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ABSTRACT. We discuss general incompressible inviscid models, including the Euler equations, the surface
quasi-geostrophic equation, incompressible porous medium equation, and Boussinesq equations. All these
models have classical unique solutions, at least for short time. We show that they have real analytic Lagrangian
paths. More precisely, we show that as long as a solution of any of these equations is in a class of regularity that
assures Hölder continuous gradients of velocity, the corresponding Lagrangian paths are real analytic functions
of time. The method of proof is conceptually straightforward and general, and we address the combinatorial
issues head-on. March 23, 2014.

1. Introduction

Analyticity of Lagrangian paths of solutions of incompressible Euler equations is a classical sub-
ject. Propagation of real analyticity in space and time, from analytic initial data, and for as long as
the solution exists, has been amply investigated [BBZ76, BB77, AM86, Del85, LB86, LO97, KV09,
KV11, Zhe11, Saw13]. The smoothness or real analyticity of Lagrangian paths without having ana-
lytic Eulerian data is quite a different subject from propagation of analyticity. This subject has been ad-
dressed in the past [Lic25, Che92, Ser95a, Ser95b, Che98], and has recently generated renewed inter-
est [Shn12, FZ12, Ise13, Nad13, ZF13, FV14]. The remarkable property of smoothness of the Lagrangian
paths in this system holds even when the Eulerian variables (velocity, pressure) have a limited degree of
smoothness. A relatively low degree of smoothness of the Eulerian variables is maintained through the evo-
lution if it is initially present, because the equations, when well posed, are time-reversible. Consequently,
the real analyticity of Lagrangian paths in such circumstances is all the more remarkable. An interesting
example of the distinct degrees of smoothness of Eulerian and Lagrangian variables is provided in the recent
works [Ise12, BDLS13], which concern a rough enough Eulerian setting for non-uniqueness. The purpose
of this paper is to show that the real analyticity of Lagrangian paths of solutions of hydrodynamic models is
a general property which occurs naturally when the Eulerian velocities are slightly smoother than Lipschitz,
and follows from a uniform arc-chord property of the paths using singular integral calculus.

The Lagrangian paths of any fluid model with velocities u(x, t), with x ∈ Rd and t ∈ R are defined by
ordinary differential equations

dX

dt
= u(X, t), (1.1)

X(a, 0) = a. (1.2)

We refer to a ∈ Rd as a “label” because it marks the initial point on the path a 7→X(a, t). The gradient of
the path obeys

d

dt
∇X = (∇u)∇X (1.3)
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with initial data the identity matrix. As long as u is Lipschitz, we have

sup
a∈Rd

|∇X(a, t)| ≤ exp
∫ t

0
‖∇u‖L∞dt (1.4)

where we denote by |·| the norm of the matrix. The mapsX are C1,γ and invertible if u is in L1(0, T ;C1,γ),
and the inverse, the “back-to-labels” mapA(x, t) = X−1(x, t) obeys

∂tA+ u · ∇A = 0, (1.5)

with initial dataA(x, 0) = x. Incompressibility is not needed for this to hold. The gradients obey

∂t∇A+ u · ∇A+ (∇A)(∇u) = 0, (1.6)

with initial data the identity matrix, and with (∇A)(∇u) the matrix product. Therefore

sup
x∈Rd

|∇A(x, t)| ≤ exp
∫ t

0
‖∇u‖L∞dt (1.7)

follows by integrating on characteristics. Because

a− b = A(X(a, t), t)−A(X(b, t), t)

it follows from (1.7) that

|a− b| ≤ |X(a, t)−X(b, t)| exp
∫ t

0
‖∇u‖L∞dt,

and because

X(a, t)−X(b, t) =
∫ 1

0

d

ds
X((1− s)a+ sb, t)ds

it follows from (1.4) that

|X(a, t)−X(b, t)| ≤ |a− b| exp
∫ t

0
‖∇u‖L∞dt.

We have thus the arc-chord condition

λ−1 ≤ |a− b|
|X(a, t)−X(b, t)|

≤ λ (1.8)

where

λ = exp
∫ t

0
‖∇u‖L∞dt. (1.9)

This condition holds for any fluid system, as long as the velocities are Lipschitz, even if the fluid is com-
pressible. Time analyticity of paths will be discussed here only in the incompressible case, for convenience,
but the proofs are the same for compressible equations, modulo differentiating the Jacobian of the path map.

We consider here one of the following equations: the 2D surface quasi-geostrophic equation (cf. (2.1)–
(2.2)), the 2D incompressible porous medium equation (cf. (2.5)–(2.6)), the 2D and the 3D incompressible
Euler equations (cf. (2.9) and (2.8)), and the 2D Boussinesq equations (cf. (2.10)–(2.12)). These are by
no means an exhaustive list of equations for which our method applies. They have been chosen because,
with the sole exception of the 2D Euler equations, all the above models are examples of equations where
the question of global existence of smooth solutions remains open. Nevertheless, they all have real analytic
particle paths. The main result of this manuscript is:

THEOREM 1.1 (Lagrangian analyticity in hydrodynamic equations). Consider any of the above hy-
drodynamic systems on a time interval when the Eulerian velocities are C1,γ , for some γ ∈ (0, 1). Then, as
the arc-chord parameter in (1.9) remains finite on the time interval, the Lagrangian particle trajectories are
real analytic functions of time.
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We note that the assumption of the theorem holds for short time if the initial data are such that the
Eulerian velocities are C1,γ . The analyticity is a local property. It follows form the proof of the theorem that
the radius of time analyticity of X(·, t) is a function of a suitable norm of the initial data and time, which
enters only through the arc-chord parameter λ. This parameter dependence is consistent with that for the
spatial analyticity radius in the case of real analytic initial datum [KV09, KV11].

The main idea of the proof starts with a representation of the velocity in Lagrangian variables in terms
of conserved quantities. It is easiest to show this in the case of 2D active scalars. Two dimensional incom-
pressible hydrodynamic velocities can be expressed in terms of a stream function ψ,

u = ∇⊥ψ (1.10)

where ∇⊥ = (−∂2, ∂1) is the gradient rotated counter-clockwise by 90 degrees. The active scalars solve
transport equations

∂tθ + u · ∇θ = 0 (1.11)
with u given by (1.10) and ψ related to θ by some time independent linear constitutive law ψ = Lθ. In most
cases this leads to a simple integral formula

u(x, t) = p.v.

∫
R2

K(x− y)θ(y, t)dy

with a kernel K that is singular at the origin, real analytic away from the origin, and integrates to zero on
spheres. Note that (1.11) simply says that

θ(X(a, t), t) = θ0(a). (1.12)

Composing the representation of the velocity with the Lagrangian map we obtain

dX(a, t)
dt

= p.v.

∫
R2

K(X(a, t)−X(b, t))θ0(b)db. (1.13)

In Section 2 we give the precise versions of (1.13) for the hydrodynamic models under consideration. Also,
throughout the manuscript, for notational convenience we drop the p.v. in front of the integrals.

The straightforward general idea is to use the arc-chord condition and analyticity of the kernel to prove
inductively Cauchy inequalities for all high time derivatives of X at fixed label. The implementation of
this idea encounters two sets of difficulties: one due to combinatorial complexity, and the other due to the
singularity of the kernels and unboundedness of space.

Combinatorial complexity is already present in a real variables proof of real analyticity of compositions
of multivariate real analytic functions. We discuss this issue separately in Section 3. We use a multivari-
ate Faà di Bruno formula (cf. [CS96] or Lemma 3.2 below), multivariate identities (we call them “magic
identities”, because they seem so to us; cf. Lemma 3.3) and an induction with modified versions of Cauchy
inequalities (cf. (3.4) or (4.4), inspired by [KP02]) in order to control the growth of the combinatorial terms.
This difficulty is universal, and because we addressed it head-on, the method is applicable to even more
examples, not only the ones described in this work, and not only to hydrodynamic ones.

The singular integral difficulties are familiar. In all these systems the gradient of velocity is also rep-
resented using singular integrals of Calderón-Zygmund type. The singular nature of the kernels is always
compensated by the presence of polynomial terms inX(a, t)−X(b, t), which arise since the kernels have
vanishing means on spheres centered at the origin. The fact that we integrate in the whole space necessitates
the introduction of a real analytic cutoff, which for simplicity we take to be Gaussian.

The Euler equations have classical invariants [Con01, Con04, ZF13], which yield completely local
relations involving dX/dt in Lagrangian coordinates. This is remarkable, but special: in more general
systems the corresponding relations are not local. Because of this, we pursue the same proof for the Euler
equations as for the general case.

