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ABSTRACT:  

In this paper, two different point cloud classification approaches were applied based on the full-waveform LiDAR data. At the 

beginning, based on the full-waveform LiDAR data, we decomposed the backscattered pulse waveform and abstracted each 

component in the waveform after the pre-processing of noise detection and waveform smoothing. And by the time flag of each 

component acquired in the decomposition procedure we calculated the three dimension coordination of the component. Then the 

components’ waveform properties, including amplitude, width and cross-section, were uniformed respectively and formed the 

Amplitude/Width/Section space. Then two different approaches were applied to classify the points. First, we selected certain targets 

and trained the parameters, after that, by the supervised classification way we segmented the study area point. On the other hand, we 

apply the IHSL colour transform to the above space to find a new space, RGB colour space, which has a uniform distinguishability 

among the parameters and contains the whole information of each component in Amplitude/Width/Section space. Then the fuzzy C-

means algorithm is applied to the derived RGB space to complete the LiDAR point classification procedure. By comparing the two 

different segmentation results, which may of substantial importance for further targets detection and identification, a brief discussion 

and conclusion were brought out for further research and study.  

 

                                                                 

*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

Airborne Laser Scanning (ALS) is an active remote 

sensing technique providing direct range measurements between 

laser scanner and objects, has witnessed an alternative source 

for acquisition of ranging data in last decade. Range is 

determined directly from the signal runtime measurements. And 

airborne LiDAR deliver fast and reliable representation of 

landscape by Georeferencing. Depending on the geometry of 

illuminated surfaces, several backscattered echoes can be 

recorded for a single pulse emission. This showed the potential 

of multi-echo LiDAR data for urban area analysis and building 

extraction (Frueh et al., 2005). While many others study the 

LiDAR backscattered pulse intensity (Charaniya et al., 2004) 

and combine LiDAR and multispectral data(Secord et al., 2006) 

for classification. Since 2004, new commercial ALS systems 

called full-waveform (FW) LiDAR have emerged with the 

ability to record the complete waveform of the backscattered 

1D-signal. Each echo in this signal corresponds to an 

encountered object. Thus, in addition to range measurements, 

further physical properties of objects included in the diffraction 

cone may be revealed by analysing the shape of backscattered 

waveforms. A detailed state-of-the-art on full-waveform 

topographic LiDAR can be found in Mallet et al., 2009. In 

urban scenes, the potential of such data has been barely 

investigated, in addition to the geometry to detect vegetation 

areas (Gross et al., 2007; Wagner et al., 2008). 

In this paper, two different point cloud classification 

approaches were applied based on the full-waveform LiDAR 

data. Firstly, the backscattered full-waveform LiDAR pulse 

waveform was decomposed and all components in the 

waveform were abstracted. Further, by the time flag of each 

component acquired in the decomposition procedure, three 

dimension coordinates of the components were calculated. Also, 

the components’ waveform properties, including amplitude, 

width and cross-section, were uniformed respectively to form 

the Amplitude/Width/Section space. After that two different 

approaches were applied to classify the points. On one hand, 

region of interest were selected and samples were trained to 

perform supervised classification. On the other hand, IHSL 

colour transform was introduced to transform the above space to 

find a new RGB colour space. Afterwards, the fuzzy C-means 

algorithm was applied to complete the LiDAR point 

classification procedure. By comparing the two different 

segmentation results, which may of substantial importance for 

further targets detection and identification, a brief discussion 

and conclusion were brought out for further research and study.  

 

2. WAVEFORM DECOMPOSITION 

In order to come to an analytical waveform properties 

solution, assuming that the scattering properties of a cluster of 

scatters can be described by Generalized Gaussian Function. 
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where Ŝ is amplitude and   the standard deviation of the 

cluster. The cluster position is specified by  while  denote 

the shape of the component waveform. The targets 

backscattered pulse waveform is the superposition of echoes 

from scatters at different ranges. To abstract every components’ 

parameters contained in backscattered waveform, the 

Expectation Maximum algorithm is applied to accomplish the 

decomposition process.  The EM algorithm was presented by 

Dempster、Laind and Rubin in 1977 to estimate the parameters 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

179

mailto:glancefox@gmail.com


 

from incomplete dataset (EM). As for the backscattered 

waveform decomposition, the procedure is as follow: 

a): model parameters 

initiation:
(0) (0) (0) (0), , , . 1,j j j j j     …k，. Where 

k denote the components number in the backscattered 

waveform, and 
(0)

j is the weight of components j in the 

waveform, 
(0) (0) (0), ,j j j   is specified as the parameters in 

model function respectively.  

Then likelihood function is computed according to the 

initiated parameters by 
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d): convergence check: 

Based on the estimated parameters in previous steps, 

the final likelihood function is computed as the waveform 

decomposition accomplishing criteria.   
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The iteration ends once meet ( 1) ( )m mL L    or the 

predefined criteria.  

