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ABSTRACT: 
Systematic errors in point clouds acquired by airborne laser scanners, photogrammetric methods or other 3D measurement 
techniques need to be estimated and removed by adjustment procedures. The proposed method estimates the transformation 
parameters between reference surface and registration surface using a mathematical adjustment model. 3D surface matching is an 
extension of 2D least squares image matching. The estimation model is a typical Gauss-Markoff model and the goal is minimizing 
the sum of squares of the Euclidean distances between the contiguous surfaces. Besides the generic mathematical model, we also 
propose a concept of conjugate points rules which are suitable for special registering applications, and compare it to three typical 
conjugate points rules. Finally, we explain how this method can be used for the co-registration of real 3D point sets and show co-
registration results based on airborne laser scanner data. Concluding results of our experiment suggest that the proposed method has 
a good performance of 3D surface matching, and the least normal distance rule returns the best result for the strip adjustment of 
airborne laser altimetry data. 
 

                                                                 

2.1 

*  Corresponding author 

1. INTRODUCTION 

A laser scanner system consists of three main components: 
GPS, IMU and Laser unit. Data collection is carried out in a 
strip-wise form and the object coordinates of the laser 
footprints are determined using the direct geo-referencing from 
the GPS/IMU. Due to the systematic errors in the laser scanner 
components or in the alignment, adjacent strips usually have 
discrepancies. Such discrepancies are serious to the terrain 
modeling and object reconstruction. So the most emphasis of 
our approach is to find a general solution for the registration 
problem in 3D modeling.  
In the field of Computer Vision, one of the most famous 
methods is the Iterative Closest Point (ICP) algorithm proposed 
by Besl and McKay (1992), Chen and Medioni (1992), and 
Zhang (1994). And in the field of LiDAR and photogrammetry,  
people use data driven methods to do strip adjustment. The 
purpose of data driven methods is establishing a 3D 
transformation  between two point sets, which represent an 
irregular spatial sampling of the same surface (Shan, 2008). 
The earliest data driven methods, only consider the difference 
on elevation between strips, using linear system parameters 
with conjugate points of adjacent strips (Crombaghs, 2000; 
Kornus and Ruiz, 2003). And then Kilian (1996) uses a 12 
parameters model to replace the linear parameters. In order to 
eliminate the strong correlation of the 12 parameters model, 
Vosselman and Maas (2001) use a 9 parameters model to 
estimate 3D transformation. Morin and El-Sheimy (2001) just 
considered the global translation and rotation transformation to 
establish a 6 parameters model. And if the scale factor can be 
involved, the 7 parameters of a space similarity transformation 
model may return an effective solution for the strip adjustment 
(Robert, 2004; Gruen and Akca, 2005). 

T

Least squares 3D surface matching (LS3D) is a typical data 
driven method, where the sum of squares of the Euclidean 
distances between the neighboring surfaces is minimized. 
LS3D has many advantages compared with the ICP method, 

and the significant one is that conjugate points of LS3D can be 
obtained using interpolation on 3D surface but ICP needs real 
points. Hence, LS3D can achieve higher accuracy in many 
cases, especially in the co-registration routine of different 
resolution point clouds. 
In this approach, we propose a mathematical model for LS3D. 
It is a general model for estimating orthomorphic 
transformation parameters for conjugate surfaces. Three 
different searching rules of conjugate points on adjacent 
surfaces are defined in this adjustment system and each rule 
can be well used in the new estimate model. Also the 
differences are compared to existing methods and are shown in 
detail. At last, two groups of real airborne laser scanner data 
are used to show the capabilities of our method. 
 

2. 3D SURFACE MATCHING 

New Estimation Model 

The major task of 3D surface matching is finding the 
transformation parameters between template surface 

and searching surface . The 

overlapping area between two surfaces is , which 

can be defined as O F

( , , )F x y z ( , , )G x y z
( , , )O x y z

G= ∩ . The goal of least squares 
estimation of the orthomorphic transformation parameters is as 
follows: 

( , , ) { ( , , )}G x y z T F x y z=                   (1) 
To express the geometric relationship between the conjugate 
surfaces, a seven parameters similarity transformation is used: 
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    where ( , , )x y z F∈ , ( ', ', ')x y z G∈ , ( , , )R ϕ ω κ is 

the orthogonal rotation matrix, [ , is the translation 

vector, and m is the scale factor. 