We give the fully detailed proof of Theorem 1.1 in the case of the 2D SQG equations. This is done in
Section 4. The proofs for the 2D IPM and 2D and 3D Euler equations are the same. The 2D IPM and 3D
Euler equations have of course different kernels; 2D Euler has a less singular kernel. The proof in the case
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of the 2D Boussinesq equations has an additional level of difficulty since the operator L in the constitutive
law for θ is time-dependent. This issue will be addressed in a forthcoming work.

The paper is organized as follows. In Section 2 we provide the self-contained Lagrangian formulae
of type (1.13) for each of the hydrodynamic models under consideration. In Section 3 we introduce the
combinatorial machinery used in the proof of the main theorem, which is centered around the multivariate
Faà di Bruno formula. In Section 4 we give the proof of Theorem 1.1 in the case of SQG. Lastly, in
Appendix A, for the sake of completeness, we give the derivation of the natural Lagrangian formulae stated
in Section 2. In Appendix B we recall from [KP02] the one-dimensional Faà di Bruno formula and its
application to the composition of real analytic functions.

2. Self-contained Lagrangian evolution

In this section we give self-contained formulae for the time derivatives of X and ∇X , for each of the
hydrodynamic equations considered. In each case the initial datum enters these equations as a parameter.
We use the usual Poisson bracket notation

{f, g} = (∂1f)(∂2g)− (∂2f)(∂1g) = (∇⊥f) · (∇g).

2.1. 2D Surface Quasi-Geostrophic Equation. The inviscid SQG equation is

∂tθ + (u · ∇)θ = 0, (2.1)

u = ∇⊥(−∆)−1/2θ = R⊥θ (2.2)

where R = (R1, R2) is the vector of Riesz-transforms. Here x ∈ R2 and t > 0. We recall cf. [CMT94]
that the SQG equation is locally well-posed if θ0 ∈ C1,γ , with γ ∈ (0, 1). It follows from (2.1)–(2.2) that
the vector fields ∇⊥θ · ∇ and ∂t + u · ∇ commute. The ensuing self-contained formula for the Lagrangian
trajectoryX induced by the velocity field u is

dX

dt
(a, t) =

∫
K(X(a, t)−X(b, t))θ0(b) db, (2.3)

while the gradient of the Lagrangian,∇aX , obeys

d(∇aX)
dt

(a, t) = ∇aX(a, t)
∫
K(X(a, t)−X(b, t))∇bX(b, t)⊥∇bθ0(b) db. (2.4)

Here the kernelK associated to the rotated Riesz transformR⊥ is given by

K(y) =
y⊥

2π|y|3
.

We refer to Appendix A.1 for details.

2.2. The 2D Incompressible Porous Media Equation. The inviscid IPM equation assumes the form

∂tθ + (u · ∇)θ = 0, (2.5)

u = P(0, θ) = −∇p− (0, θ). (2.6)

We recall, cf. [CGO07] that the IPM equation is locally well-posed if θ0 ∈ C1,γ , with γ ∈ (0, 1). For the
particle trajectoriesX induced by the vector field u we have

dX

dt
(a, t) = − 1

2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2
{θ0(b), X2(b, t)} db
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and
d(∇aX)

dt
(a, t) = ∇aX(a, t)

∫
K(X(a, t)−X(b, t)) {θ0(b), X2(b, t)} db

+
1
2
{θ0(a), X2(a, t)}

[
0 −1
1 0

]
∇aX(a, t)

whereK is given by

K(y) = K(y1, y2) =
1

2π|y|4

[
2y1 y2 y2

2 − y2
1

y2
2 − y2

1 −2y1 y2

]
. (2.7)

The details are given in Appendix A.2.

2.3. The 3D Euler Equations. The three-dimensional Euler equations in vorticity form are given by

∂tω + u · ∇ω = ω · ∇u (2.8)

where the divergence free u can be recovered from ω via the Biot-Savart formula [MB02]

u(x, t) =
1

4π

∫
R3

x− y
|x− y|3

× ω(y, t)dy.

The geometric interpretation of (2.8) and incompressibility is that the vector fields ω · ∇ and ∂t + u · ∇
commute. The local existence and uniqueness of solutions to (2.8) with initial datau0 ∈ C1,γ , for γ ∈ (0, 1),
goes back at least to [Lic25] (see also [MB02] and references therein for a more modern perspective). Due
to the Cauchy formula

ω(X(a, t), t) = ∇X(a, t)ω0(a),
the Lagrangian mapX obeys the self-contained evolutions

dX

dt
(a, t) =

1
4π

∫
X(a, t)−X(b, t)
|X(a, t)−X(b, t)|3

× (∇bX(b, t)ω0(b))db

and
d(∇aX)

dt
(a, t) = (∇aX)(a, t)

∫
K(X(a, t)−X(b, t)) (∇bX(b, t)ω0(b)) dy

+
1
2

(∇aX(a, t)ω0(a))× (∇aX)(a, t)

where for vectors x and y the matrix kernelK(x)y is defined in coordinates by

(K(x)y)ij =
3

8π
((x× y)⊗ x+ x⊗ (x× y))ij

|x|5
=

3
8π

(x× y)i xj + (x× y)j xi
|x|5

.

The details are given in Appendix A.3.

2.4. The 2D Euler Equations. The two-dimensional Euler equations in vorticity form are

∂tω + u · ∇ω = 0 (2.9)

where the Biot-Savart law [MB02] in two dimensions reads

u(x) =
1

2π

∫
(x− y)⊥

|x− y|2
ω(y)dy.

The equations are locally in time well-posed if the initial velocity u0 ∈ C1,γ , for some γ ∈ (0, 1)
(cf. [Lic25]). In two dimensions solutions cannot develop finite time singularities [Jud63], but this fact
will not be used in our proof, since global existence is not known for any of the other hydrodynamic equa-
tions considered in this paper. The particle trajectoryX obeys the evolution

dX

dt
(a, t) =

1
2π

∫
(X(a, t)−X(b, t))⊥

|X(a, t)−X(b, t)|2
ω0(b)db,
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while the time derivative of∇aX obeys
d(∇aX)

dt
(a, t) = ∇aX(a, t)

∫
K(X(a, t)−X(b, t))ω0(b) db+

1
2
ω0(a)

[
0 −1
1 0

]
∇aX(a, t)

withK being the kernel in (2.7). These details are given in Appendix A.4.

2.5. The 2D Boussinesq Equations. The two-dimensional Boussinesq equations for the velocity field
u, scalar pressure p, and scalar density θ are

∂tu+ (u · ∇)u = −∇p+ θe2, (2.10)

∂tθ + (u · ∇)θ = 0, (2.11)
∇ · u = 0, (2.12)

where e2 = (0, 1), x ∈ R2, and t > 0. The scalar vorticity ω = ∇⊥ · u = ∂x1u2 − ∂x2u1 satisfies

∂tω + (u · ∇)ω = ∂x1θ.

The local well-posedness for the 2D Boussinesq holds for initial data u0, θ0 ∈ C1,γ with γ ∈ (0, 1)
(cf. [ES94, CN97]). The particle trajectoriesX induced by u then obey

dX

dt
(a, t) =

1
2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2
ω0(b) db

+
1

2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2

(∫ t

0
{θ0(b), X2(b, τ)} dτ

)
db.

and
d(∇aX)

dt
(a, t) =

(∫
K(X(a, t)−X(b, t))ω0(b) db

)
∇aX(a, t)

+
(∫

K(X(a, t)−X(b, t))
∫ t

0
{θ0(b), X2(b, τ)} dτ db

)
∇aX(a, t)

+
1
2

(
ω0(a) +

∫ t

0
{θ0(a), X2(a, τ)} dτ

) [
0 −1
1 0

]
∇aX(a, t),

where the kernelK is given by (2.7). The derivation is given in Appendix A.5.

3. Analyticity and the composition of functions: combinatorial lemmas

LetX : R→ Rd be a vector valued function which obeys the differential equation
d

dt
X(t) = K(X(t)) (3.1)

whereK : Rd → Rd is a given real analytic function of several variables. In this section we show that ifX
is bounded, then it is in fact real analytic(see Theorem 3.1 below). This statement should be understood in
the neighborhood of a point t0 ∈ R, andX0 = X(t0) ∈ Rd.

