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Abstract. This paper is devoted to the global (in time) regularity problem for a fam-
ily of active scalar equations with fractional dissipation. Each component of the veloc-
ity field u is determined by the active scalar θ through RΛ−1P (Λ)θ where R denotes
a Riesz transform, Λ = (−∆)1/2 and P (Λ) represents a family of Fourier multiplier
operators. The 2D Navier-Stokes vorticity equations correspond to the special case
P (Λ) = I while the surface quasi-geostrophic (SQG) equation to P (Λ) = Λ. We obtain
the global regularity for a class of equations for which P (Λ) and the fractional power of
the dissipative Laplacian are required to satisfy an explicit condition. In particular, the
active scalar equations with any fractional dissipation and with P (Λ) = (log(I −∆))γ

for any γ > 0 are globally regular.

1. Introduction

This paper is devoted to the dissipative active scalar equation

(1.1)

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0, x ∈ Rd, t > 0,
u = (uj), uj = RlΛ

−1P (Λ) θ, 1 ≤ j, l ≤ d,

where κ > 0 and α > 0 are parameters, θ = θ(x, t) is a scalar function of x ∈ Rd and
t ≥ 0, u denotes a velocity field with each of its components uj (1 ≤ j ≤ d) given by a

Riesz transform Rl applied to Λ−1P (Λ) θ. Here the operators Λ = (−∆)
1
2 , P (Λ) and Rl

are defined through their Fourier transforms,

Λ̂f(ξ) = |ξ|f̂(ξ), P̂ (Λ)f(ξ) = P (|ξ|)f̂(ξ), R̂lf(ξ) =
i ξl
|ξ|

f̂(ξ),

where 1 ≤ l ≤ d is an integer, f̂ or F(f) denotes the Fourier transform,

f̂(ξ) = F(f)(ξ) =
1

(2π)d/2

∫
Rd

e−ix·ξf(x) dx.

We are primarily concerned with the global (in time) regularity issue concerning solutions
of (1.1) with a given initial data

(1.2) θ(x, 0) = θ0(x), x ∈ Rd.

A special example of (1.1) is the 2D active scalar equation

(1.3)

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0, x ∈ R2, t > 0,
u = ∇⊥ψ ≡ (−∂x2ψ, ∂x1ψ), ∆ψ = P (Λ) θ
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which includes as special cases the 2D Navier-Stokes vorticity equation

(1.4)

{
∂tω + u · ∇ω − ν∆ω = 0,
u = ∇⊥ψ, ∆ψ = ω

and the dissipative surface quasi-geostrophic (SQG) equation

(1.5)

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, −Λψ = θ.

There are numerous studies on the Navier-Stokes equations and the global regularity in
the 2D case has long been established (see e.g. [22], [38] and [64]). The SQG equation
models the dynamics of the potential temperature θ of the 3D quasi-geostrophic equa-
tions on the 2D horizontal boundaries and is useful in modeling atmospheric phenomena
such as the frontogenesis (see e.g. [25], [65] and [76]). The SQG equation (inviscid or
dissipative) is also mathematically important. As detailed in [25], the behavior of its
strongly nonlinear solutions are strikingly analogous to that of the potentially singular
solutions of the 3D incompressible Navier-Stokes and the Euler equations. The global
regularity issue concerning the SQG equation has recently been studied very extensively
and many important progress has been made (see e.g. [1], [2], [3], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [15], [16], [18], [19], [20], [21], [23], [24], [25], [26], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [82], [83], [84], [85],
[86], [89], [90], [91], [92], [93], [94], [95], [96], [96], [97], [98], [99], [100], [101], [102], [103],
[104], [105], [106]). In particular, the global regularity for the critical case α = 1/2 has
been successfully established ([7], [60]). The situation in the supercritical case α < 1/2
is only partially understood at the time of writing. The results in [28], [29] and [44]
imply that any solution of the supercritical SQG equation can develop potential finite
time singularity only in the regularity window between L∞ and Cδ with δ < 1 − 2α.
Several very recent preprints on the supercritical case also revealed some very interesting
properties of the supercritical dissipation ([3], [36], [57], [84]).

Our goal here is to establish the global regularity of (1.1) for more general operators
P . In particular, we are interested in the global regularity of the intermediate equations
between the 2D Navier-Stokes equation and the supercritical SQG equation. This paper
is a continuation of our previous study on the inviscid counterpart of (1.1) ([14]). The
consideration here is restricted to P satisfying the following condition.

