can establish (3.2) at xo under the above assumption,
then go back to the original coordinates we find that (3.2) remain valid with new
locally bounded coefficients on ∇ϕ in (3.2), depending smoothly on the independent
variable. Thus it remains to establish (3.2) under the above assumption.

Now we write
ϕ(x) := |Du|θa11.

From now on, all the calculations will be done at the fixed point x0.
Step1: we first compute the formula (3.19)
Taking first derivative of ϕ, we get

ϕα =
θ

2
|Du|θ−2|Du|2αa11 + |Du|θa11

α , (3.3)
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since

a11
α = −

n−1∑

k,l=1

a1ka1lakl,α, (3.4)

it follows that

a11,α = θ
unα

un
a11 − u−θ

n a2
11ϕα. (3.5)

From now on, we follow the convention: the Greek indices 1 ≤ α, β, γ ≤ n, the
Latin indices 1 ≤ i, j, k, l ≤ n− 1.

Since

a11
αα =

n−1∑

k,l,r,s=1

[a1raksa1lakl,αars,α + a1ka1ralsakl,αars,α]−
n−1∑

k,l=1

a1ka1lakl,αα

= 2(a11)2
n−1∑

k=1

akka2
1k,α − (a11)2a11,αα,

Taking derivative of equation (3.3) once more, and using (3.5), it follows that

a2
11ϕαα = −|Du|θa11,αα + 2|Du|θ

n−1∑

k=1

akka2
1k,α + θ|Du|θ−1a11uααn

−θ(θ + 2)|Du|θ−2u2
nαa11 + θ|Du|θ−2a11

n∑
γ=1

u2
αγ + 2θa2

11u
−1
n unαϕα.

From the equation (3.1),

u2−θ
n a2

11∆ϕ = −u2
n

n∑
α=1

a11,αα + 2u2
n

n−1∑

k=1

n∑
α=1

akka2
1k,α + 2θa2

11u
1−θ
n

n∑
α=1

unαϕα

+[θ
n∑

α,γ=1

u2
αγ + θunDnf − θ(θ + 2)

n∑
α=1

u2
nα]a11. (3.6)

Now we use (3.5) and the Codazzi identity (2.6) to treat the following term in
(3.6).

n−1∑

k=1

n∑
α=1

akka2
1k,α = a11

n∑
α=1

a2
11,α +

n−1∑

k=2

akka2
kk,1 +

n−1∑

k=2

n∑

α=1,α6=k

akka2
1k,α

=
n−1∑

k=2

n∑

α=1,α6=k

akka2
1k,α +

n−1∑

k=2

akka2
kk,1 + θ2u−2

n a11

n∑
α=1

u2
nα

+a3
11u

−2θ
n

n∑
α=1

ϕ2
α − 2θa2

11u
−1−θ
n

n∑
α=1

unαϕα. (3.7)
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From (3.6) and (3.7), it follows that

u2−θ
n a2

11∆ϕ = −u2
n

n∑
α=1

a11,αα + 2u2
n

n−1∑

k=2

akka2
kk,1 + 2u2

n

n−1∑

k=2,k 6=α

n∑
α=1

akka2
1k,α

+[θ
n∑

α,γ=1

u2
αγ + θunDnf + θ(θ − 2)

n∑
α=1

u2
nα]a11

+2a3
11u

2−2θ
n

n∑
α=1

ϕ2
α − 2θa2

11u
1−θ
n

n∑
α=1

unαϕα. (3.8)

Now we calculate the term

−u2
n

n∑
α=1

a11,αα.

Let D = |∇u|u2
n, then at xo, we get

Dα = 3u2
nunα,

Dαα = 5unu2
nα + 3u2

nuααn + un

n∑
γ=1

u2
αγ .

It follows that
n∑

α=1

Dαα = 5un

n∑
α=1

u2
nα + 3u2

nDnf + un

n∑
α,γ=1

u2
αγ . (3.9)

By (2.4), we have
A11 = |∇u|u2

na11. (3.10)

Taking derivative of equation (3.10), it follows that

A11,α = a11Dα + Da11,α,

A11,αα = Da11,αα + 2a11,αDα + a11Dαα. (3.11)

By (2.6)
A11,αα = −h11,αα + B11,αα − C11,αα. (3.12)

By (2.5), at xo we have
n∑

α=1

C11,αα = 0. (3.13)

We get

− u2
n

n∑
α=1

a11,αα = u−1
n

n∑
α=1

h11,αα − u−1
n

n∑
α=1

B11,αα

+u−1
n

n∑
α=1

[a11Dαα + 2Dαa11,α]. (3.14)

Taking first and second derivatives of equation (2.5) on Bij , we have

B11,αα = 4
n−1∑

l=1

u1αulαh1l

W (1 + W )u2
n

. (3.15)