The proof in the case d = 1 is taken from Krantz and Parks [KP02, Chapter 1.5], and serves as a guiding
example (see Appendix B below). The case d ≥ 2 requires an extended combinatorial machine, and for that
we appeal to the multivariate Faà di Bruno formula in Constantine and Savits [CS96]. The precise result is:

THEOREM 3.1. LetK = (K1, . . . ,Kd) : Rd → Rd be a function which obeys

|∂αKi(X)| ≤ C |α|!
R|α|

(3.2)

for some C,R > 0, i ∈ {1, . . . , d}, and for all X in the neighborhood of some X0 = X(t0), where
X = (X1, . . . , Xd) : R→ Rd is a function which obeys

|Xi(t)| ≤ C (3.3)
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for all t in the neighborhood of t0, and i ∈ {1, . . . , d}. IfX is a solution of (3.1), then we have that

|(∂nt Xi)(t)| ≤ (−1)n−1

(
1/2
n

)
(2C)n

Rn−1
n! (3.4)

for all n ≥ 1, all coordinates i ∈ {1, . . . , d}, and all t in a neighborhood of t0. In particular, X is a real
analytic function of t at t0, with radius of analyticity R/C.

3.1. Preliminaries. We denote by N0 the set of all integers strictly larger than−1, and by Nd
0 the set of

all multi-indices α = (α1, · · · , αd) with αj ∈ N0. For a multi-index α, we write

|α| = α1 + . . .+ αd

α! = (α1!) · . . . · (αd!)
∂α = ∂α1

x1
. . . ∂αdxd

yα = (yα1
1 ) · . . . · (yαdd )

where y ∈ Rd is a point. The following definition shall be needed below.

DEFINITION. Let n ≥ 1, 1 ≤ s ≤ n, and α ∈ Nd
0 with 1 ≤ |α| ≤ n, define the set

Ps(n,α) =
{

(k1, . . . ,ks; `1, . . . , `s) ∈ Nd
0 × . . .Nd

0 × N× . . .N :

0 < |ki|, 0 < `1 < . . . < `s,
s∑
i=1

ki = α,
s∑
i=1

|ki|`i = n
}
. (3.5)

Moreover, for an integer j ≥ 1 we define(
1/2
j

)
=

(1/2)(1/2− 1) . . . (1/2− j + 1)
j!

and
(
1/2
0

)
= −1. Note that by definition we have

(−1)j−1

(
1/2
j

)
≥ 0

this will be important for what is about to come next. Moreover, it will be important that

j!(−1)j−1

(
1/2
j

)
=

1
2j

j−2∏
k=0

(2k + 1) =
(2j − 3)!!

2j
=

(2j − 3)!
22j−2(j − 2)!

≤ C j!
2j

(3.6)

for some universal constant C, whenever j ≥ 2.
With this notation in hand, we recall [CS96, Theorem 2.1].

LEMMA 3.2 (Multivariate Faà di Bruno Formula). Let h : Rd → R be a scalar function, C∞ in the
neighborhood of y0 = g(x0), and g : R→ Rd be a vector function, C∞ in the neighborhood of x0. Define
f(x) = h(g(x)) : R→ R. Then

f (n)(x0) = n!
∑

1≤|α|≤n

(∂αh)(g(x0))
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(
(∂`jg)(x0)

)kj
(kj !)(`j !)|kj |

holds for any n ≥ 1, with the convention that 00 := 1.
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3.2. Main combinatorial identity. The following lemma will be essential in the proof of Theorem 3.1.

LEMMA 3.3 (Multivaried Magic Identity). For n ≥ 1, with the earlier notation we have that

∑
1≤|α|≤n

(−1)|α||α|!
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(1/2
`j

)|kj |
(kj !)

= 2(n+ 1)
(

1/2
n+ 1

)
.

PROOF OF LEMMA 3.3. The proof mimics that of the proof of [KP02, Lemma 1.5.2], by using a diag-
onal argument.

Let Z : R→ R be defined as

Z(t) =
(
1−
√

1− 2t
)

=
(

1− (1 + (−2t))1/2
)
.

This function has the property that

(∂`Z)(0) = −
(

1/2
`

)
(−2)``!

for any ` ≥ 0. Also, Z(0) = 0.
Next, consider a function K : Rd → R, such that

(∂αK)(0, . . . , 0) = |α|!

for any multi-index α ∈ Nd
0. For example, take a real analytic function of several variables, which on the

diagonal is given by

K(Z, . . . , Z) =
1

1− Z
.

For example, consider

K(Z1, . . . , Zd) =
d∏
j=1

(
1

1− Zj

)1/d

which is smooth in a neighborhood of the origin in Rd.
Let F : R→ R be defined as

F (t) = K(Z(t), . . . , Z(t)) =
1√

1− 2t
.

This function has the property that

F (n)(0) = −(n+ 1)!
(

1/2
n+ 1

)
(−2)n+1 (3.7)

for any n ≥ 1.
Using Lemma 3.2 we have on the other hand that

F (n)(0) = n!
∑

1≤|α|≤n

(∂αK)(0, . . . , 0)
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(
(∂`jZ)(0)

)|kj |
(kj !)(`j !)|kj |

= n!
∑

1≤|α|≤n

|α|!
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(
−
(1/2
`j

)
(−2)`j`j !

)|kj |
(kj !)(`j !)|kj |

= n!(−2)n
∑

1≤|α|≤n

|α|!(−1)|α|
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(1/2
`

)|kj |
(kj !)

.

The proof of the lemma is concluded by appealing to (3.7). �
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3.3. The proof of Theorem 3.1.

PROOF OF THEOREM 3.1. The proof is by induction. The case n = 1 is contained in assumption (3.3).
We now show the induction step. Fix one coordinate i throughout the proof. Using the multivaried Faà

di Bruno formula of Lemma 3.2 we obtain

(∂n+1
t Xi)(t) = ∂nt (Ki(X(t))

= n!
∑

1≤|α|≤n

(∂αKi)(X(t))
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(
(∂`jt X)(t)

)kj
(kj !)(`j !)|kj |

.

By appealing to (3.2) and the inductive hypothesis (3.4), we obtain

|∂n+1
t Xi| ≤ Cn!

∑
1≤|α|≤n

|α|!
R|α|

n∑
s=1

∑
Ps(n,α)

s∏
j=1

(
(−1)`j−1

(1/2
`j

) (2C)`j

R`j−1 `j !
)|kj |

(kj !)(`j !)|kj |

≤ Cn!(−1)n
(2C)n

Rn

∑
1≤|α|≤n

(−1)|α||α|!
n∑
s=1

∑
Ps(n,α)

s∏
j=1

(1/2
`j

)|kj |
(kj !)

= Cn!(−1)n
(2C)n

Rn
2(n+ 1)

(
1/2
n+ 1

)
= (−1)n(n+ 1)!

(2C)n+1

Rn

(
1/2
n+ 1

)
n!.

In the second-to-last inequality we have essentially used Lemma 3.3. With (3.6), the proof is complete. �

4. Lagrangian analyticity for the SQG equation

In this section we give the proof of Theorem 1.1 in the case of the surface quasi-geostrophic equations.
The precise statement is:

THEOREM 4.1 (Lagrangian analyticity for SQG). Consider initial data θ0 ∈ C1,γ∩W 1,1, and let θ be
the unique maximal solution of the initial value problem for (2.1)–(2.2), with θ ∈ L∞loc([0, T∗);C

1,γ∩W 1,1).
Given any t ∈ [0, T∗), there exists T ∈ (0, T∗ − t), with T = T (‖∇u‖L∞(t,(t+T∗)/2;L∞)), and R > 0 with
R = R(t, ‖θ0‖C1,γ∩W 1,1 , γ), such that

‖∂nt X‖L∞(t,t+T ;C1,γ) ≤ Cn!R−n

holds for any n ≥ 0. Here C is a universal constant, and the norm ‖X‖C1,γ is defined in (4.3) below. In
particular, the Lagrangian trajectoryX is a real analytic function of time, with radius of analyticity R.

Take any t ∈ (0, T∗). Analyticity is a local property of functions, so it is sufficient to follow the
Lagrangian paths for a short interval of time [t, t + T ] past t. Note that from the local existence theory we
have the bounds on the size of θ(·, t). Without loss of generality it is sufficient to give the proof for t = 0.