Condition 1.1. The symbol P = P (|ξ|) assumes the following properties:

(1) P is continuous on Rd and P ∈ C∞(Rd \ {0});
(2) P is radially symmetric;
(3) P = P (|ξ|) is nondecreasing in |ξ|;
(4) There exist two constants C and C0 such that

sup
2−1≤|η|≤2

∣∣(I −∆η)
n P (2j|η|)

∣∣ ≤ C P (C0 2j)

for any integer j and n = 1, 2, · · · , 1 +
[

d
2

]
.
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We remark that (4) in Condition 1.1 is a very natural condition on symbols of Fourier
multiplier operators and is similar to the main condition in the Mihlin-Hörmander Mul-
tiplier Theorem (see e.g. [87, p.96]). For notational convenience, we also assume that
P ≥ 0. Some special examples of P are

P (ξ) =
(
log(1 + |ξ|2)

)γ
with γ ≥ 0,

P (ξ) =
(
log(1 + log(1 + |ξ|2))

)γ
with γ ≥ 0,

P (ξ) = |ξ|β with β ≥ 0,

P (ξ) = (log(1 + |ξ|2))γ |ξ|β with γ ≥ 0 and β ≥ 0.

As in the study of the Navier-Stokes and the Euler equations, the quantity ‖∇u‖L∞

plays a crucial role in the global regularity issue. In our previous work on the invis-
cid counterpart of (1.1), we established bounds for the building blocks ‖∇∆ju‖Lq and
‖∇SNu‖Lq for 1 ≤ q ≤ ∞. More precisely, the following theorem is proven in [14].

Theorem 1.2. Let u : Rd → Rd be a vector field. Assume that u is related to a scalar
θ by

(∇u)jk = RlRm P (Λ) θ,

where 1 ≤ j, k, l,m ≤ d, (∇u)jk denotes the (j, k)-th entry of ∇u, Rl denotes the Riesz
transform, and P obeys Condition 1.1. Then, for any integers j ≥ 0 and N ≥ 0,

‖SN∇u‖Lp ≤ Cp,d P (C02
N) ‖SNθ‖Lp , 1 < p <∞,(1.6)

‖∆j∇u‖Lq ≤ Cd P (C02
j) ‖∆jθ‖Lq , 1 ≤ q ≤ ∞,(1.7)

‖SN∇u‖L∞ ≤ Cd ‖θ‖L1∩L∞ + CdN P (C02
N) ‖SN+1θ‖L∞ ,(1.8)

where Cp,d is a constant depending on p and d only and Cds’ depend on d only.

With the aid of these bounds, we were able to show in [14] that (1.1) with κ = 0
and P (Λ) = (log(1 + log(1−∆)))γ for 0 ≤ γ ≤ 1 has a unique global (in time) solution
in the Besov space Bs

q,∞(Rd) with d < q ≤ ∞ and s > 1. In addition, a regularity

criterion is also provided in [14] for (1.1) with P (Λ) = Λβ for 0 ≤ β ≤ 1. Our goal here
is to extend our study to cover more general operators when we turn on the dissipation.
Indeed we are able to establish the global existence and uniqueness for a very general
family of symbols. Before stating the result, we introduce the extended Besov spaces.
Here S ′ denotes the class of tempered distributions and ∆j with j ≥ −1 denotes the
standard Fourier localization operator. The notation ∆j, SN and Besov spaces are now
quite standard and can be found in several books and many papers (see e.g. [4], [17],
[81], [88]). They can also be found in Appendix A of [14].

Definition 1.3. Let s ∈ R and 1 ≤ q, r ≤ ∞. Let A = {Aj}j≥−1 with Aj ≥ 0 be a
nondecreasing sequence. The extended Besov space Bs,A

q,r consists of f ∈ S ′(Rd) satisfying

‖f‖Bs,A
q,r
≡

∥∥2sAj ‖∆jf‖Lq(Rd)

∥∥
lr
<∞.

Obviously, when Aj = j + 1, Bs,A
q,r becomes the standard inhomogeneous Besov space

Bs
q,r. When Aj = o(j + 1) as j →∞, Bs,A

q,r is a less regular class than the corresponding
Besov space Bs

q,r; we will refer to these spaces as sub-Besov spaces. When j = o(Aj),

Bs,A
q,r , we will refer to the spaces as super-Besov spaces.

With these definitions at our disposal, our main theorem can be stated as follows.
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Theorem 1.4. Consider the dissipative active scalar equation (1.1) with κ > 0, α > 0
and P (ξ) satisfying Condition 1.1. Let s > 1, 2 ≤ q ≤ ∞ and A = {Aj}j≥−1 be a
nondecreasing sequence with Aj ≥ 0. Let θ0 ∈ L1(Rd) ∩ L∞(Rd) ∩ Bs,A

q,∞(Rd). Assume

either the velocity u is divergence-free or the solution θ is bounded in L1(Rd) ∩ L∞(Rd)
for all time. If, there exists a constant C such that for all j ≥ −1,

(1.9)
∑

k≥j−1,k≥−1

2sAj−2 P (2k+1)

2sAk P (2j+1)
< C

and

(1.10) κ−1 2s(Aj−Aj−2) (j + 2)P (2j+2) 2−2αj → 0 as j →∞,

then (1.1) has a unique global solution θ satisfying

θ ∈ L∞
(
[0,∞);Bs,A

q,∞(Rd)
)
.