, ]T
x y zt t t

In order to perform least squares estimation, the true error 
vector is introduced to describe the discrepancy 
between the conjugate surfaces: 

( , , )V x y z

( , , ) ( , , ) ( , , )V x y z G x y z F x y z= −           (3) 
As continuous 3D surfaces have to be sampled with discrete 
coordinates, a 3D surface matching is automatically translated 
into a registration of point clouds. So the true error vector of 
equation (3) can be approximately expressed with the 
Euclidean distance of conjugate points, and the aim of least 
squares estimation is defined as follows: 

|| || mindd =∑                           (4) 

If the square of the distance is set to , the new 
mathematical model of 3D surface matching can be simply 
defined as follows: 

2D d=

2 2( ') ( ') ( 'D x x y y z z= − + − + − 2)            (5) 

Where ( , , )x y z is the point coordinate of the template 

surface, and the ( ', ', ')x y z is the point coordinate of the 
searching surface.  
Since equation (5) is nonlinear, it must be linearized by the 
Taylor expansion, ignoring 2nd and higher order terms. 

0 x y
x y z

D D DD V D dt dt dt
t t t
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          (6) 

where can be considered as residual of the Taylor 
expansion, and the Euclidean distance of conjugate points will 
be set to zero at the end of the LS3D routine. Hence, the 
observation error equation can be simplified as: 

V

0 x y
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D D DV D dt dt dt
t t t

D D D Dd d d dm
m

ϕ ω κ
ϕ ω κ
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          (7) 

The matrix form of equation (7) is as follows:  
,V AX L= +                            (8) P

    where A  is the design matrix, 

is the parameter vector, and 

 is the constant vector that consists of the Euclidean 
distances between the template and searching surface elements, 

is the weight matrix of the error observation vector. 

[ , , , , , , ]T
x y zX t t t mϕ ω κ=

0L D=

P
The distribution of the random variable is 

, with the statistical expectation 

, 

2
0(0, )llV N Qσ∼

( ) 0E V = 2 2
0 0{ }T

ll ll
1E VV Q Pσ σ −= = . Hence, system 

(8) is a typical Gauss-Markoff estimation model. In order to 
control the estimation quality, an additional error observation 
vector of the unknown parameters could be imported 
(Robert,2004; Gruen and Akca, 2005). 

,e eV IX L= + eP                             (9)                         

Where I is the identity matrix, and  is the constant vector 

of the error equation,   is a priori weight matrix of unknown 

parameters. If zero weight ((  is set, the i-th 
parameter is assigned as free variable, and if an infinite weight 
value 

eL

eP
) 0)e iP ∼

(( ) )e iP ∞∼  is set, the i-th parameter is assigned as 
constant. Combining equation (8) and equation (9), the 
maximum likelihood solution of unknown parameters can be 
estimated as follows: 

l 1( ) (T T
e e )eX A PA P A PL P L−= − + +          (10) 

m 2

0 ( )T T
e e eV PV V PV rσ = + /                (11) 

lV AX L= +                                     (12) 
l

eV IX Lb= +                                     (13) 

    where lX  is the final estimation value of least squares 

routine, m
2

0σ  is the mean square error of the weighted units of 
the observations, n  is the number of error observation 
equations, and u  is the number of unknown parameters, 
r n u= −  are the components of abundant observation. 
 
2.2 Conjugate Points Rules 

Since it is rather difficult to locate feature points in a local 
window on 3D surfaces, how to establish the conjugate points 
between 3D overlapping regions, is the core strategy in the 3D 
surface matching procedure. In our method, the conjugate 
points rule is unlimited. We could define some new rules for 
specified applications, because the mathematical model of the 
adjustment, defined in 2.1, is generic for available rules. And, 
it is the major advantages of our proposed method compared 
with existing methods. 
In this section, we list three strategies for establishing conjug-
ate points on 3D surfaces. The first definition called LND rule 
is the same as the Least Normal Distance method (Robert, 2004; 
Gruen and Akca, 2005), using pedal point of triangle in normal 
direction. The second definition called LZD rule is the same as 
the Least Z-Difference method (Rosenholm, 1988), using the 
intersection point of a triangle in vertical direction. The last 
definition called ICP rule is the same as the Iterative Closest 
Point method (Besl and McKay, 1992), using two, the closest 
points in the entire point sets as conjugate points. With the 3D 
surface representation of triangulated irregular network 
structure, the conjugate point rules can be listed as follows: 