Fix a λ ∈ (1, 3/2] throughout this section. Let T ∈ (0, T∗) be such that∫ T

0
‖∇u(t)‖L∞dt ≤ log λ. (4.1)

The existence of this T is a consequence of the local existence theorem. It follows that the arc-chord
condition

1
λ
≤ |a− b|
|X(a, t)−X(b, t)|

≤ λ (4.2)

holds for any a 6= b ∈ R2 and any t ∈ [0, T ].
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For γ ∈ (0, 1), define

‖X‖C1,γ := ‖X(a)− a‖L∞ + ‖∇aX(a)‖L∞ + [∇aX(a)]Cγ . (4.3)

Our goal is to use induction in order to show that there exists C0 = C0(‖θ0‖C1,γ∩W 1,1 , γ, λ) > 0 and
C1 = C1(λ,CK) > 0 such that the Cauchy inequalities

‖∂nt X‖L∞(0,T ;C1,γ) ≤ (−1)n−1 n!
(

1
2
n

)
Cn0C

n−1
1 (4.4)

hold for any n ≥ 0. Here λ is the arc-chord constant in (4.2), and CK is the kernel-dependent constant from
(4.6) below.

In order to have the induction base case n = 0 in (4.4) taken care of, we choose

C0 ≥ ‖X‖L∞(0,T ;C1,γ). (4.5)

The right side of (4.5) is finite in view of the local existence theorem. To prove the induction step, we need to
estimate supt∈[0,T ] ‖∂n+1

t X(·, t)‖L∞ , supt∈[0,T ] ‖∂n+1
t (∇aX)(·, t)‖L∞ , and lastly the Hölder semi norm

supt∈[0,T ][∂
n+1
t (∇aX)(·, t)]Cγ . This is achieved in the following three subsections.

4.1. The L∞ estimate. Recall that
dX

dt
(a, t) =

∫
K(X(a, t)−X(b, t))θ0(b) db.

where K(y) = y⊥/(2π|y|3). We need to localize this kernel near the origin with a rapidly decaying real
analytic function. For this purpose we use a Gaussian and define

Kin(y) =
y⊥

2π|y|3
e−|y|

2
and Kout(y) =

y⊥

2π|y|3
(1− e−|y|2)

so thatK = Kin +Kout. There exists a universal constant CK ≥ 1 such that

|∂αKin(y)| ≤
C
|α|
K |α|!
|y||α|+2

e−|y|
2/2 and |∂αKout(y)| ≤

C
|α|
K |α|!
|y||α|

(4.6)

holds for any multi-index α and any y 6= 0. The proof of the above estimates is given in Section 4.5 below.
Moreover, since

∫
∂B1(0)Kin(y)dy = 0, we write

dX

dt
(a, t) =

∫
Kin(X(a, t)−X(b, t))(θ0(b)− θ0(a)) db

+
∫
Kout(X(a, t)−X(b, t))θ0(b) db. (4.7)

We apply n time derivatives to (2.3) and obtain

∂n+1
t X(a, t) =

∫
∂nt Kin(X(a, t)−X(b, t)) (θ0(b)− θ0(a)) db

+
∫
∂nt Kout(X(a, t)−X(b, t))θ0(b) db (4.8)

Fix an index i ∈ {1, 2} and let either K = Kin,i or K = Kout,i. Apply the Faà di Bruno formula in
Lemma 3.2 to obtain

∂nt (K(X(a, t)−X(b, t)))

= n!
∑

1≤|α|≤n

(∂αK)(X(a, t)−X(b, t))
n∑
s=1

∑
Ps(n,α)

s∑
j=1

(∂`jt (X(a, t)−X(b, t)))kj

(kj !)(`j !)|kj |
(4.9)
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Combining formulas (4.8) and (4.9) with the inductive assumption (4.4) for the Lipschitz norm of X , and
the bound (4.6), we arrive at

|∂n+1
t X(a, t)| ≤ n!

∑
1≤|α|≤n

∫ |α|!C |α|K e−|X(a,t)−X(b,t)|2/2

|X(a, t)−X(b, t)|2+|α|

×
n∑
s=1

∑
Ps(n,α)

s∑
j=1

(
(−1)`j−1`j !

(1/2
`j

)
C
`j
0 C

`j−1
1 |a− b|

)|kj |
(kj !)(`j !)|kj |

|θ0(b)− θ0(a)| db

+ n!
∑

1≤|α|≤n

∫ |α|!C |α|K

|X(a, t)−X(b, t)||α|

×
n∑
s=1

∑
Ps(n,α)

s∑
j=1

(
(−1)`j−1`j !

(1/2
`j

)
C
`j
0 C

`j−1
1 |a− b|

)|kj |
(kj !)(`j !)|kj |

|θ0(b)| db. (4.10)

From the definition of Ps(n,α) in (3.5), we recall
s∑
j=1

`j |kj | = n,
s∑
j=1

|kj | = |α|,

and estimate (4.10) becomes

|∂n+1
t X(a, t)| ≤ n! (−1)nCn0C

n
1

∑
1≤|α|≤n

(−1)|α||α|!C |α|K C
−|α|
1

n∑
s=1

∑
Ps(n,α)

s∑
j=1

(1/2
`j

)|kj |
kj !

(Iin + Iout)

(4.11)

where

Iin =
∫
|a− b||α|e−|X(a,t)−X(b,t)|2/2

|X(a, t)−X(b, t)|2+|α| |θ0(b)− θ0(a)|db

and

Iout =
∫

|a− b||α|

|X(a, t)−X(b, t)||α|
|θ0(b)|db.

Using the arc-chord condition (4.2), and

|θ0(b)− θ0(a)| ≤ [θ0]Cγ |a− b|γ ,

we estimate

Iin ≤ [θ0]Cγλ2+|α|
∫
|a− b|γ−2e−|a−b|

2/(2λ2)db ≤ 8λ2(γ−1 + λ)[θ0]Cγλ|α|

for some C2(λ, γ) > 0. On the other hand, (4.2) also yields

Iout ≤ λ|α|‖θ0‖L1 ,

so that

Iin + Iout ≤ |λ||α|
(
8λ2(γ−1 + λ)[θ0]Cγ + ‖θ0‖L1

)
(4.12)

Therefore, if we let

C1 ≥ CKλ (4.13)
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and

C0

2
≥ 8λ2(γ−1 + λ)[θ0]Cγ + ‖θ0‖L1 , (4.14)

from (4.11) and (4.12) we conclude

|∂n+1
t X(a, t)| ≤ 1

2
n!(−1)nCn+1

0 Cn1
∑

1≤|α|≤n

(−1)|α||α|!
n∑
s=1

∑
Ps(n,α)

s∑
j=1

(1/2
`j

)|kj |
kj !

≤ (n+ 1)! (−1)n
(

1/2
n+ 1

)
Cn+1

0 Cn1 (4.15)

where in the last inequality we have appealed to Lemma 3.3. Estimate (4.15) proves the L∞ portion of the
induction step in (4.4).

4.2. The Lipschitz estimate. Similarly to (4.7), we decompose (2.4) as

d(∇aX)
dt

(a, t)

= ∇aX(a, t)
∫
Kin(X(a, t)−X(b, t))

(
∇bX(b, t)⊥∇bθ0(b)−∇aX(a, t)⊥∇aθ0(a)

)
db

+∇aX(a, t)
∫
Kout(X(a, t)−X(b, t))∇bX(b, t)⊥∇bθ0(b) db. (4.16)

To estimate the L∞ norm of ∂n+1
t (∇aX), we apply ∂nt to (4.16). By the Leibniz rule we obtain

∂n+1
t ∇aX(a, t)

=
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇aX(a, t)

×
∫
∂mt Kin(X(a, t)−X(b, t))∂r−mt (∇bX(b, t)⊥∇bθ0(b)−∇aX(a, t)⊥∇aθ0(a)) db

+
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇aX(a, t)

×
∫
∂mt Kout(X(a, t)−X(b, t))∂r−mt (∇bX(b, t)⊥)∇bθ0(b) db. (4.17)

Invoking the inductive assumption (4.4), we have

|∂n−rt ∇aX(a, t)| ≤ (−1)n−r−1 (n− r)!
(

1/2
n− r

)
Cn−r0 Cn−r−1

1 . (4.18)

Also, in view of (4.4) we estimate

|∂r−mt (∇bX(b, t))∇bθ0(b)− ∂r−mt (∇aX(a, t))∇aθ0(a)|

≤ (−1)r−m−1 (r −m)!
(

1/2
r −m

)
Cr−m0 Cr−m−1

1 |a− b|γ‖∇θ0‖Cγ (4.19)

and

|∂r−mt (∇bX(b, t))∇bθ0(b)| ≤ (−1)r−m−1 (r −m)!
(

1/2
r −m

)
Cr−m0 Cr−m−1

1 |∇bθ0(b)|. (4.20)
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Let i ∈ {1, 2}. Using (4.9) and (4.6) we bound

|∂mt Kin,i(X(a, t)−X(b, t))|

≤ m!
∑

1≤|α|≤m

C
|α|
K |α|!e−|X(a,t)−X(b,t)|2/2

|X(a, t)−X(b, t)||α|+2

m∑
s=1

∑
Ps(m,α)

s∑
j=1

(‖∂`jt ∇X(·, t)‖L∞ |a− b|)kj
(kj !)(`j !)|kj |

≤ m!
∑

1≤|α|≤m

C
|α|
K |α|!Tin

m∑
s=1

∑
Ps(m,α)

s∑
j=1

(
(−1)`j−1`j !