We single out two special consequences of Theorem 1.4. In the case when

(1.11) P (|ξ|) =
(
log(I + |ξ|2)

)γ
, γ ≥ 0 and Aj = (j + 1)b for some b ≤ 1,

(1.9) is trivially satisfied and the condition in (1.10) reduces to

(1.12) 2s((j+1)b−jb) (j + 2)1+γ2−2αj → 0 as j →∞,

which is obviously satisfied for any α > 0. We thus obtain the following corollary.

Corollary 1.5. Consider the dissipative Log-Euler equation

(1.13)

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = (log(1−∆))γ θ

with κ > 0, α > 0 and γ ≥ 0. Assume that θ0 satisfies

θ0 ∈ Y ≡ L1(R2) ∩ L∞(R2) ∩Bs,A
q,∞(R2)

with s > 1, 2 ≤ q ≤ ∞ and A given in (1.11). Then (1.13) has a unique global solution
θ satisfying

θ ∈ L∞ ([0,∞);Y ) .

The assumption that Aj = (j + 1)b with b ≤ 1 corresponds to the Besov and the
sub-Besov spaces. We can also consider the solutions of (1.13) in super-Besov spaces by
taking Aj = (j + 1)b for b > 1. It is easy to see that (1.12) remains valid if s b < 2α.
Therefore (1.13) with 2α > s b has a global solution in the super-Besov space Bs,A

q,∞ with

Aj = (j + 1)b for b > 1.

Another very important special case is when

(1.14) Aj = j + 1, P (ξ) = |ξ|β(log(1 + |ξ|2))γ with γ ≥ 0 and 0 ≤ β < 2α ≤ 1.

Then again (1.9) is obviously satisfied and (1.10) is reduced to

2s((j+1)b−jb)(j + 2)1+γ 2(β−2α)j → 0 as j →∞,

which is clearly true. That is, the following corollary holds.
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Corollary 1.6. Consider the active scalar equation

(1.15)

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = Λβ (log(1−∆))γ θ

with κ > 0, α > 0, 0 ≤ β < 2α ≤ 1 and γ ≥ 0. Assume the initial data θ0 ∈ Y ≡
L1(R2) ∩ L∞(R2) ∩ Bs,A

q,∞(R2) with s > 1, 2 ≤ q ≤ ∞ and Aj given by (1.14). Then
(1.15) has a unique global solution θ satisfying

θ ∈ L∞ ([0,∞);Y ) .

Again we could have studied the global solutions of (1.15) in a super-Besov space
Bs,A

q,∞ with, say Aj = (j + 1)b for b > 1. Of course we need to put more restrictions on
α. When γ = 0, (1.15) becomes

(1.16)

{
∂tθ + u · ∇θ + κ(−∆)αθ = 0,
u = ∇⊥ψ, ∆ψ = Λβ θ,

which we call the generalized SQG equation. Corollary 1.6 does not cover the case when
β = 2α, namely the modified SQG equation. The global regularity of the modified SQG
equation with any L2 initial data has previously been obtained in [23]. In the supercrit-
ical case when β > 2α, the global regularity issue for (1.16) is open. In particular, the
global issue for supercritical SQG equation (β = 1 and 2α < 1) remains outstandingly
open.

Following the ideas in [11] and [25], we approach the global issue of (1.16) in the
super case β > 2α by considering the geometry of the level curves of its solution. We
present a geometric type criterion for the regularity of solutions of (1.16). This sufficient
condition controls the regularity of solutions in terms of the space-time integrability of
|∇⊥θ| and the regularity of the direction field ξ = ∇⊥θ/|∇⊥θ| (unit tangent vector to a
level curve of θ).

Theorem 1.7. Consider (1.16) with κ > 0, α > 0 and 0 ≤ β ≤ 1. Let θ be the solution
of (1.16) corresponding to the initial data θ0 ∈ Hm(R2) with m > 2. Let T > 0. Suppose
there exists σ ∈ (0, 1), q1 ∈ ( 2

1+β−σ
,∞], p1 ∈ (1,∞], p2 ∈ (1, 2

1+σ−β
) and r1, r2 ∈ [1,∞]

such that the followings hold.