(a)                               (b)                         (c) 
 

Figure 1. Conjugate points definitions for surface matching 
with TIN structure: (a) LND rule, (b) LZD rule, (c) ICP rule.

where A， B and  are the 3 vertexes of the candidate 
conjugate region on the searching surface, and n  is the normal 
vector of the located triangle, v  is the vertical vector of the 

located triangle, 、 、  are behalf of the Euclidean 
distances from the interpolation point to the 3 vertexes, and the 

C
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closest point is the conjugate point in 
Figure 1(c). 

3 1 2min{ , , }s s s= 3s

2.3 
 

Precision and Reliability 

Precision and reliability are the two basic factors for quality 
analysis of adjustment systems. The theoretical precision of 
unknown parameters and the correlation coefficient matrix are 
also an important basis for the procedure of least squares 
solution (Li and Yuan, 2002). The theoretical precision iσ  
and the correlation coefficient can be estimated from a co-
factor matrix of unknown parameters. 

0i iiqσ σ= 1( )T
ii xx eq Q A PA P ,  −∈ = +     (14) 

To detect the gross error of the observation, a simple and 
efficient weight function is used in our robust estimation 
routine. 
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In equation (15), when the gross observed value is detected, its 
weight will be set to zero , in other case, the weight of 

the observed value will be set to one . In our 

experiment, when the constant 

0iP =
1iP =

K  is set to 6 or 7, the 
adjustment system has a good performance to estimate the 
unknown parameters. 
 
2.4 

z

Compared with Existing Methods 

The procedure of LS3D proposed above is separated into two 
parts, the adjustment model and the conjugate points rule. The 
adjustment model can be derived form the formula of the 
Euclidean distance. So, it is easy to adapt to new conjugate 
points rules and good for some special applications. In this 
section, we show the differences between our method and 
existing methods. 
·compared with Gruen’s method 
The most important factors for adjustment process are the 
coefficient items and constant item of the error equation. Gruen 
and Akca (2005) derived the error coefficients under certain 
assumptions and lacking of rigorous mathematical formula. 
They proposed that the vector 

[ / , / , / ]T
x yD t D t D t∂ ∂ ∂ ∂ ∂ ∂ is only related with the 

coefficients of a local triangle plane. Hence, if the matching 
point does locate the same triangle, the vector values are 
constant. But under the rigorous derivation of our formula, the 

vector [ / , / , / ]T
x y zD t D t D t∂ ∂ ∂ ∂ ∂ ∂ may be changed, 

even if the local triangle has not changed during the iteration 
procedure and the vector values are related with the three 
coordinate components of current conjugate points. Another 
difference is the constant item of error equation. In Gruen’s 
method, they define the conjugate points distance as constant 
item directly, but we use the square value because of the 
smaller amount of computation.  Especially, we found Gruen’s 
method maybe need quite good approximations and we are less 
after similar iteration times, under the same priori weights of 
the unknown parameters.  
·compared with ICP method 
ICP method is a linear squares solution for estimation of the 6-
parameters between two point sets. So, ICP needs a relatively 

high number of iterations in some tests (Pottmann et al. 2004). 
Another difference is that conjugate points of LS3D can be 
obtained using interpolation on a 3D surface but ICP needs real 
points. So LS3D can achieve higher accuracy in many cases, 
especially in the co-registration routine of different resolution 
point clouds. 
·compared with Rosenholm’s method 
Rosenholm’s adjustment model can be considered as the 
special form of our approach. If we define the conjugate points 
as Figure 1(c), the equation (5) can be derived to 

, which is the same as Rosenholm’s model. In 
many cases, the registration accuracy of this model is limited, 
because it can only meet the discrepancy in z direction of two 
point sets. 