(1/2
`j

)
C
`j
0 C

`j−1
1

)|kj |
(kj !)(`j !)|kj |

≤ (−1)mm!Cm0 C
m
1

∑
1≤|α|≤m

(−1)|α|C |α|K C
−|α|
1 |α|!Tin

m∑
s=1

∑
Ps(m,α)

s∑
j=1

(1/2
`j

)|kj |
kj !

(4.21)

where

Tin =
|a− b||α|e−|X(a,t)−X(b,t)|2/2

|X(a, t)−X(b, t)||α|+2
.

Using the arc-chord condition (4.2) we arrive at

Tin ≤ |a− b|−2e−|a−b|
2/(2λ2)λ|α|+2

and recalling that C1 ≥ λCK , we obtain from (4.21) that

|∂mt Kin,i(X(a, t)−X(b, t))|

≤ (−1)mm!Cm0 C
m
1 |a− b|−2e−|a−b|

2/(2λ2)λ2
∑

1≤|α|≤m

(−1)|α||α|!
m∑
s=1

∑
Ps(m,α)

s∑
j=1

(1/2
`j

)|kj |
kj !

≤ (−1)mm!Cm0 C
m
1 |a− b|−2e−|a−b|

2/(2λ2)λ22(m+ 1)
(

1/2
m+ 1

)
(4.22)

where in the last equality we have appealed to Lemma 3.3. Similarly, from (4.9) and (4.6) we have

|∂mt Kout,i(X(a, t)−X(b, t))|

≤ (−1)mm!Cm0 C
m
1

∑
1≤|α|≤m

(−1)|α|C |α|K C
−|α|
1 |α|!Tout

m∑
s=1

∑
Ps(m,α)

s∑
j=1

(1/2
`j

)|kj |
kj !

. (4.23)

Using (4.2) we arrive at

Tout =
|a− b||α|

|X(a, t)−X(b, t)||α|
≤ λ|α|.

Therefore, appealing to Lemma 3.3 we arrive at

|∂mt Kout,i(X(a, t)−X(b, t))| ≤ (−1)mm!Cm0 C
m
1 2(m+ 1)

(
1/2
m+ 1

)
. (4.24)

Combining (4.17)–(4.20), (4.22), and (4.24), we arrive at

|∂n+1
t ∇aX(a, t)|

≤ I
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
(−1)n−r−1 (n− r)!

(
1/2
n− r

)
Cn−r0 Cn−r−1

1

× (−1)mm!Cm0 C
m
1 2(m+ 1)

(
1/2
m+ 1

)
(−1)r−m−1 (r −m)!

(
1/2
r −m

)
Cr−m0 Cr−m−1

1 (4.25)
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where

I = λ2‖∇θ0‖Cγ
∫
|a− b|γ−2e−|a−b|

2/(2λ2)db+
∫
|∇bθ0(b)|db

≤ 8(γ−1 + λ)λ2‖∇θ0‖Cγ + ‖∇θ0‖L1

≤ C2
2C0/2 (4.26)

by making C0 sufficiently large, depending on the initial data. The above and (4.25) imply

|∂n+1
t ∇aX(a, t)|

≤ Cn+1
0 Cn1 n!

∑
0≤m≤r≤n

(−1)n−r−1

(
1/2
n− r

)
(−1)m(m+ 1)

(
1/2
m+ 1

)
(−1)r−m−1

(
1/2
r −m

)
(4.27)

At this stage we invoke another combinatorial identity.

LEMMA 4.2. We have that∑
0≤m≤r≤n

(m+ 1) (−1)m
(

1/2
m+ 1

)
(−1)r−m−1

(
1/2
r −m

)
(−1)n−r−1

(
1/2
n− r

)
=

(−1)n−1

2

(
1/2
n

)
(4.28)

holds for any integer n ≥ 1.

From (4.27) and (4.28) we conclude

|∂n+1
t ∇aX(a, t)| ≤ Cn+1

0 Cn1 n!
1
2

(−1)n−1

(
1/2
n

)
≤ Cn+1

0 Cn1 (−1)n(n+ 1)!
(

1/2
n+ 1

)
by using that

1
2

(−1)n−1n!
(

1/2
n

)
= (−1)n(n+ 1)!

(
1/2
n+ 1

)
· n− 1/2
n+ 1

.

This concludes the proof of the Lipschitz estimate in the induction step for (4.4).

4.3. The Hölder estimate for∇aX . To prove that [∂n+1
t ∇X(a, t)]Cγ obeys the bound (4.4), we con-

sider the difference

∂n+1
t ∇X(a, t)− ∂n+1

t ∇X(b, t)

and estimate it in a similar fashion to |∂n+1
t ∇aX(a, t)|. However, before applying n time derivatives, we

use (4.16) to re-write
d

dt
(∇X(a, t)−∇X(b, t))

= (∇X(a, t)−∇X(b, t))
∫
Kin(X(a, t)−X(c, t))(∇X(c, t)⊥∇θ0(c)−∇X(a, t)⊥∇θ0(a))dc

+ (∇X(a, t)−∇X(b, t))
∫
Kout(X(a, t)−X(c, t))∇X(c, t)⊥∇θ0(c)dc

+∇X(b, t)
∫

(Kin(X(a, t)−X(c, t))−Kin(X(b, t)−X(c, t)))

× (∇X(c, t)⊥∇θ0(c)−∇X(a, t)⊥∇θ0(a))dc

+∇X(b, t)
∫

(Kout(X(a, t)−X(c, t))−Kout(X(b, t)−X(c, t)))∇X(c, t)⊥∇θ0(c)dc (4.29)

where we have essentially used the cancellation

∇X(b, t)
∫
Kin(X(b, t)−X(c, t))dc (∇X(b, t)⊥∇θ0(b)−∇X(a, t)⊥∇θ0(a)) = 0

which holds sinceKin(y) has zero mean on spheres |y| = R and since det(∇A) = 1.
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In view of (4.29), similarly to (4.17) we write

∂n+1
t ∇X(a, t)− ∂n+1

t ∇X(b, t) = L1 + L2 + L3 + L4,

where

L1 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)(
∂n−rt ∇aX(a, t)− ∂n−rt ∇bX(b, t)

)
×
∫
∂mt Kin(X(a, t)−X(c, t))∂r−mt (∇cX(c, t)⊥∇cθ0(c)−∇aX(a, t)⊥∇aθ0(a)) dc

(4.30)

L2 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)(
∂n−rt ∇aX(a, t)− ∂n−rt ∇bX(b, t)

)
×
∫
∂mt Kout(X(a, t)−X(c, t))∂r−mt (∇cX(c, t)⊥)∇cθ0(c) dc (4.31)

L3 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)

×
∫

(∂mt Kin(X(a, t)−X(c, t))− ∂mt Kin(X(b, t)−X(c, t)))

× ∂r−mt (∇X(c, t)⊥∇θ0(c)−∇X(a, t)⊥∇θ0(a))dc (4.32)

L4 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)

×
∫

(∂mt Kout(X(a, t)−X(c, t))− ∂mt Kout(X(b, t)−X(c, t)))

× ∂r−mt (∇cX(c, t)⊥)∇cθ0(c)dc. (4.33)

First we notice that by using the bound

|∂n−rt ∇aX(a, t)− ∂n−rt ∇bX(b, t)| ≤ |a− b|γ(−1)n−r−1(n− r)!
(

1/2
n− r

)
Cn−r0 Cn−r−1

1

instead of (4.18), precisely as in Section 4.2 above we show that

L1 + L2 ≤ |a− b|γCn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
(4.34)

under precisely the same conditions on C0 and C1 as above.
In order to estimate L3, we first use the mean value theorem to write

