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ABSTRACT: 

 

This paper addresses the problem of road region detection in urban areas using an image classification approach. In order to 

minimize the spectral superposition of the road (asphalt) class with other classes, the Artificial Neural Networks (ANN) image 

classification method was used to classify geometrically-integrated high-resolution RGB aerial and laser-derived images. The RGB 

image was combined with different laser data layers and the ANN classification results showed that the radiometric and geometric 

laser data allows a better detection of road pixel. 

 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

Various methods have been proposed for classification of 

remote sensing images taken from complex urban regions 

(Bellens et al., 2008, Pálsson et al., 2012). However, as 

emphasized by Bellens et al. (2008), the use of spectral data 

alone to classify this type of data frequently results in the 

overlapping of information classes. A possible strategy to 

minimize this problem consists in integrating airborne laser 

scanning (ALS) data and multispectral images, thereby 

improving the classification results. 

Image classification methods have been used to detect roads in 

complex urban areas that, in some cases, serve as an initial step 

for more complex tasks regarding the road reconstruction. Few 

examples are presented in the following. Benkouider et al. 

(2011) developed a method to separate the road class in RGB 

SPOT images using spectral characteristics of roads in a 

classification process using Artificial Neural Networks (ANN), 

followed by a morphological post-processing to regularize the 

previously classified roads. A method for extracting roads from 

multispectral IKONOS images was proposed by Gao and Wu 

(2004). First, an unsupervised classification is applied to the 

IKONOS images, followed by post-processing steps applied to 

the resulting road class, including noise removal, 

skeletonization to extract road segments, and linking of road 

segments. Mancine et al. (2009) used the machine-learning 

algorithm AdaBoost (i.e., Adaptive Boosting) to classify 

multispectral aerial images that were integrated with ALS data. 

The Hough transform was then used to reconstruct roundabouts 

and roads. 

In this paper we propose a study of different combinations 

between optical images and geometric and radiometric ALS 

data using the ANN classification method. Although several 

information classes (grass, trees, building roofs, asphalted roads 

etc.) are defined in the classification problem, our main focus is 

on the detection of the road pixels. The present article is 

organized as follows. The proposed method is introduced in 

Section 2, the experimental results and discussions are 

presented in Section 3, and the major conclusions are presented 

in Section 4. 

 

 

2. METHOD 

Our proposed study on the feasibility of using ALS data 

combined with optical images in a classification framework, 

using ANN, addresses two main steps:  1) geometric integration 

of ALS data and optical images and pre-processing; and 2) 

ANN classification involving different combinations of 

geometrically-integrated optical and ALS-derived images, with 

main focus on the separation capability of the road class. 

 

2.1 Data integration and pre-processing 

The ALS data and aerial images can be integrated by projecting 

the ALS point cloud onto the aerial image followed by a 

regularization of the projected points according to a grid with 

the same resolution of the aerial image. The ALS point cloud 

projection onto the image space involves several mathematical 

procedures, as e.g. one based on the collinearity equations. 

Details on these mathematical procedures can be found in 

relevant literature, as e.g. in Wolf and Dewitt (2000). The ALS 

points in image space have row and column coordinates of the 

image coordinate system (ICS), plus respective orthometric 

heights (h) and laser pulse intensities (I).  

The photogrammetric procedure mentioned above allows for the 

generation of both the Digital Surface Model (DSM) and the 

Digital Terrain Model (DTM) in the ICS. A third grid, the 

normalized DSM (DSMn), is generated based on a subtraction 

of the DTM from the DSM.  The ground and aboveground 

objects can be separated in the DSMn by a simple thresholding 

process taking into consideration that aboveground objects (like 

vegetation and building) have a minimum height. It is expected 

that the DSMn with thresholding can supply a hard constraint to 

avoid classifying aboveground objects as roads. 

As each ALS point has a radiometric response (i. e., the so 

called laser pulse return intensity), together with the X, Y, and h 
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coordinates, the same procedure described above for the DSM 

and DTM generation in the ICS can be used to generate a laser 

pulse intensity image (or shortly referred to as the intensity 

image), also in the ICS and with same resolution of the input 

aerial image. Roads in intensity images are easily identified 

because they possess homogeneous spectral responses and 

appear very dark due to the asphalt’s low reflectivity of the laser 

pulse (approximately 17% according to Wehr and Lohr (1999)). 