2( 'D z z= − )

 
3. LS3D AND STRIP ADJUSTMENT 

Strip adjustment is a relevant problem for the post-processing 
of airborne laser scanner data. 3D surface matching is a typical 
data-driven method of strip adjustment. The transformation 
parameters of the adjacent strips can be estimated by a least 
squares routine. Each strip can be seen as a single surface, and 
the conjugate points can be interpolated by one of the finite 
element methods discussed in section 2.2. 

(a)                                                   (b) 
Figure 2. Surface matching for laser scanning strips: (a) 
overlapping area on conjugate surfaces, (b) Estimating 
transformation parameters with conjugate points. 

In this work, we are aimed to use primitives, which can be 
derived with minimal pre-processing of the original laser 
scanner point clouds. To satisfy the 3D surface matching 
procedure, we chose one strip of the original points, while the 
other strip is represented by a triangulated irregular network 
(TIN).  

 
Figure 3. Interpolation of conjugate points between 
template surface and searching surface in LS3D routine. 

In Figure 3, q can be interpolated by the vertex coordinates 

of local finite elements in . ( , , )Tri A B C
 

4. EXPERIMENT RESULTS 

Two practical examples are given to show the capabilities of 
our proposed method. All experiments were carried out using 
software based on C code that runs on a MS Windows 
operating system. In order to increase the accuracy of 
conjugate points between adjacent strips, it is necessary to 
label terrain points and off-terrain points by a fast filtering 
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0 0 0 0.0x y yt t t= = = 0 0 0 0.0

technology. And the initial approximation of seven unknown 
parameters is used as: 

,ϕ ω κ= = = 0 1.0m, =
In the iteration routine of the least squares solution, the 
convergence of rotated angles can be set as 1e-6 (rad) or 1e-7 
(rad), and the number of iterations may be less than 20. 
 
4.1 Data Description 

Two typical data sets were selected in this section. The 
scanning data from Hebei and Henan province, China was 
received by an ALS60 (Leica Geosystems) airborne laser 
scanner at 1000 meters above the ground. The Hebei data set is 
an urban scene, including buildings, roads, trees, rivers, etc. 
and the Henan data set is a mountainous area, including 
terraced field, scarps, isolated trees and a few low buildings. 

Figure 4. Two groups of LiDAR raw data sets: (a)~(b) Hebei 
data set of urban scene, (c)~(d) Henan data set of 
mountainous area. 

Some other quantitative information of our experiment data 
sets can be seen in table 1. 

Table 1. Properties of the test data sets 
points number data range overlap points density

data set 
1.00E+04 (m×m) （%） (points/m2) 

strip1( 514.77 1999×1549 17 hebei) 4.12 

strip2(hebei) 477.12 1997×1545 18 

strip3(hebei) 498.10 1999×1547 17 

strip1(henan) 324.17 1999×2515 15 

strip2( 319.30 1999×2504 14 2.43 

strip3( 309.46 1999×2523 13 2.27 

henan) 

henan) 

The purpose of this section is to show 2 categories of results 
from our proposed method: profiles registering, estimating 
results and accuracy assessment of unknown parameters. 
Profile results are shown in figure 5. Estimating results of 
unknown parameters are listed in table 2 and the corresponding 
accuracy assessments are in table 3.  

 

4.2 
 

Results 

4.30 

3.92 

2.11 

All of the results show that the LS3D proposed in our approach 
can achieve the transform parameters between two overlapping 

surfaces, and the conjugate points rule plays an important role 
in the LS3D procedure.  
 

5. CONCLUSIONS 

A general mathematical model for co-registration of two 3D 
surfaces is presented. Our proposed method, estimates the 
transformation parameters between reference surface and 
registration surface, using the generalized Gauss Markoff 
model which is a well-known method in geodesy and 
photogrammetry. Our mathematical adjustment model is 
generic to effective conjugate point rules. In this paper, there 
are three definitions of conjugate points presented and 
described. Finally, the LND definition  shows the highest 
precision in the experiments of surface matching or strip 
adjustment. 
At last, the derived conclusions may be the following ones. 
Due to the influence of multiple echo points in laser scanner 
data, it is necessary to remove height anomaly points and 
irregular geometric shapes, e.g. tree points, using fast filtering 
technology or rough classification routines. These points 
discussed above can reduce the co-registration accuracy. 
Another important issue is that if there are not enough 
geometric features or enough overlap between conjugate 
surfaces, the iteration will fail. In this case, we can add some 
roof points to strengthen geometric constraints between 
surfaces. 
 