∂mt Kin(X(a, t)−X(c, t))− ∂mt Kin(X(b, t)−X(c, t))

= (X(a, t)−X(b, t)) ·
∫ 1

0
∂mt ∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))dρ

and then decompose

L3 = L31 + L32 + L33,
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where

L31 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)

×
∫
|c−a+b

2
|≤4|a−b|

∂mt Kin(X(a, t)−X(c, t))∂r−mt (∇X(c, t)⊥∇θ0(c)−∇X(a, t)⊥∇θ0(a))dc

L32 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)

×
∫
|c−a+b

2
|≤4|a−b|

∂mt Kin(X(b, t)−X(c, t))∂r−mt (∇X(a, t)⊥∇θ0(a)−∇X(c, t)⊥∇θ0(c))dc

and

L33 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)(X(a, t)−X(b, t))

×
∫
|c−a+b

2
|≥4|a−b|

∫ 1

0
∂mt ∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))dρ

× ∂r−mt (∇X(c, t)⊥∇θ0(c)−∇X(a, t)⊥∇θ0(a))dc

We first bound L31 and L32. We appeal to (4.18), (4.19), (4.22), (4.25), and Lemma 4.2 to obtain

L31 + L32 ≤ Cn0Cn1 (−1)n(n+ 1)!
(

1/2
n+ 1

)
I3,in (4.35)

where

I3,in = λ2C−2
1 ‖∇θ0‖Cγ

∫
|c−a+b

2
|≤4|a−b|

|b− c|γ−2e−|b−c|
2/(2λ2) + |a− c|γ−2e−|a−c|

2/(2λ2)dc

≤ 20πγ−1C−2
K ‖∇θ0‖Cγ |a− b|

γ .

since C1 ≥ λCK . Letting

C0 ≥ 20πγ−1C−2
K ‖∇θ0‖Cγ (4.36)

we obtain in combination with (4.35) that

L31 + L32 ≤ |a− b|γCn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
(4.37)

holds.
In order to estimate L33, we notice that due to the arc-chord condition,

|X(b, t)−X(c, t)− b+ c| ≤ λ|b− c|
∫ t

0
‖∇u(s)‖L∞ds ≤ λ log λ|b− c|,

and similarly for a and c. Thus, we have that

|ρX(a, t) + (1− ρ)X(b, t)−X(c, t)|
≥ |ρa+ (1− ρ)b− c| − ρ|X(a, t)− a−X(c, t) + c| − (1− ρ)|X(b, t)− b−X(c, t) + c|
≥ |c− (a+ b)/2| − |a− b|/2− λ log λ(ρ|a− c|+ (1− ρ)|b− c|)
≥ |c− (a+ b)/2| − |a− b|/2− λ log λ(|c− (a+ b)/2|+ |a− b|/2)

holds for any ρ ∈ (0, 1). Therefore, in view of the choice λ ∈ (1, 3/2) we have that λ log λ ≤ 2/3, and thus

|ρX(a, t) + (1− ρ)X(b, t)−X(c, t)| ≥ |c− (a+ b)/2|/3− |a− b| ≥ |c− (a+ b)/2|/12 (4.38)
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holds whenever |c− (a+ b)/2| ≥ 4|a− b|. Using (4.6) and (4.9) we thus bound∫ 1

0
|∂mt ∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))|dρ

≤ m!
∑

1≤|α|≤m

|∂α∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))|

×
m∑
s=1

∑
Ps(m,α)

s∑
j=1

ρ|∂`jt (X(a, t)−X(c, t))|+ ((1− ρ)|∂`jt (X(b, t)−X(c, t)|)kj
(kj !)(`j !)|kj |

≤ m!
∑

1≤|α|≤m

C
|α|+1
K (12)|α|+3(|α|+ 1)!e−|c−(a+b)/2|2/(288)

|c− (a+ b)/2||α|+3

×
m∑
s=1

∑
Ps(m,α)

s∑
j=1

(9λ|c−(a+b)/2|
8 (−1)`j−1

(1/2
`j

)
C
`j
0 C

`j−1
1 )kj

kj !
(4.39)

Therefore, once we notice that |α|+ 1 ≤ 2|α|, if we let

C1 ≥ 27λCK , (4.40)

from (4.39) and Lemma 3.3 we deduce that∫ 1

0
|∂mt ∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))|dρ

≤ 2Ck123m!(m+ 1)(−1)m
(

1/2
m+ 1

)
Cm0 C

m
1

e−|c−(a+b)/2|2/(288)

|c− (a+ b)/2|3
. (4.41)

Using (4.18), (4.19), (4.25), Lemma 4.2, and (4.41), we arrive at

L33 ≤ Cn0Cn1 (−1)n(n+ 1)!
(

1/2
n+ 1

)
|a− b|I3,out (4.42)

where

I3,out = 2λCK123C−2
1 ‖∇θ0‖Cγ

∫
|c−(a+b)/2|≥4|a−b|

|a− c|γ e
−|c−(a+b)/2|2/(288)

|c− (a+ b)/2|3
dc

≤ 144‖∇θ0‖Cγ
∫
|c−(a+b)/2|≥4|a−b|

|c− (a+ b)/2|γ−3dc

≤ 288π/(1− γ)‖∇θ0‖Cγ (4|a− b|)γ−1

≤ C0|a− b|γ−1 (4.43)

if we choose C0 sufficiently large. From (4.42) and (4.43) we conclude that

L33 ≤ Cn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
|a− b|γ

which combined with (4.37) yields the desired bound for L3, namely

L3 ≤ Cn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
|a− b|γ . (4.44)

It is left to estimate L4, as defined in (4.33), which is achieved similarly to L3. First we decompose and
then decompose

L4 = L41 + L42 + L43,
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where

L41 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)

×
∫
|c−a+b

2
|≤4|a−b|

∂mt Kout(X(a, t)−X(c, t))∂r−mt (∇X(c, t)⊥)∇θ0(c)dc

L42 = −
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)

×
∫
|c−a+b

2
|≤4|a−b|

∂mt Kout(X(b, t)−X(c, t))∂r−mt (∇X(c, t)⊥)∇θ0(c)dc

and

L43 =
∑

0≤m≤r≤n

(
n

r

)(
r

m

)
∂n−rt ∇bX(b, t)(X(a, t)−X(b, t))

×
∫
|c−a+b

2
|≥4|a−b|

∫ 1

0
∂mt ∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))dρ

× ∂r−mt (∇X(c, t)⊥)∇θ0(c)dc

We appeal to (4.18), (4.20), (4.24), and Lemma 4.2 to obtain

L41 + L42 ≤ Cn0Cn1 (−1)n(n+ 1)!
(

1/2
n+ 1

)
I4,in (4.45)

under the standing assumptions on C0 and C1, where

I4,in =
∫
|c−a+b

2
|≤4|a−b|

|∇θ0(c)|dc ≤ (16π|a− b|2)γ/2‖∇θ0‖L2/(2−γ) ≤ C0|a− b|γ

by letting

C0 ≥ (16π)γ/2 (‖∇θ0‖L1 + ‖∇θ0‖L∞) . (4.46)

From (4.45) and (4.46) we obtain the desired bound

L41 + L42 ≤ Cn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
|a− b|γ . (4.47)

EstimatingL43 is similar to boundingL33. First, note that similarly to (4.41), under the standing assumptions
on C0 and C1 we have∫ 1

0
∂mt ∇Kin(ρX(a, t) + (1− ρ)X(b, t)−X(c, t))dρ

≤ 24Ckm!(m+ 1)(−1)m
(

1/2
m+ 1

)
Cm0 C

m
1

1
|c− (a+ b)/2|

(4.48)

for |c− (a+ b)/2| ≥ 4|a− b|. Combining (4.18), (4.20), Lemma 4.2, and (4.48) we obtain

L43 ≤ Cn0Cn1 (−1)n(n+ 1)!
(

1/2
n+ 1

)
|a− b|I4,out (4.49)

where

I4,out = 24λCkC−2
1

∫
|c−a+b

2
|≥4|a−b|

|∇θ0(c)|
|c− (a+ b)/2|

dc

≤ Cγ‖∇θ0‖L2/(2−γ) |a− b|γ−1 ≤ C0|a− b|γ−1 (4.50)
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by choosing C0 sufficiently large. Finally, from (4.47)–(4.50) we obtain that

L4 ≤ Cn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
|a− b|γ . (4.51)

The bounds (4.34), (4.44), and (4.51) combined show that

[∇X(·, t)]Cγ ≤ Cn+1
0 Cn1 (−1)n(n+ 1)!