8 SUN-YUNG ALICE CHANG, XI-NAN MA AND PAUL YANG

Hence using ujj = −unajj and W (xo) = 1, we get

− u−1
n

n∑
α=1

B11,αα = −4
n−1∑

l=1

n∑
α=1

u2
1αh11

W (1 + W )u3
n

= −2u11

un

n∑
α=1

u2
1α = 2a3

11u
2
n + 2a11u

2
n1. (3.16)

By (3.5), it follows that

2u−1
n

n∑
α=1

Dαa11,α = 6θa11

n∑
α=1

u2
nα − 6a2

11u
1−θ
n

n∑
α=1

unαϕα. (3.17)

Combining (3.14) with (3.9) and (3.16)-(3.17), we get

− u2
n

n∑
α=1

a11,αα = u−1
n

n∑
α=1

h11,αα + [(5 + 6θ)
n∑

α=1

u2
nα + 3unDnf +

n∑
α,γ=1

u2
αγ ]a11

+2a3
11u

2
n + 2a11u

2
n1 − 6a2

11u
1−θ
n

n∑
α=1

unαϕα. (3.18)

From (3.8) and (3.18), it follows that

u2−θ
n a2

11∆ϕ = u−1
n

n∑
α=1

h11,αα + 2u2
n

n−1∑

k=2,k 6=α

n∑
α=1

akka2
1k,α + 2u2

n

n−1∑

k=2

akka2
kk,1

+[(θ + 1)
n∑

α,γ=1

u2
αγ + (3 + θ)unDnf

+(θ2 + 4θ + 5)
n∑

α=1

u2
nα + 2u2

n1]a11

+2a3
11u

2
n + 2a3

11u
2−2θ
n

n∑
α=1

ϕ2
α

−(6 + 2θ)a2
11u

1−θ
n

n∑
α=1

unαϕα. (3.19)

STEP 2: In this step we calculate the following term in (3.19)

u−1
n

n∑
α=1

h11,αα,

in order to derive the formula (3.32).
By (2.3), we have

h11,α = 2ununαu11 + u2
nu11α + unnαu2

1 + 2unnu1u1α

−2unαu1u1n − 2unu1αu1n − 2unu1u1nα, (3.20)

and

h11,αα = 2ununααu11 + 4ununαu11α − 2unu1ααu1n + u2
nu11αα

+2u11u
2
nα + 2unnu2

1α − 4unαu1αu1n − 4unu1αu1nα. (3.21)
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From the equation (3.1), we find

u−1
n

n∑
α=1

h11,αα = un

n∑
α=1

u11αα + 2u11

n∑
α=1

uααn − 2u1n

n∑
α=1

uαα1

+4
n∑

α=1

unαu11α − 4
n∑

α=1

u1αu1nα − 2a11

n∑
α=1

u2
nα

+2u−1
n unn

n∑
α=1

u2
1α − 4u−1

n u1n

n∑
α=1

u1αunα

= unD11f + 2u11Dnf − 2u1nD1f + 4
n∑

α=1

unαu11α

−4
n∑

α=1

u1αu1nα − 2a11

n∑
α=1

u2
nα + 2u−1

n unn

n∑
α=1

u2
1α

−4u−1
n u1n

n∑
α=1

u1αunα. (3.22)

Since
Ajj = Dajj where D := |∇u|u2

n. (3.23)

Taking derivative of equation (3.23), we find that

Ajj,α = ajjDα + Dajj,α, (3.24)

Similar using (3.20), at xo,

Ajj,α = −hjj,α = 2unujαunj − 2ununαujj − u2
nujjα. (3.25)

From (3.24)- (3.25) and (3.9), for 1 ≤ j ≤ n− 1, we have

ujjα = −unajj,α + 2u−1
n ujnujα − ajjunα. (3.26)

Then for 2 ≤ j ≤ n− 1, we get

ujj1 = −unajj,1 − u1najj . (3.27)

From (3.5) and (3.26), it follows that

u11α = −una11,α + 2u−1
n u1nu1α − unαa11

= −(1 + θ)unαa11 + 2u−1
n u1nu1α + u1−θ

n a2
11ϕα, (3.28)

so

u111 = −(3 + θ)u1na11 + u1−θ
n a2

11ϕ1,

u11n = −(1 + θ)unna11 + 2u−1
n u2

1n + u1−θ
n a2

11ϕn. (3.29)

Using (3.28), we have

4
n∑

α=1

unαu11α = −4(1 + θ)a11

n∑
α=1

u2
nα

+8u−1
n u1n

n∑
α=1

u1αunα + 4a2
11u

1−θ
n

n∑
α=1

unαϕα. (3.30)
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By (3.27), (3.29) and the equation (3.1), we treat the other third derivative term,