ξ ∈ Lr1(0, T ; Ḟσ
p1,q(R2)) and ∇⊥θ ∈ Lr2(0, T ;Lp2(R2))(1.17)

with
1

p1

+
1

p2

+
α

r1
+
α

r2
≤ α+

1

2
(1 + σ − β).

Then θ remains in Hm(R2) on [0, T ]. Especially, when p1 = r1 = q = ∞, (1.17) becomes

ξ ∈ L∞(0, T ;Cσ(R2)) and ∇⊥θ ∈ Lr2(0, T ;Lp2(R2))

with
1

p2

+
α

r2
≤ α+

1

2
(1 + σ − β).

Here Ḟ s
p,q(R2) denotes a homogeneous Trebiel-Lizorkin type space. For 0 ≤ s ≤ 1,

1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, Ḟ s
p,q contains functions such that the following semi-norm
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is finite,

‖f‖Ḟs
p,q

=



∥∥∥∥∥
(∫

|f(x+ y)− f(x)|q

|y|n+sq
dy

) 1
q

∥∥∥∥∥
Lp

, if q <∞,

∥∥∥∥sup
y 6=0

|f(x+ y)− f(x)|
|y|s

∥∥∥∥
Lp

, if q = ∞

We note that if we set β = 1 in Theorem 1.7, then it reduces to Theorem 1.2 of [11].

The rest of this paper is divided into two sections. Section 2 proves Theorem 1.4
while Section 3 derives the geometric regularity criterion stated in Theorem 1.7.

2. Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4, which involves Besov space
technique and the bounds stated in Theorem 1.2. In addition, lower bound estimates
associated with the fractional dissipation are also used.

Proof of Theorem 1.4. The proof is divided into two main parts. The first part estab-
lishes the global (in time) a priori bound on solutions of (1.1) while the second part
briefly describes the construction of a unique local (in time) solution.

For notational convenience, we write Y = L1(Rd) ∩ L∞(Rd) ∩ Bs,A
q,∞(Rd). The first

part derives the global bound, for any T > 0,

(2.1) ‖θ(·, t)‖Bs,A
q,∞

≤ C(T, ‖θ0‖Y ) for t ≤ T

and we distinguish between two cases: q < ∞ and q = ∞. The dissipative term is
handled differently in these two cases.

We start with the case when q < ∞. When the velocity field u is divergence-free,
θ0 ∈ L1 ∩ L∞ implies the corresponding solution θ of (1.1) satisfies the a priori bound

(2.2) ‖θ(·, t)‖L1∩L∞ ≤ ‖θ0‖L1∩L∞ , t ≥ 0.

When u is not divergence-free, (2.2) is assumed. The divergence-free condition is not
used in the rest of the proof.

Let j ≥ −1 be an integer. Applying ∆j to (1.1) and following a standard decompo-
sition, we have

(2.3) ∂t∆jθ + κ(−∆)α∆jθ = J1 + J2 + J3 + J4 + J5,
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where

J1 = −
∑

|j−k|≤2

[∆j, Sk−1(u) · ∇]∆kθ,(2.4)

J2 = −
∑

|j−k|≤2

(Sk−1(u)− Sj(u)) · ∇∆j∆kθ,(2.5)

J3 = −Sj(u) · ∇∆jθ,(2.6)

J4 = −
∑

|j−k|≤2

∆j(∆ku · ∇Sk−1(θ)),(2.7)

J5 = −
∑

k≥j−1

∆j(∆̃ku · ∇∆kθ)(2.8)

with ∆̃k = ∆k−1 +∆k +∆k+1. We multiply (2.3) by ∆jθ|∆jθ|q−2 and integrate in space.
Integrating by parts in the term associated with J3, we obtain

−
∫

Rd

(Sj(u) · ∇∆jθ) ∆jθ|∆jθ|q−2 dx =
1

q

∫
Rd

(∇ · Sju)|∆jθ|q dx

=

∫
Rd

J̃3 |∆jθ|q−1 dx,

where J̃3 is given by

J̃3 =
1

q
(∇ · Sju)|∆jθ|.

Applying Hölder’s inequality, we have

1

q

d

dt
‖∆jθ‖q

Lq + κ

∫
∆jθ|∆jθ|q−2(−∆)α∆jθ dx(2.9)

≤
(
‖J1‖Lq + ‖J2‖Lq + ‖J̃3‖Lq + ‖J4‖Lq + ‖J5‖Lq

)
‖∆jθ‖q−1

Lq .

For j ≥ 0, we have the lower bound (see [18] and [98])

(2.10)

∫
∆jθ|∆jθ|q−2(−∆)α∆jθ ≥ C 22αj ‖∆jθ‖q

Lq .