Another significant characteristic of the intensity image is that it 

is not affected by shadows of aboveground objects as in optical 

images. This means that a road segment obstructed by shadow 

in an aerial image can be seen in an intensity image. Therefore, 

the intensity image can contribute considerably to refining 

information during the classification of images. Despite these 

advantages, the intensity images exhibit certain weaknesses. 

The first of these is the noise characteristic that directly affects 

the results of the classification. This issue can be minimized by 

applying a median filter or a morphological filter. An additional 

problem with this type of data is the presence of objects that 

show radiometric responses similar to those of roads, such as 

the building roofs and certain types of vegetation. 

The procedure discussed above generates the following 

geometrically-integrated layers: R, G, and B image layers; 

DSMn segmented using the thresholding method (the threshold 

used was 2.5 m), and the intensity image smoothed using the 

median method. The DSM and DTM used to derive the DSMn 

were generated as follows. The nearest neighbor interpolation 

method was used for deriving the DSM. Points on the ground 

were selected visually in the laser intensity image and used to 

generate the DTM by using the kriging interpolation method. 

As already mentioned, the DSM and DTM were generated in 

the ICS at the same resolution of the RGB image. 

 

2.2 Supervised classification through ANN 

The data layers discussed in Subsection 2.1 are used to isolate 

the road class by employing the ANN image classification 

method (Gonzalez and Woods, 2008). In order to model the 

scene as a whole, the following additional classes are defined: 

grass, trees, buildings with gray roofs, buildings with red roofs, 

and concrete. 

The backpropagation algorithm (Richards and Jia, 2006) was 

used to train the networks. The input layers were combined in 

different ways to determine the best combinations for separating 

the road class and to verify the effective contribution of input 

layers from the ALS data. All of the input data layers in the 

network were normalized in the range 0 to 255. Table 1 shows 

examples of relevant combinations of data layers for evaluating 

the contribution of ALS data combined with a RGB image into 

the classification procedure by ANN. 

 

 

Combination Input Layer Data 

RGB R,G, and B 

RGB+DSMnThr R, G, B, and DSMn with 

thresholding (DSMnThr) 

RGB+IS R,G, B, and intensity image 

with median smoothing (IS) 

RGB+DSMnThr+IS R,G, B, DSMnThr, and IS 

 

Table 1. Examples of combinations of input data layers for 

classification by ANN 

 

 

The first combination (RGB) only utilizes layers of the RGB 

image and is used to analyse and compare the contributions of 

the subsequent additions of the ALS data during the 

classification process. The second combination 

(RGB+DSMnThr) adds the geometric ALS data to the RGB 

image layers by using the image representing the DSMnThr in 

the ICS. The major objective of performing this combination 

was to check the hypothesis by which the geometric ALS data is 

useful for separating classes corresponding to aboveground 

objects (for example, roofs and trees) from those that are on the 

terrain surface. The intensity image in the ICS was smoothed 

using the median filter (resulting in the IS image) and added to 

the RGB image layers, giving rise to the third combination 

(RGB+IS) in Table 1. The rationality of smoothing the intensity 

image is that it is very noisy. The IS image is expected to be 

useful in the classification process because roads are very well 

contrast in it. Moreover, due to the capability of the laser pulse 

in penetrating the tree structures and reaching the ground, road 

obstructed by trees can be totally or partially visible in the IS 

image. In order to verify the joint contribution of the geometric 

and radiometric ALS data, when combined to the RGB image, 

the last combination (RGB+DSMnThr+IS) mixes the RGB 

image layers, the DSMnThr image layer, and IS image layer. 

 

 

3. EXPERIMENTAL RESULTS 

The test area comprised an urban region of the city of Curitiba, 

Southern Brazil, for which an aerial high-resolution (GSD ~ 0.2 

m) RGB image and an ALS point cloud at an average resolution 

of 0.5 m were available. 

Classifications using ANN, which were performed with the 

IDRISI Andes software (Clark Labs, Worcester, MA, USA), 

tested different network architectures. A learning rate of 0.01 

and a momentum factor of 0.5 were used to optimize the 

convergence of the network. In order to verify the influence of 

the ALS data layers in the classification process by ANN, 

several input layers were combined, as shown in Table 1. 

Results are presented for the aerial sub-image shown in Figure 

1. 