REFERENCE 

Ackermann, F., 1984. Digital image correlation: 
performance and potential application in photogrammetry. 
Photogrammetric Record, 11(64), pp. 429-439. 

Besl, P.J., and McKay, N.D., 1992. A method for 
registration of 3D shapes. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 14(2),pp. 239-256. 

Crombaghs, M.J.E., Brugelmann, R.,2000. On the 
adjustment of overlapping strips of laser altimeter height data. 
International Archives of Photogrammetry and Remote Sensing, 
33(B3), pp.224-231. 

Chen, Y., and Medioni, G., 1992. Object modelling by 
registra-tion of multiple range images. Image and Vision 
Computing, 10(3), pp. 145-155. 

Gruen, A., 1984. Adaptive least squares correlation – 
concept and first results. Intermediate Research Project Report 
to Heleva Associates, Inc., Ohio State University, Columbus, 
Ohio, March, pp. 1-13. 

Gruen, A., 1985a. Adaptive least squares correlation: a 
power-ful image matching technique. South African Journal of 
Photogrammetry, Remote Sensing and Cartography, 14(3), pp. 
175-187. 

Gruen, A., and Akca D., 2005. Least squares 3D surface and 
curve matching. ISPRS Journal of Photogrammetry and Remo-
te Sensing 59(3), pp.151-174. 

Kornus, W., Ruiz, A. 2003. Strip adjustment of LiDAR data. 
International Archives of Photogrammetry and Remote Sensing, 
33(3/W), pp.47-50. 
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

208



 

Kilian, J., Haala, N., Englich, M., 1996. Capture and evaluation of airborne laser scanner data. Internatio-nal Archives of Photogrammetry and Remote Sensing, 31(B3), pp.383-388. 
Li, D.R., and Yuan, X.X., 2002. Error Processing and Reliabi-lity Theory. Wuhan University, China, pp.92-120. 
Maas, H.G., 2000. Least-Squares matching with airborne laser scanning data in a TIN structure. International Archives of Photogrammetry and Remote Sensing, 33(3A), pp. 548-555. 
Morin,K. and El-Sheimy, N., 2002. Post-mission adjustment of airborne laser scanning data, Proceedings XXII FIG International Congress, Washington, DC, April 19-26, 12 pp., CD-ROM. 
Pottmann, H., Leopoldseder, S., and Hofer, M., 2004. Registration without ICP. Computer Vision and Image Understanding, 95(1),pp. 54-71. 
Pertl, A., 1984. Digital image correlation with the analytical plotter planicomp C-100. International Archives of Photogra-mmetry and Remote Sensing, 25(3B),pp.874-882. 
Rosenholm, D., 1988. Three dimesional absolute orientation of stereo models using digital elevation models. Photogrammetric Engineering and Remote Sensing, 54(3),pp 1385-1389. 
Robert, M. P., 2004. Theory and application of weighted least squares surface matching for accurate spatial data registration. Australia: The University of Newcastle:15-30.  
Shan, J., Toth, C.K., 2008. Topographic laser ranging and scanning: principles and processing. Boca Raton: CRC Press. 
Vosselman, G., Maas, H.G.,2001. Adjustment and filtering of raw laser altimetry data, Proceedings OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed 
Elevation Models. OEEPE Publications No.40,pp.62-72. 
Zhang, Z., 1994. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2), pp. 119-152. 
 
 

Figure 5.  Profiles in overlapping strips 
(showing the degree of compatibility between the point clouds before and after the surface matching with three rules of conjugate points, and the LND rule has best result.) 