For j = −1, this lower bound is invalid. Still we have

(2.11)

∫
∆jθ|∆jθ|q−2(−∆)α∆jθ ≥ 0.

Attention is paid to the case j ≥ 0 first. Inserting (2.10) in (2.9) leads to

d

dt
‖∆jθ‖Lq + κ 22αj ‖∆jθ‖Lq ≤ ‖J1‖Lq + ‖J2‖Lq + ‖J̃3‖Lq + ‖J4‖Lq + ‖J5‖Lq .

By a standard commutator estimate,

‖J1‖Lq ≤ C
∑

|j−k|≤2

‖∇Sk−1u‖L∞‖∆kθ‖Lq .

By Hölder’s and Bernstein’s inequalities,

‖J2‖Lq ≤ C ‖∇∆̃ju‖L∞ ‖∆jθ‖Lq .
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Clearly,

‖J̃3‖Lq ≤ C ‖∇ · Sju‖L∞ ‖∆jθ‖Lq .

For J4 and J5, we have

‖J4‖Lq ≤
∑

|j−k|≤2

‖∆ku‖L∞ ‖∇Sk−1θ‖Lq ,

‖J5‖Lq ≤
∑

k≥j−1

‖∆̃ku‖L∞‖∆k∇θ‖Lq

≤ C
∑

k≥j−1

‖∇∆̃ku‖L∞ ‖∆kθ‖Lq .

These terms can be further bounded as follows. By Theorem 1.2,

‖∇Sku‖L∞ ≤ ‖θ0‖L1∩L∞ + Ck P (2k+1)‖Sk+1θ‖L∞

≤ ‖θ0‖L1∩L∞ + Ck P (2k+1)‖θ0‖L∞ .

Thus,

‖J1‖Lq ≤ C ‖θ0‖L1∩L∞

∑
|j−k|≤2

(1 + Ck P (2k+1))2−sAk 2sAk‖∆kθ‖Lq

≤ C 2−sAj ‖θ0‖L1∩L∞‖θ‖Bs,A
q,∞

∑
|j−k|≤2

(1 + Ck P (2k+1))2s(Aj−Ak).

Since Aj is a nondecreasing function of j,

(2.12) 2s(Aj−Ak) ≤ 2s(Aj−Aj−2) for |k − j| ≤ 2,

where we have adopted the convention that Al ≡ 0 for l < −1. Consequently,

‖J1‖Lq ≤ C 2−sAj−2 ‖θ0‖L1∩L∞‖θ‖Bs,A
q,∞

(
1 + (j + 2)P (2j+2)

)
.

Clearly, ‖J2‖Lq and ‖J3‖Lq admits the same bound as ‖J1‖Lq . By Bernstein’s inequality
and Theorem 1.2,

‖J4‖Lq ≤ C
∑

|j−k|≤2

‖∇∆ku‖Lq ‖Sk−1θ‖L∞

≤ C ‖θ‖L∞

∑
|j−k|≤2

P (2k+1)‖∆kθ‖Lq .

By (2.12), we have

‖J4‖Lq ≤ C 2−sAj−2 ‖θ0‖L∞ ‖θ‖Bs,A
q,∞

P (2j+2).

By Theorem 1.2,

‖J5‖Lq ≤ C
∑

k≥j−1

P (2k+1)‖∆̃kθ‖L∞‖∆kθ‖Lq

≤ C ‖θ0‖L∞

∑
k≥j−1

P (2k+1)‖∆kθ‖Lq

≤ C ‖θ0‖L∞2−sAj−2 P (2j+1)‖θ‖Bs,A
q,∞

∑
k≥j−1

2sAj−2

P (2j+1)

P (2k+1)

2sAk
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By (1.9),

‖J5‖Lq ≤ C ‖θ0‖L∞2−sAj−2 P (2j+1)‖θ‖Bs,A
q,∞
.

Collecting all the estimates, we have, for j ≥ 0,

d

dt
‖∆jθ‖Lq + κ 22αj ‖∆jθ‖Lq ≤ C 2−sAj−2 ‖θ0‖L1∩L∞

×‖θ‖Bs,A
q,∞

(
1 + (j + 2)P (2j+2)

)
.

That is,

d

dt

(
eκ22αjt‖∆jθ‖Lq

)
≤ C eκ22αjt2−sAj−2 ‖θ0‖L1∩L∞‖θ‖Bs,A

q,∞

(
1 + (j + 2)P (2j+2)

)
.