− 4
n∑

α=1

u1αu1nα = −4u11u11n − 4u1nunn1

= −4u11u11n − 4u1nD1f + 4u1n

n−1∑

j=1

ujj1

= 4u1nu111 − 4u11u11n − 4u1nD1f + 4u1n

n−1∑

j=2

ujj1

= −4unu1n

n−1∑

k=2

akk,1 − 4u1nD1f − 4(1 + θ)a11u
2
1n

−4(1 + θ)una2
11unn − 4u2

1n

n−1∑

i=2

aii

+4a2
11u

1−θ
n un1ϕ1 + 4a3

11u
2−θ
n ϕn. (3.31)

Combining (3.22), (3.30)-(3.31), we have

u−1
n

n∑
α=1

h11,αα = −4unu1n

n−1∑

k=2

akk,1 − 6u1nD1f + unD11f − 2una11Dnf

−(6 + 4θ)a11

n∑
α=1

u2
nα − (4 + 4θ)a11u

2
1n + 6u−1

n unnu2
n1

−(2 + 4θ)ununna2
11 − 4u2

n1

n−1∑

i=1

aii + 4a3
11u

2−θ
n ϕn

+4a2
11u

1−θ
n un1ϕ1 + 4a2

11u
1−θ
n

n∑
α=1

unαϕα. (3.32)

STEP 3: The conclusion of the proof.
Now we combine the (3.19) and (3.32), it follows that

u2−θ
n a2

11∆ϕ = 2u2
n

n−1∑

k=2,k 6=α

n∑
α=1

akka2
1k,α + 2u2

n

n−1∑

k=2

akka2
kk,1 − 4unu1n

n−1∑

k=2

akk,1

−6u1nD1f + unD11f + (1 + θ)una11Dnf

+(θ2 − 1)a11

n∑
α=1

u2
nα − (2 + 4θ)a11u

2
n1 − 4u2

n1

n−1∑

i=1

aii + 2a3
11u

2
n

+6u−1
n unnu2

n1 − (2 + 4θ)ununna2
11 + (θ + 1)a11

n∑
α,γ=1

u2
αγ

+4a2
11u

1−θ
n un1ϕ1 + 4a3

11u
2−θ
n ϕn

+2a3
11u

2−2θ
n

n∑
α=1

ϕ2
α − (2 + 2θ)a2

11u
1−θ
n

n∑
α=1

unαϕα. (3.33)
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Since

2u2
n

n−1∑

k=2

akka2
kk,1 − 4unu1n

n−1∑

k=2

akk,1 ≥ 2u2
1n(a11 −

n−1∑

i=1

aii). (3.34)

It follows that

u2−θ
n a2

11∆ϕ ≥ unD11f − 6u1nD1f + (1 + θ)una11Dnf + 6u−1
n unnu2

n1

+(θ2 − 1)a11

n∑
α=1

u2
nα − 4θa11u

2
n1 − 6u2

n1

n−1∑

i=1

aii + 2a3
11u

2
n

−(2 + 4θ)ununna2
11 + (θ + 1)a11

n∑
α,γ=1

u2
αγ mod∇ϕ, (3.35)

where we modify the terms of the gradient of ϕ with locally bounded coefficients,
from now on we omit ∇ϕ.

From the equation, at xo, we have

unn = f −
n−1∑

i=1

uii = f + un

n−1∑

i=1

aii. (3.36)

Now we let λi = aii > 0, 1 ≤ i ≤ n− 1, use the following abbreviation

σk(λ) =
∑

1≤i1<···<ik≤n−1

λi1 · · ·λik
,

and let σk(λ|i) denote the summation in which the terms involving λi are deleted.
Combining (3.35)- (3.36), it follows that

u2−θ
n a2

11∆ϕ ≥ unD11f + (1 + θ)unλ1Dnf − 6u1nD1f + 6u−1
n u2

n1f

+(θ2 + θ)λ1f
2 + 2(θ2 + θ)unλ1σ1(λ|1)f + 2(θ2 − θ − 1)unλ1

2f

+λ1u
2
n[(θ − 1)2λ2

1 + (θ + 1)2σ1
2(λ|1)

+2(θ2 − θ − 1)λ1σ1(λ|1)− 2(1 + θ)σ2(λ|1)]

+(θ − 1)2λ1u
2
n1 + (θ + 1)2λ1

n−1∑

j=2

u2
nj . (3.37)

Now we make the following choice of θ to complete the proof.
Case 1: if f = 0, for n = 3, we let θ = 0 then for ϕ := a11, we get

u2
na2

11∆ϕ ≥ λ1(u2
13 + u2

23) + λ1u
2
3(λ1 − λ2)2 ≥ 0. (3.38)