(
1/2
n+ 1

)
for 0 ≤ t ≤ T , which concludes the proof of the Hölder estimate for∇X .

4.4. Proof of the Lemma 4.2.

PROOF OF IDENTITY (4.28). For t ∈ (−1, 1) recall the power series expansions

(1− t)
1
2 =

∞∑
j=0

(
1/2
j

)
(−1)jtj

and

1
2

(1− t)−
1
2 =

∞∑
m=0

(m+ 1)(−1)m−1

(
1/2
m+ 1

)
tm.

Multiplying the series expansion of 1
2(1− t)−

1
2 , (1− t)

1
2 and (1− t)

1
2 , we find

1
2

(1− t)
1
2 =

∞∑
n=0

tn
∑

0≤m≤r≤n
(m+ 1)

(
1/2
m+ 1

)(
1/2
r −m

)(
1/2
n− r

)
.

Comparing the above with the series expansion for (1 + t)
1
2 , we obtain∑

0≤m≤r≤n
(m+ 1) (−1)m−1

(
1/2
m+ 1

)
(−1)r−m

(
1/2
r −m

)
(−1)n−r

(
1/2
n− r

)
=

1
2

(−1)n
(

1/2
n

)
.

This completes the proof of Lemma 4.2. �

4.5. Proof of estimate (4.6). The claim is that exists a universal constant CK ≥ 1 such that

|∂αKin(y)| ≤
C
|α|
K |α|!
|y||α|+2

e−|y|
2/2 and |∂αKout(y)| ≤

C
|α|
K |α|!
|y||α|

(4.52)

holds for any multi-index α and any y 6= 0. We shall give here the proof of the inner kernel Kin, since
the proof for the outer kernel Kout follows similarly, in view of the fact that (1 − e−|y|2)|y|−2 = O(1) as
|y| → 0.

From the Leibniz rule we have

∂α
(
y⊥

|y|3
e−|y|

2

)
=

∑
β+γ=α

(
α
β

)
∂β
(
y⊥

|y|3

)
∂γ(e−|y|

2
)

It is easy to check that the number of terms in ∂β
(
y⊥

|y|3

)
is at most 2|β|, and that the coefficient of each one

of these terms is bounded from above by (2|β|+ 1)!!. Therefore, we obtain∣∣∣∣∂β ( y⊥|y|3
)∣∣∣∣ ≤ 2|β| (2|β|+ 1)!!

1
|y||β|+2

.

The total number of terms in ∂γ(e−|y|
2
) is at most 2|γ|−1 and the coefficient of each term is bounded by

2|γ|. Therefore,
|∂γ(e−|y|

2
)| ≤ 22|γ|−1 e−|y|

2
max{1, |y||γ|}
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Therefore, it follows that∣∣∣∣∂α( y⊥|y|3 e−|y|2
)∣∣∣∣ ≤ ∑

β+γ=α

(
α
β

)
2|β| (2|β|+ 1)!!

1
|y||β|+2

22|γ|−1 e−|y|
2

max{1, |y||γ|}

≤e
−|y|2/2

|y||α|+2

∑
β+γ=α

(
α
β

)
2|β| (2|β|+ 1)!! 22|γ|−1 e−|y|

2/2 |y||γ| max{1, |y||γ|}.

Now for any y 6= 0, we have the bound

e−|y|
2/2 |y||γ| max{1, |y||γ|} ≤ (2|γ|/e)|γ|.

and using Stirling’s formula

n! ≈
√

2πn (n/e)n,
√

2πn (n/e)n < n!

we arrive at

e−|y|
2/2 |y||γ| max{1, |y||γ|} ≤ 2|γ|√

2π|γ|
|γ|!

Therefore,∣∣∣∣∂α( y⊥|y|3 e−|y|2
)∣∣∣∣ ≤ 1

|y||α|+2
e−|y|

2/2
∑

β+γ=α

(
α
β

)
2|β| (2|β|+ 1)!! 22|γ|−1 2|γ|√

2π|γ|
|γ|!

≤24|α| |α|!
|y||α|+2

e−|y|
2/2

∑
β+γ=α

α!
β!γ!

|β|! |γ|!
|α|!

where we have used

2|β| (2|β|+ 1)!! 22|γ|−1 ≤ 22|α| (|β|+ 1)! ≤ 22|α| (|α|+ 1)! ≤ 23|α| |α|!

Since |β|! |γ|! ≤ |α|!, the rough estimate∑
β+γ=α

α!
β!γ!

|β|! |γ|!
|α|!

≤
∑

β+γ=α

α!
β!γ!

= 2|α|

holds. In summary, we have shown that,∣∣∣∣∂α( y⊥|y|3 e−|y|2
)∣∣∣∣ ≤ 25|α| |α|!

|y||α|+2
e−|y|

2/2

and we take the constant CK in (4.6) to equal for instance 25.

Appendix A. Derivation of Lagrangian formulae

In this Appendix we provide the derivation of the self-contained formulae for dX/dt and d∇X/dt
stated in Section 2. LetA denote back-to-labels map, which is the inverse particle trajectory map, i.e.

A(X(a, t), t) = a.

We will frequently use that

(∇xA)(X(a, t), t)(∇aX)(a, t) = I

or equivalently

(∇xA)(X(a, t), t) = ((∇aX)(a, t))−1 = (∇aX)⊥(a, t). (A.1)
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Coordinate-wise the above identity is equivalent to

∂A1

∂x1
(X(a, t), t) =

∂X2

∂a2
(a, t),

∂A2

∂x1
(X(a, t), t) = −∂X2

∂a1
(a, t),

∂A1

∂x2
(X(a, t), t) = −∂X1

∂a2
(a, t),

∂A2

∂x2
(X(a, t), t) =

∂X1

∂a1
(a, t).

The upshot of the above formulae is that if we define

θ0(A(x, t)) = θ(x, t)

then we have

∂xkθ(x, t) =
∂θ0
∂aj

(A(x, t))
∂Aj
∂xk

(x, t) =
∂θ0
∂aj

(a)
∂X⊥k
∂a⊥j

(a, t) (A.2)

where in the last equality we have used (A.1).

A.1. 2D SQG. The constitutive law of SQG yields

u(x) = R⊥θ(x) =
∫

(x− y)⊥

2π|x− y|3
θ(y)dy =

∫
K(x− y)θ(y)dy

and the evolution gives
θ(X(b, t), t) = θ0(b)

Combining the above we arrive at

dX

dt
(a, t) =

∫
K(X(a, t)− y)θ(y, t)dy =

∫
K(X(a, t)−X(b, t))θ0(b)db

since by incompressibility the determinant of the Jacobian is equal to 1. To derive the formula for d(∇X)/dt,
we switch back to Eulerian coordinates where

∂xkui(x) =
∫
K(x− y)∂ykθ(y, t)dy

and then appeal to (A.2) in order to obtain

d

dt

∂Xi

∂aj
(a, t) =

∂Xk

∂aj

∫
Ki(X(a, t)−X(b, t))

∂θ0
∂bj

(b)
∂Aj
∂yk

(X(b, t), t)db.

Using (A.1) we arrive at

d(∇aX)
dt

(a, t) = ∇aX(a, t)
∫
K(X(a, t)−X(b, t))(∇bX)⊥(b, t)(∇b)θ0(b)db.

which proves (2.4).

A.2. 2D IPM. In Eulerian coordinates the scalar vorticity ω satisfies

ω = ∇⊥ · u = −∂x1θ.

Therefore, along particle trajectories we have

ω(X(a, t), t) = −(∂x1θ)(X(a, t), t) = −{θ0(a), X2(a, t)} .

Therefore, since the kernel of the two dimensional Biot-Savart law in Eulerian coordinates is given by

u(x) =
1

2π

∫
(x− y)⊥

|x− y|2
ω(y)dy,
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upon letting y = X(b, t) we obtain

dX

dt
(a, t) =

1
2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2
ω(X(b, t), t) db

= − 1
2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2
{θ0(b), X2(b, t)} db.