Integrating in time and multiplying by 2sAj · e−κ22αjt, we obtain, for j ≥ 0,

(2.13) 2sAj ‖∆jθ‖Lq ≤ 2sAj e−κ22αjt‖∆jθ0‖Lq +Kj,

where

Kj = C ‖θ0‖L1∩L∞
(
1 + (j + 2)P (2j+2)

)
2s(Aj−Aj−2)

∫ t

0

e−κ22αj(t−τ)‖θ(τ)‖Bs,A
q,∞

dτ.

To further the estimates, we fix t0 ≤ T and let t ≤ t0. It is easy to see that Kj admits
the upper bound

Kj ≤ C ‖θ0‖L1∩L∞
(
1 + (j + 2)P (2j+2)

)
2s(Aj−Aj−2)

× 1

κ22αj

(
1− e−κ22αjt

)
sup

0≤τ≤t0

‖θ(τ)‖Bs,A
q,∞
.

According to (1.10), there exists an integer j0 such that, for j ≥ j0,

(2.14) Kj ≤
1

2
sup

0≤τ≤t0

‖θ(τ)‖Bs,A
q,∞
.

For 0 ≤ j ≤ j0,

(2.15) Kj ≤ C ‖θ0‖L1∩L∞
(
1 + (j0 + 2)P (2j0+2)

)
max

0≤j≤j0
2s(Aj−Aj−2)

∫ t

0

‖θ(τ)‖Bs,A
q,∞

dτ.

We now turn to the case when j = −1. By combining (2.3) and (2.11) and estimating
‖J1‖Lq through ‖J5‖Lq in an similar fashion as for the case j ≥ 0, we obtain

(2.16) ‖∆−1θ(t)‖Lq ≤ ‖∆−1θ(0)‖Lq + C ‖θ0‖L1∩L∞

∫ t

0

‖θ(τ)‖Bs,A
q,∞

dτ.

Putting (2.13) and (2.16) together, we find, for any j ≥ −1,

(2.17) 2sAj ‖∆jθ‖Lq ≤ ‖θ0‖Bs,A
q,∞

+Kj,

where Kj obeys the bound (2.14) for j ≥ j0 and the bound in (2.15) for −1 ≤ j < j0.
Applying supj≥−1 to (2.17) and using the simple fact that

sup
j≥−1

Kj ≤ sup
j≥j0

Kj + sup
−1≤j<j0

Kj,

we obtain

‖θ(t)‖Bs,A
q,∞

≤ ‖θ0‖Bs,A
q,∞

+
1

2
sup

0≤τ≤t0

‖θ(τ)‖Bs,A
q,∞

+ C(θ0, j0)

∫ t

0

‖θ(τ)‖Bs,A
q,∞

dτ,
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where

C(θ0, j0) = C ‖θ0‖L1∩L∞
(
1 + (j0 + 2)P (2j0+2)

)
max

0≤j≤j0
2s(Aj−Aj−2).

Now taking supermum over t ∈ [0, t0], we obtain

sup
0≤τ≤t0

‖θ(τ)‖Bs,A
q,∞

≤ 2 ‖θ0‖Bs,A
q,∞

+ C(θ0, j0)

∫ t0

0

‖θ(τ)‖Bs,A
q,∞

dτ,

Gronwall’s inequality then implies (2.1) for any t ≤ t0 ≤ T . This finishes the case when
q <∞.

We now turn to the case when q = ∞. For j ≥ 0, applying ∆j yields

∂t∆jθ + Sju · ∇(∆jθ) + κ(−∆)α∆jθ = J1 + J2 + J4 + J5

where J1, J2, J4 and J5 are as defined in (2.4), (2.5), (2.7) and (2.8), respectively.
According to Lemma 2.1 below, we have

(2.18) ∂t‖∆jθ‖L∞ + C 22αj‖∆jθ‖L∞ ≤ ‖J1‖L∞ + ‖J2‖L∞ + ‖J4‖L∞ + ‖J5‖L∞ .

The terms on the right can be estimated similarly as in the case when q < ∞. For
j = −1, (2.18) is replaced by

∂t‖∆−1θ‖L∞ ≤ ‖J1‖L∞ + ‖J2‖L∞ + ‖J4‖L∞ + ‖J5‖L∞ .

The rest of the proof for this case is then very similar to the case q < ∞ and we thus
omit further details.