If n ≥ 3, we can choose θ = −1. Then from (3.37), for ϕ := |Du|−1a11 satisfies

u3
na2

11∆ϕ ≥ 4λ1u
2
n1 + 2λ2

1u
2
n[λ1 + σ1(λ)] ≥ 0. (3.39)

Case 2: if f = f(x) ≥ 0, we can choose θ = −1. Then from (3.37), for
ϕ := |Du|−1a11 satisfies

u3
na2

11∆ϕ ≥ unf11 − 6u1nf1 + 6u−1
n u2

n1f

+2unλ1
2f + 4λ1u

2
n1 + 2λ2

1u
2
n[λ1 + σ1(λ)]. (3.40)

If the function (t, x) −→ t3f(x) is a convex function for x ∈ Ω and t ∈ (0,+∞)
(or for f > 0 and f−

1
2 is a concave function). So the matrix {2ffij − 3fifj} is

nonnegative definite. Then

unf11 − 6u1nf1 + 6u−1
n u2

n1f ≥ 0. (3.41)
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It follows that

u3
na2

11∆ϕ ≥ 2unλ1
2f + 4λ1u

2
n1 + 2λ2

1u
2
n[λ1 + σ1(λ)] ≥ 0. (3.42)

Case 3: for f = f(u) ≥ 0, so

D11f = fuu11 = −unλ1fu,

in this case we have

unD11f + (1 + θ)unλ1Dnf − 6u1nD1f = θu2
nλ1fu. (3.43)

Using (3.37) and (3.43), we can make the following choice.
When fu ≤ 0, we let θ = −1. Then from (3.37), for ϕ := |Du|−1a11 satisfies

u3
na2

11∆ϕ ≥ −u2
nλ1fu + 6u−1

n u2
n1f

+ 2unλ1
2f + 4λ1u

2
n1 + 2λ2

1u
2
n[λ1 + σ1(λ)]

≥ 0. (3.44)

When fu ≥ 0, we let θ = 2. From (3.37), for ϕ := |Du|2a11 satisfies

a2
11∆ϕ ≥ 2u2

nλ1fu + 6u−1
n u2

n1f + 6λ1f
2

+12unλ1σ1(λ|1)f + 2unλ1
2f + λ1u

2
n1 + 9λ1

n−1∑

j=2

u2
nj

+λ1u
2
n[λ2

1 + 9σ1
2(λ|1) + 2λ1σ1(λ|1)− 6σ2(λ|1)]

≥ λ1u
2
n[λ2

1 + 9σ1
2(λ|1) + 2λ1σ1(λ|1)− 6σ2(λ|1)]. (3.45)

For n = 2 or n = 3, σ2(λ|1) = 0. For n ≥ 4 we use the following Maclaurin
inequalities,

[
σ2(λ|1)
C2

n−2

]
1
2 ≤ σ1(λ|1)

n− 2
,

i.e. for n ≥ 4, we have

σ2(λ|1) ≤ n− 3
2(n− 2)

σ2
1(λ|1)

Then we have

9σ1
2(λ|1)− 6σ2(λ|1) ≥ 0. (3.46)

By (3.45)-(3.46), it follows that

a2
11∆ϕ ≥ 0.

Case 4: for f = f(x, u) ≥ 0. Since

D1f = f1, D11f = f11 − unλ1fu, (3.47)

so for θ = −1, we get

unD11f + (1 + θ)unλ1Dnf − 6u1nD1f = unf11 − 6u1nf1 − u2
nλ1fu.

If fu ≤ 0 and for any u ∈ (a, b) the function (t, x) −→ t3f(x, u) is a convex
function for x ∈ Ω and t ∈ (0,+∞) (or for f > 0 and f−

1
2 is a concave function for
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x), then we also have (3.41). Now let θ = −1. From (3.37), for ϕ := |Du|−1a11, it
follows that

u3
na2

11∆ϕ ≥ unf11 − 6u1nf1 + 6u−1
n u2

1nf − u2
nλ1fu

+ 2unλ1
2f + 4λ1u

2
n1 + 2λ2

1u
2
n[λ1 + σ1(λ)]

≥ 2unλ1
2f + 4λ1u

2
n1 + 2λ2

1u
2
n[λ1 + σ1(λ)]

≥ 0. (3.48)

Then we complete the proof of the Theorem 1.1.

Remark 3.7. Recently Ma-Ou-Zhang [17] obtained the Gaussian curvature lower
bound estimate for the convex level sets of harmonic function on convex ring.

Acknowledgments. The second named author would like to thank Prof. P.Guan
for useful discussions on this subject.
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