Before Correction Correction with LND Rule Correction with LZD Rule Correction with ICP Rule 
1-th Profile of Conjugate Surfaces(Hebei 1&2, urban) 

    
2-th Profile of Conjugate Surfaces (Hebei 3&2, urban) 

    
3-th Profile of Conjugate Surfaces (Henan 1&2, village) 

    
4-th Profile of Conjugate Surfaces (Henan 3&2, village) 
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Table 2. Estimated results of unknown parameters between conjugate surfaces. 

                    (Iteration number and calculation times are listed in Table 2, and the time and iteration number are similar for three rules because of using same adjustment model. ) 
 

data set strip 
NO. 

overlap number 
(1.0e+05) iteration time

(sec)
tx  
(m) 

ty  
(m) 

tz  
(m) 

ϕ  
(deg) 

ω  
(deg) 

κ  
(deg) m  

LND Rule 
hebei           1&2 203.45 18 108 -0.586 1.799 -3.345 0.00059 0.0670 0.0056 0.99997
hebei            

            
            

3&2 199.34 15 95 0.238 0.461 -0.364 0.0024 0.0127 0.0097 0.99978
henan 1&2 189.24 17 102 -1.960 3.614 -3.226 0.00085 0.0780 -0.0023 1.000046
henan 3&2 186.74 13 82 -2.275 1.911 -1.334 0.00014 0.0320 -0.0052 0.99998

LZD Rule 
hebei           1&2 203.45 15 99 -0.504 1.933 -3.277 0.00047 0.0690 0.0063 0.99999
hebei            

            
            

3&2 199.34 13 78 0.394 0.577 -0.240 0.0064 0.0178 0.0067 0.99963
henan 1&2 189.24 14 85 -1.798 3.668 -3.104 0.00358 0.0808 -0.0010 1.000062
henan 3&2 186.74 15 88 -2.221 1.983 -1.152 -0.00002 0.0320 -0.0036 0.99991

ICP Rule 
hebei           1&2 203.45 17 103 -0.578 1.892 -3.278 0.0021 0.0675 0.0078 0.99994
hebei            

            
            

3&2 199.34 17 94 0.334 0.533 -0.172 0.0038 0.0148 0.0101 0.99983
henan 1&2 189.24 16 93 -1.904 3.779 -3.034 0.0023 0.0810 0.0005 1.000076
henan 3&2 186.74 15 85 -2.109 1.998 -1.256 0.0019 0.0347 -0.0047 1.000023

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Table 3.  Accuracy assessment for least squares 3D surface matching. 
                    (Theoretical accuracy and error of unit weight are listed in table 3 and the LND rule has best accuracy.) 
 

data set strip 
NO. 

points space 
(m) 

0σ  
(m) 

txσ  
(m) 

tyσ  

(m) 
tzσ  

(m) 
ϕσ  

(1.0e-03 rad) 
ωσ  

(1.0e-03 rad) 
κσ  

(1.0e-03 rad) 
mσ  

(1.0e-05) 

LND Rule 
hebei          1&2 0.72 0.27 0.031 0.045 0.004 1.97 1.83 0.12 1.02
hebei          

          
          

3&2 0.72 0.33 0.027 0.038 0.003 2.04 3.66 0.54 2.44
henan 1&2 1.13 0.43 0.036 0.032 0.003 2.68 2.89 0.37 4.54
henan 3&2 1.13 0.57 0.046 0.044 0.005 3.44 6.24 0.69 6.33

LZD Rule 
hebei          1&2 0.72 0.38 0.052 0.030 0.002 2.80 4.33 0.45 3.73
hebei          

          
          

3&2 0.72 0.41 0.031 0.049 0.001 1.54 5.90 0.24 8.94
henan 1&2 1.13 0.97 0.082 0.056 0.009 4.30 6.79 0.73 2.67
henan 3&2 1.13 0.62 0.095 0.063 0.007 7.32 8.32 0.74 8.09

ICP Rule 
hebei          1&2 0.72 0.42 0.044 0.064 0.008 3.07 3.61 0.24 1.55
hebei          

          
          

3&2 0.72 0.59 0.036 0.073 0.004 3.00 4.54 0.03 4.28
henan 1&2 1.13 0.71 0.033 0.069 0.023 4.35 3.38 0.27 5.76
henan 3&2 1.13 0.84 0.054 0.088 0.012 6.72 7.91 0.83 9.02
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