We briefly describe the construction of a local solution of (1.1) and prove its unique-
ness. The solution is constructed through the method of successive approximation. More
precisely, we consider a successive approximation sequence {θ(n)} satisfying

(2.19)



θ(1) = S2θ0,

u(n) = (u
(n)
j ), u

(n)
j = RlΛ

−1P (Λ)θ(n),

∂tθ
(n+1) + u(n) · ∇θ(n+1) + κ(−∆)αθ(n+1) = 0,

θ(n+1)(x, 0) = Sn+2θ0

and show that {θ(n)} converges to a solution of (1.1). It suffices to prove the following
properties of {θ(n)}:

i) There exists T1 > 0 such that θ(n) is bounded uniformly in Bs,A
q,∞ for any t ∈ [0, T1],

namely

‖θ(n)(·, t)‖Bs,A
q,∞

≤ C1‖θ0‖Y , t ∈ [0, T1],

where C1 is a constant independent of n.
ii) There exists T2 > 0 such that η(n+1) = θ(n+1) − θ(n) is a Cauchy sequence in

Bs−1,A
q,∞ ,

‖η(n)(·, t)‖Bs−1,A
q,∞

≤ C2 2−n, t ∈ [0, T2],

where C2 is independent of n and depends on T2 and ‖θ0‖Y only.
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Since the essential ingredients in the proof of i) and ii) have appeared in proving the a
priori bound, we omit the details. The uniqueness can be established by estimating the
difference of any two solutions in Bs−1,A

q,∞ . A similar argument as in the proof of ii) would
yield the desired result. This completes the proof of Theorem 1.4. �

We have used the following lemma in the proof of Theorem 1.4. It is obtained in [90].

Lemma 2.1. Let j ≥ 0 be an integer. Let θ, u and f be smooth functions solving the
equation

∂t∆jθ + u · ∇∆jθ + κ(−∆)α∆jθ = f,

where κ > 0 is a parameter. Assume that ∆jθ vanishes at infinity. Then, there exists a
constant C independent of θ, u, f and j such that

∂t‖∆jθ‖L∞ + C 22αj‖∆jθ‖L∞ ≤ ‖f‖L∞ .

3. Geometric regularity criterion

In this section we prove Theorem 1.7. For this we recall the following Serrin type of
criterion, which is proved for β = 1 in [11, Theorem 1.1], and obviously holds true for
our case of β ∈ [0, 1].

Theorem 3.1. Let θ(x, t) be a solution of (1.16) with initial data θ0 ∈ Hm(R2) with
m > 2. Let T > 0. If there are indices p, r with 1

α
< p <∞ and 1 < r <∞ respectively

such that

(3.1) ∇⊥θ ∈ Lr(0, T ;Lp(R2)) with
1

p
+
α

r
≤ α,

then θ remains in Hm(R2) on [0, T ].

Proof of Theorem 1.7. Since the proof is similar to that of Theorem 1.2 in [11], we will
be brief here mostly pointing out the essential changes. Let p be an integer of the form
p = 2k, where k is a positive integer, and satisfy

(3.2)
1

α
≤ p <∞.

We take operation of ∇⊥ on (1.16), and take L2(R2) inner product of it by
∇⊥θ(x, t)|∇⊥θ(x, t)|p−2, and then substituting u = −∇⊥Λ−2+βθ into it, we have

1

p

d

dt
‖∇⊥θ(t)‖p

Lp + κ

∫
(Λ2α∇⊥θ) · ∇⊥θ|∇⊥θ|p−2dx

=

∫
(∇⊥θ · ∇)u · ∇⊥θ|∇⊥θ|p−2dx

=

∫ ∫
[∇θ(x, t) · ŷ][∇⊥θ(x+ y, t) · ∇θ(x, t)] dy

|y|1+β
|∇⊥θ(x, t)|p−2dx

:= I,(3.3)



12 DONGHO CHAE, PETER CONSTANTIN AND JIAHONG WU

where the integral with respect to y in the right hand side is in the sense of principal
value. The dissipation term can be estimated

κ

∫
(Λ2α∇⊥θ) · ∇⊥θ|∇⊥θ|p−2dx ≥ κ

p

∫ ∣∣∣Λα|∇⊥θ|
p
2

∣∣∣2 dx
≥ κCα

p

(∫
|∇⊥θ|

p
1−αdx

)1−α

=
κCα

p
‖∇⊥θ‖p

L
p

1−α
,(3.4)

where we used Lemma 2.4 of [31] and the embedding L2
α(R2) ↪→ L

2
1−α (R2). Next, we

estimate I as follows.