To derive the formula for ∂t∇X , we differentiate the kernel and arrive at

d(∇aX)
dt

(a, t) = −∇aX(a, t)
∫
K(X(a, t)−X(b, t)) {θ0(b), X2(b, t)} db

+
1
2
{θ0(a), X2(a, t)}

[
0 −1
1 0

]
∇aX(a, t) (A.3)

whereK is the same as in (2.7), namely

K(y) = K(y1, y2) =
1

2π|y|4

[
2y1 y2 y2

2 − y2
1

y2
2 − y2

1 −2y1 y2

]
. (A.4)

A.3. 3D Euler. From the Biot-Savart in three dimensions

u(x, t) =
1

4π

∫
R3

x− y
|x− y|3

× ω(y, t)dy.

composition with the Lagrangian path y = X(b, t), and the Cauchy formula

ω(X(a, t), t) = ∇X(a, t)ω0(a)

we arrive at a self-contained formula for the evolution ofX(a, t)

dX

dt
(a, t) =

1
4π

∫
X(a, t)−X(b, t)
|X(a, t)−X(b, t)|3

× (∇bX(b, t)ω0(b))db.

The evolution equation for ∇X is obtained by first switching to Eulerian coordinates, which allows us to
compute ∇xu from ω via Calderón-Zygmund singular integrals. For this purpose one considers the rate of
strain matrix

Sij =
1
2

(∂iuj + ∂jui)

and uses the Biot-Savart law to compute

Sij =
3

8π

∫
R3

((x− y)× ω(y))i (x− y)j + ((x− y)× ω(y))j (x− y)i
|x− y|5

dy

=:
∫

(K(x− y)ω(y))ijdy

where we have defined

(K(x)y)ij =
3

8π
(x× y)i xj + (x× y)j xi

|x|5
. (A.5)

Of course, the full gradient is then obtain using

(∇u)v = Sv +
1
2
ω × v.
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To obtain the evolution of∇X we then compute
d

dt

∂Xi

∂aj
(a, t) =

∂ui
∂xk

(X(a, t), t)
∂Xk

∂aj
(a, t)

= Sik(X(a, t), t)
∂Xk

∂aj
(a, t) +

1
2

(ω(X(a, t), t)× (∇ajX)(a, t))i

=
∫

[K(X(a, t)−X(b, t)) (∇bX(b, t)ω0(b))]ik dy
∂Xk

∂aj
(a, t)

+
1
2
(
(∇aX(a, t)ω0(a))× (∇ajX)(a, t)

)
i

where we have used the notation in (A.5) for the ik-component ofK(·)(∇aXω0).

A.4. 2D Euler. From the Lagrangian conservation

ω(X(a, t), t) = ω0(a)

and the Eulerian two dimensional Biot-Savart law [MB02] we directly arrive at

dX

dt
(a, t) =

1
2π

∫
(X(a, t)−X(b, t))⊥

|X(a, t)−X(b, t)|2
ω0(b)db.

Estimates for the time derivative of∇aX are obtained from the above by differentiating the kernel, similarly
to (A.3). We obtain

d(∇aX)
dt

(a, t) = ∇aX(a, t)
∫
K(X(a, t)−X(b, t))ω0(b) db+

1
2
ω0(a)

[
0 −1
1 0

]
∇aX(a, t)

where the kernelK is given in (A.4).

A.5. 2D Boussinesq. Along the particle trajectory x = X(a, t), the vorticity obeys

∂tω(X(a, t), t) = (∂x1θ)(X(a, t), t).

Integrating in time yields

ω(X(a, t), t) = ω0(a) +
∫ t

0
(∂x1θ)(X(a, τ), τ) dτ.

Next, we rewrite (∂x1θ)(X(a, τ), τ) in terms of the Lagrangian coordinates. The equation for θ yields

θ(x, t) = θ0(A(x, t)).

Therefore, we have

(∂x1θ)(x, t) =
∂θ0
∂a1

(A(x, t))
∂A1

∂x1
(x, t) +

∂θ0
∂a2

(A(x, t))
∂A2

∂x1
(x, t),

and letting x = X(a, t) yields

(∂x1θ)(X(a, t), t) =
∂θ0
∂a1

(a)
∂A1

∂x1
(X(a, t), t) +

∂θ0
∂a2

(a)
∂A2

∂x1
(X(a, t), t).

Upon using (A.1) we arrive at

(∂x1θ)(X(a, t), t) = ∂a1θ0(a)∂a2X2(a, t)− ∂a2θ0(a)∂a1X2(a, t) = {θ0(a), X2(a, t)} ,
and therefore

ω(X(a, t), t) = ω0(a) +
∫ t

0
{θ0(a), X2(a, τ)} dτ.

To obtain and equation just in terms ofX , we recall

dX

dt
(a, t) = u(X(a, t), t) =

1
2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2
ω(X(b, t), t) db
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Therefore,

dX

dt
(a, t) =

1
2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2
ω0(b) db

+
1

2π

∫
(X(a, t)−X(b, t))⊥

|(X(a, t)−X(b, t)|2

(∫ t

0
{θ0(b), X2(b, τ)} dτ

)
db.

To derive the formula for ∂t∇X , we differentiate the kernel and obtain
d(∇aX)

dt
(a, t) =

(∫
K(X(a, t)−X(b, t))ω0(b) db

)
∇aX(a, t)

+
(∫

K(X(a, t)−X(b, t))
∫ t

0
{θ0(b), X2(b, τ)} dτ db

)
∇aX(a, t)

+
1
2

(
ω0(a) +

∫ t

0
{θ0(a), X2(a, τ)} dτ

) [
0 −1
1 0

]
∇aX(a, t),

whereK is given in (A.4) above.

Appendix B. The composition of analytic functions: the one dimensional case

The contents of this section is adapted directly from [KP02, Theorem 1.3.2], and is presented here for
the sake of completeness. This serves as the motivation for the combinatorial machinery given in Section 3
above.

PROPOSITION B.1. If g : R→ R is bounded h : R→ R is real analytic, and g obeys the ODE

g′(x) = h(g(x)), (B.1)

then g is in fact real analytic.

LEMMA B.2 (One-dimensional Faà di Bruno formula). Let I ⊂ R be an open interval, g ∈ C∞(I),
and h ∈ C∞(J), where J = f(I). Let f = h ◦ g. Then for all n ≥ 1 we have

f (n)(x) =
∑

k∈P (n;k)

n!
k!
h(k)(g(x))

n∏
j=1

(
g(j)(x)
j!

)kj
where k = (k1, . . . , kn) is a multi-index,

P (n, k) =

k = (k1, . . . , kn) :
n∑
j=1

jkj = n,

n∑
j=1

kj = k


and we use the notation

k! = k1! . . . kn!

A consequence of the Faà di Bruno formula is the following identity, as given in [KP02, Lemma 1.5.2].

LEMMA B.3 (One-dimensional magic identity). For each integer n ≥ 1 we have∑
k∈P (n,k)

(−1)kk!
k!

n∏
j=1

(
1/2
j

)kj
= 2(n+ 1)

(
1/2
n+ 1

)
.

PROOF OF PROPOSITION B.1. The assumption that h is real analytic translates into the fact that there
exits C,R > 0 such that

|h(k)(y)| ≤ C k!
Rk

(B.2)

for all k ≥ 0, and all y close to some y0.
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We make the following inductive assumption on the function g: that for all j ≥ 1 we have

|g(j)(x)| ≤ 1
R
j!(−1)j−1

(
1/2
j

)(
2C
R

)j
(B.3)

at all points x sufficiently close to some x0.
Let n ≥ 0. We apply n derivatives to the equation (3.1) and use Lemma B.2 to obtain

g(n+1)(x) =
∑

k∈P (n;k)

n!
k!
h(k)(g(x))

n∏
j=1

(
g(j)(x)
j!

)kj
We appeal to (B.2) and the inductive assumption (B.3) to estimate

|g(n+1)| ≤ C
∑

k∈P (n;k)

n!
k!

k!
Rk

n∏
j=1

(
(−1)j−1

(
1/2
j

)
(2C)j

Rj−1

)kj
.

Using that
∑

j kj = k and
∑

k jkj = n we obtain that

|g(n+1)| ≤ Cn!(−1)n
(2C)n

Rn

∑
k∈P (n;k)

(−1)kk!
k!

n∏
j=1

(
1/2
j

)kj
.

Using the identity given in Lemma B.3 we thus obtain

|g(n+1)| ≤ Cn!(−1)n
(2C)n

Rn
2(n+ 1)

(
1/2
n+ 1

)
= (n+ 1)!(−1)n

(2C)n+1

Rn

(
1/2
n+ 1

)
which is exactly (B.3) at level n+ 1. This completes the proof since in view of (3.6), the bound (B.3) gives

|g(j)(x)| ≤ C

R

j!
(R/C)j

which shows that g is real analytic with radius of convergence R/C. �
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