3. SPACE TRANSFORMATION 

3.1 A/W/C-S Space 

 In this paper, the components in backscattered waveform 

were modelled as generalized Gaussian function, and we take 

the curve fitting approach accomplished the decomposition 

procedure. And the corresponding results are four parameters, 

and here we just take amplitude, width and cross-section to 

form this space. We calibrated the scanner by using standard 

reflectance targets before flight and measured albedo of roads 

and roofs in the experiments region. The definitions of the three 

parameters are as follows respectively (Plataniotis et al.; 

Wolfgang et al., 2006). 

Amplitude: 
2

2 2

,4

sr
i i

i t p i

sD
P S

R s


 
   (9) 

Where iP is the amplitude of cluster i , 
rD  is the receive 

aperture, R is the distance from scanner to cluster i , 
t is 

the transmitter beam width, S is emitted pulse amplitude, 

ss is the emitted pulse standard deviation, ,p is is the 

standard deviation of the echo pulse component i . 
Width: 2 2

,2 2p i s iW s s s     (10) 

Where is denotes the standard deviation of emitted pulse. 

Cross Section: 
4

,cal i p ii
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Where 
2

2
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 
 is the calibration constant. 

Although the A/W/C parameter space could present a 

general distinguishability among different objectives and targets, 

there exists high correlation between the parameters. To a 

certain component, its Amplitude and Cross section are positive 

correlation, and has a related coefficient of 0.4-0.6 according to 

experiments, while the Width and Amplitude/Cross section 

have negative correlation, has an average related coefficient of -

0.3. Thus, in order to make good use of the components 

parameters for point cloud classification, the A/W/C space is 

mapped to IHSL space to obtain a uniform distinguishability 

among all components and class.  

 
3.2 Mapping to IHSL 

Because of the parameters in A/W/C-S space have non-

uniform distinguishability, this highly restrains the classification 

performance. In this part, the IHSL transformation is performed 

to map the original space parameters to HSV space.  The 

relationships of the parameters are described as follows: 
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Then, inverse transformation is applied to the space and 

obtained the final space parameters for the classification. 
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     The fuzzy C-means algorithm was first brought out in 

(Bezdek,1981), and received extensive attention in colour 

image segmentation based on pixel(Castleman et al., 1996). The 

fuzzy C-means algorithm based on the minimization of C-means 

function, defined as 

2

1 1

( , ) ( ) ( )
C N

m

m ik ik

i k

J U V D
 

 (16), where ik is the fuzzy 

membership value of pixel k in cluster centre i , 
ikD is a squared 

inner-product distance norm given by 

2

ik k iD x v  (17), where ( 1,2,..., )kx k N  is the given 

set of input data, ( 1,..., )iv i C  is the set of C cluster centres. 

The minimization of (11) can be solved by using the iteration 
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through the first order condition for stationary points of (16). 

The stationary points of (11) can be found by means of 

Lagrange multipliers, which is given by 
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Setting the gradients of mJ  with respect toU , V and  equal to 

0, when 2 0ikD   and 1m , theU , V would minimize only if  
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Thus, we could simply apply the fuzzy C-means algorithm, by 

performing the iteration of (19) and (20). 

 
4. CLASSIFICATION 

Two different approaches were taken to perform the 

classification process, supervised and unsupervised 

classification.     

4.1 Supervised classification 

In the study area, the data has 538299 points and has a density 

of 1.2points/m2. Five typical types of objects, bare land, trees, 

houses, road and farm land, were selected and formed the 

training data and their properties were computed.  

 
Figure 1: supervised point cloud classification result 

 

The classification result is presented as in figure 1. The results 

shows that by the addition properties, that are the width, 

amplitude and cross-section of the backscattered waveform, 

objects of the same height but has different width and cross-

section could easily distinguished. Also, object in 

neighbourhood spaces could also be separated by components’ 

intensity and width parameters and research an excellent 

classification performance. However, because of the correlation 

among the parameters, which draws back the classification 

results.  

 

4.2 Unsupervised classification 

 

Figure 2. Unsupervised classification results 

The correlation among the parameters was removed by the 

transform and the parameters were applied to the point cloud 

classification using Fuzzy C-Means algorithm. The 

classification result is shown in figure 2, which shows that low 

vegetation point could be classified and improve the 

classification performance. 

 
5. CONCLUSION 

The experiments in this paper shows that by using the additional 

parameters abstracted from full-waveform LiDAR, supervised 

classification approach could research good classification 

performance.  Also, through IHSL transformation of the 

parameters, then the fuzzy C-means algorithm is applied to the 

derived new space to complete the LiDAR point classification 

procedure. By comparing the two different segmentation results, 

which may of substantial importance for further targets 

detection and identification, a brief discussion and conclusion 

were brought out for further research and study. 
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