I =

∫ ∫
(ξ⊥(x, t) · ŷ)[ξ(x+ y, t) · ξ⊥(x, t)]|∇⊥θ(x+ y, t)| dy

|y|1+β
|∇⊥θ(x, t)|pdx

=

∫ ∫
(ξ⊥(x, t) · ŷ)[ξ(x+ y, t)− ξ(x, t)] · ξ⊥(x, t)|∇⊥θ(x+ y, t)| dy

|y|1+β
|∇⊥θ(x, t)|pdx

≤
∫ ∫

|ξ(x+ y, t)− ξ(x, t)||∇⊥θ(x+ y, t)| dy

|y|
2+(β−1+s)q

q
+ 2−sq′

q′
|∇⊥θ(x, t)|pdx

≤
∫ (∫

|ξ(x+ y, t)− ξ(x, t)|q

|y|2+(β−1+s)q
dy

) 1
q
(∫

|∇⊥θ(x+ y, t)|q′

|y|2−sq′
dy

) 1
q′

|∇⊥θ|pdx

≤ ‖ξ‖Ḟσ
p1,q

∥∥∥{Isq′(|∇⊥θ|q′)}
1
q′

∥∥∥
Lp̃2

‖∇⊥θ‖p
Lp3 ,

where we used the fact ξ(x, t)·ξ⊥(x, t) = 0 in the second equality, and Hölder’s inequality
in the second and the third inequalities with the exponents satisfying

(3.5)
1

p1

+
1

p̃2

+
p

p3

= 1,
1

q
+

1

q′
= 1,

and Ia(·), 0 < a < 2, is the operator defined by the Riesz potential. We also set

(3.6) σ = β − 1 + s

in the last inequality. After this, we apply Hardy-Littlewood-Sobolev inequality and
Young’s inequality to estimate I, which is similar to the proof of Theorem 1.2 of [11],
and deduce

(3.7)
d

dt
‖∇⊥θ(t)‖p

Lp +
κCα

2
‖∇⊥θ(t)‖p

L
p

1−α
≤ C‖ξ(t)‖Q

Ḟσ
p1,q
‖∇⊥θ(t)‖Q

Lp2‖∇⊥θ(t)‖p
Lp ,

where we set

(3.8) Q =
2αp1p2

(2α+ s)p1p2 − 2p1 − 2p2

,

which need to satisfy

(3.9)
1

r1
+

1

r2
≤ 1

Q
.

We note that (3.9) is equivalent to

1

p1

+
1

p2

+
α

r1
+
α

r2
≤ α+

1

2
(1 + σ − β)
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after substituting Q and s from (3.8) and (3.6) respectively into (3.9). Since∫ T

0

‖ξ(t)‖Q

Ḟσ
p1,q
‖∇⊥θ(t)‖Q

Lp2dt ≤
(∫ T

0

‖ξ(t)‖r1

Ḟσ
p1,q
dt

) Q
r1

(∫ T

0

‖∇⊥θ(t)‖r2
Lp2dt

) Q
r2

<∞

by our hypothesis, The inequality (3.7) leads us to∫ T

0

‖∇⊥θ‖p

L
p

1−α
dt <∞.

Now applying Theorem 3.1, we conclude the proof. �
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[69] F. Marchand and P.G. Lemarié-Rieusset, Solutions auto-similaires non radiales pour l’équation
quasi-géostrophique dissipative critique, C. R. Math. Acad. Sci. Paris 341 (2005), 535–538.

[70] R. May, Global well-posedness for a modified 2D dissipative quasi-geostrophic equation with initial
data in the critical Sobolev space H1, arXiv:0910.0998v1 [math.AP] 6 Oct 2009.

[71] R. May and E. Zahrouni, Global existence of solutions for subcritical quasi-geostrophic equations,
Commun. Pure Appl. Anal. 7 (2008), 1179–1191.

[72] C. Miao and L. Xue, Global wellposedness for a modified critical dissipative quasi-geostrophic
equation, arXiv:0901.1368v4 [math.AP] 18 Sep 2010.

[73] H. Miura, Dissipative quasi-geostrophic equation for large initial data in the critical sobolev space,
Commun. Math. Phys. 267 (2006), 141–157.

[74] C. Niche and M. Schonbek, Decay of weak solutions to the 2D dissipative quasi-geostrophic equa-
tion, Comm. Math. Phys. 276 (2007), 93–115.

[75] K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic
flow, Phys. Fluids 9 (1997), 876–882.

[76] J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York, 1987.
[77] J. Reinaud and D. Dritschel, Destructive interactions between two counter-rotating quasi-

geostrophic vortices, J. Fluid Mech. 639 (2009), 195–211.
[78] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis,

University of Chicago, 1995.
[79] J. Rodrigo, The vortex patch problem for the surface quasi-geostrophic equation, Proc. Natl. Acad.

Sci. USA 101 (2004), 2684–2686
[80] J. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Comm. Pure Appl.

Math. 58 (2005), 821–866.
[81] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear

Partial Differential Equations, Walter de Gruyter & Co., Berlin, 1996.
[82] M. Schonbek and T. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM

J. Math. Anal. 35 (2003), 357-375.
[83] M. Schonbek and T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-

geostrophic flows, Discrete Contin. Dyn. Syst. 13 (2005), 1277-1304.
[84] L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation, Ann.
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