 

 
 

Figure 1. RGB aerial sub-image 

 

 

In order to obtain the classification results for the RGB image 

(Figure 2), the ANN was trained for about 10% of the data 

based on an architecture with a input layer containing three 

neurons (R, G, and B image layers), two hidden layers 

containing twenty one neurons and forty neurons, and a output 

layer containing six neurons (information classes). The used 

architecture (in short, 3-21-40-6) was selected by the try and 

error method based on the best OA (i. e., 71%). The worst 
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results were achieved for the concrete and gray roof classes 

(corresponding producer accuracies were below 40%). On the 

other hand, the best result was found for the red roof class, for 

which the producer accuracy was 90%. Although relatively 

satisfactory producer accuracy was achieved (85% producer 

accuracy) for the road class, it is possible to note that the road 

class was confused with concrete and gray roof classes. Also, 

large building shadows were classified as roads. Due to the 

above reason, the kappa coefficient was very low, i. e., 65%. 

 

 

 
 

Figure 2. Results obtained for the RGB image 

 

 

Figure 3 shows the classification results for the 

RGB+DSMnThr combination. The ANN was trained similarly 

to the previous example, resulting in a 4-26-46-6 architecture 

with 86% OA, which is considerably better than the result 

obtained using only the RGB image. Although the results 

obtained with the concrete and gray roof classes continued to be 

the worst, corresponding OAs ranges now from 60% to 70%. 

Particularly, confusions between road class and other spectrally 

similar classes in the RGB image (i. e., gray roof and concrete) 

were reduced. Please note that, for instance, gray roofs were not 

classified as road and the misclassification of shadows as roads 

were considerably reduced. It is also worthy to note that roads 

obstructed by trees, nearly the bottom right-hand corner of the 

image, were partially detected. As a result, the road producer 

accuracy (96%) and the kappa coefficient (79%) were much 

better than ones obtained for the RGB classification. 

 

 

 
 

Figure 3. Results obtained for the RGB+DSMnThr 

combination. 

 

Next example (Figure 4) combines the RGB image with the 

ALS intensity image with a median smoothing (IS). The 

adopted architecture (88% OA) for this combination was 4-45-

15-6, which was trained as in previous examples. The 

classification results are similar to ones obtained by using the 

DSMnThr image in almost all aspects, meaning that the 

intensity ALS data is also useful for avoiding the confusion 

between the road class and other spectrally similar classes in the 

RGB image (like gray roofs). The main observable difference in 

relation to the previous combination (RGB+DSMnThr) is that 

parking lots were better detected (as road pixels) using the IS 

image. As a result, the road producer accuracy was slightly 

worse (94%) for this test. The kappa coefficient was about 75%. 

 

 

 
 

Figure 4. Results obtained for the RGB+IS combination 

 

 

Next combination (RGB+DSMnThr+IS) mixes the three layers 

from the RGB image, one layer from the geometric ALS data 

(DSMnThr image), and one layer from the radiometric ALS 

data (IS image). The results obtained (Figure 5) for this 

combination were based on the architecture 5-30-50-6, which 

provided the best OA (90%). The kappa coefficient was 80%, 

which was the better one. In general, the classification results 

were better for all classes (For instance, the producer accuracies 

were 75%, 92%, and 87% for the gray roof, red roof, and grass 

classes, respectively), but it is worthy to emphasize the very 

high producer accuracy (96%) obtained for our interest class, i. 

e., the road class. In fact, Figure 5 shows that roads were 

successfully classified in regions obstructed by trees and few 

pixels were wrongly classified as road inside the blocks, 

excluding those related to parking lots having asphalt material. 

 

 

 
 

Figure 5. Results obtained for the RGB+DSMnThr+IS 

combination 

 

 

4. CONCLUSIONS AND FUTURE WORK 

This paper described an experimental study with the main focus 

on the detection of road pixels based on an ANN classification 

procedure of geometrically-integrated high-resolution RGB 

aerial and laser-derived images. 

The classification results showed that the RGB image provided 

the worst performance due to well-known confusions among 

objects showing similar spectral responses, as e. g. those related 

to roads and gray roofs. Mainly the combination among the 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-1/W1, ISPRS Hannover Workshop 2013, 21 – 24 May 2013, Hannover, Germany

55



 

RGB image and radiometric and geometric ALS data clearly 

demonstrated that ALS data improved the classification as a 

whole and, particularly, the classification of our class of interest 

(i.e., roads). 

Our future work will be focused on the development of post-

processing techniques to refine the detected road regions and to 

reconstruct the road network using the refined road regions. 
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