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Abstract : The task of spectrum sensing is to use the data collected by the sensing nodes( wireless sensors or cognitive
users ) to decide whether the spectrum holes exist or not. Recently,the maximum eigenvalue detection( MED) and the
smallest eigenvalue detection( SED)methods have been proposed for spectrum sensing. Both of them perform well for
the correlated signals,which is usually the case in realistic applications. However,the determinations of the thresholds
for both the MED and the SED are quite involved, which limits their applications in practical sensing situations in
cognitive radio( CR). Using all eigenvalues of the sample covariance matrix(SCM) ,a new algorithm based on the ei-
genvalues detection( ESD)is introduced. Multivariate statistical theories are used to obtain the decision threshold. The
proposed ESD method can execute spectrum sensing without the information about the primary signal and the wireless
channel. Meanwhile, it keeps the same computation complexity as that of the MED and the SED methods. More
importantly ,the ESD method relaxes the calculation requirement of the decision threshold by using a simple closed-
form expression. Simulation results verify the effectiveness of the proposed method.
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In recent years, the governments and researchers primary users ( licensed users )™ In fact, IEEE has
have become increasingly interested in CR ( Cognitive formed a working group on wireless regional area networks

Radio) ,which is considered as one of the most promising (IEEE 802. 22) whose goal is to develop a standard for

solutions to deal with the conflict between the enormous cognitive users to access the TV spectrum holes'’.
spectrum demands of cognitive users (unlicensed users ) Spectrum sensing plays a fundamental role in CR,
and the scarcity of radio spectrum resources used by and its task is to use the data collected by wireless
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sensors to decide whether the spectrum holes exist or
not. However, detecting the presence of the primary
signal is practically difficult due to the low signal to
noise ratio ( SNR ), deep fading and hidden nodes
problem>™®'. There are many types of basic sensing
algorithms presented in the literature. Among them, the
MED'' | also called the blindly combined energy
detection ( BCED ) method in Ref[8],is a preferred
technique that can achieve a high probability of
detection( P, ) for the correlated primary signal , which is
usually the case in most sensing scenarios'®® . The
MED detects the existence of the primary signal in terms
with the maximum eigenvalue of the SCM of the
received signal. Recently,a new SED sensing algorithm
based on the smallest eigenvalue detection has been
introduced in Ref[9]. The simulation results of Ref[9 ]
also show the SED can perform well for the correlated
received signal. However, the determination of the
decision thresholds poses a big problem for the
applications of the MED and the SED. Firstly, the
decision thresholds for them are derived by using the
random matrix theory (RMT) under the assumption that
both the sample size and the sample dimension are infi-

1791 which results in that the threshold becomes

nite
inaccurate in realistic applications with limited sample
size and sample dimension. The results of Ref [ 10 ]
indicate that the inaccurate threshold may lead to poor
performance. Further,the calculation of the asymptotical
threshold involves the solving of the inverse cumulative
distribution function( CDF') of Tracy-Widom distribution
of order 1(for the real data)or order 2(for the complex
data )77 | which requires complicated numerical
computation and then cannot meet the real-time
requirement in many applications.

If the primary

determinant (i. e. ,the product of all eigenvalues) of the

signal is present, then the
SCM for the received signal samples is usually different
from that of the statistical covariance matrix of the noise
samples. Based on this fact, an alternative sensing
algorithm called the eigenvalues detection ( ESD) is
proposed in this paper. Using all eigenvalues of the SCM
as a ftest statistic, the proposed ESD can execute
spectrum sensing without the information about the
primary signal and the wireless channel. Besides, the

proposed method keeps the same computation

complexity as the MED and the SED,while it relaxes the
calculation requirement of the threshold by using a
simple closed-form expression. Simulation results verify
the effectiveness of the ESD.

The notations conform to the following conventions.
Vectors are column vectors denoted in lower case bold,
e. g. ,X. Matrices are denoted by upper case bold,e. g. ,
A.l, and I, are the PxP all-one matrix and identity
wpon

transpose operator. det (A ) is the determinant of A.

matrix, respectively. The superscript means

E{ -} denotes the statistical expectation operator. “ ~”
and ““~ " mean respectively “ distributed as” and
“asymptotically distributed as”. W,(N,R) denotes a Px
P Wishart distribution with N degrees of freedom( DOF')
and covariance matrix R. y denotes a chi-square

distribution with n DOF.

1 Spectrum Sensing Algorithm for Cognitive
Radio Based on Eigenvalues Detection( ESD)

Considering that there are M antennas at the
sensing node and N time samples can be obtained at
each antenna for spectrum sensing, the P X1 received
signal sample vector can be written as x, (n)=s,(n)+
n,(n),m=1,-- M,n=1,--- N, where P denotes the
number of consecutive samples of a sample vector, s,
(n)and m,(n) denote the Px1 sample vectors of the
primary signal and noise, respectively. The hypothesis
sensing can be

testing problem for spectrum

represented as
HO :xm(n): nm<n)
H] :xm( n) = ‘Sm( n) +nm( n)

where H, indicates primary signal does not exist while

(1)

H, indicates primary signal exists. Note that s, (n)
denotes the received signal after the primary signal
passes through the wireless channel. Without loss of
generality ,we assume that 17, (n)is a zero mean white
Gaussian process with statistical covariance matrix
O'fll p- Assuming that the primary signal and noise are
statistical independent, the P x P statistical covariance

matrix of the received signal can then be written as

R AE|x,(n)x.(n)l :RS+0'f]I,, (2)

where R_.AE (s (n)s,

(n)}is the statistical covariance
matrix of the primary signal. If the primary signal is

present ,then we have



FTE M EF A AEE PR TR 698 B ik 773

>
detR, det(RS+a'"I,,>1

det a’ilp "~ det O'i,IP

(3)

where we use det R, =det (R +0,I,)>det o1, due to
the non-negative definite property of R_ and the positive
property of (Tfll p- If the primary signal is absent, then

we have

det R, det a’ilp_1 (4

det Uilp ~det oilp -
Therefore ,the quotient det R /det 0'371 » can be viewed
as an indicator to decide whether the primary signal is
present or not. In practical applications, the exact

statistical covariance matrix can only be approximated

by the SCM defined as
R '
R=10 2 X x,(n)a,(n) (5)

m=1n=1
Hence,a new test statistic can be proposed as

det IA(t
et o1, (6)
et o, I,
Based on the above analysis, the hypothesis testing
problem in Equ(1)can be re-expressed as
det I"?x
““det 021,
det ﬁx
4
" det ail b Y

where 7y denotes the decision threshold. Denote A, A,,

<y
(7)

-+, A, as the eigenvalues of R, ordered in decreasing
p
order. Using the equation det R, =H A, ,the new statistic

i=1

can then be equivalently rewritten as
At

From Equ (8 ), the proposed statistic uses all the
eigenvalues of the SCM as an indicator to detect whether
the primary signal is present or not. Consequently, the
new sensing algorithm based on the eigenvalues
detection can be summarized as follows

Algorithms 1: Spectrum Sensing Algorithm for
Cognitive Radio Based on Eigenvalues Detection( ESD)

Input:.x, (n) ,a'i ,M,N,P,and the target P,

”

Output; “yes” if the primary signal is present,
otherwise “no”
Step 1  Compute the IA{x using Equ(5) ;
Step 2 Calculate the statistic A using Equ(6) ;
Step 3 Determine the decision threshold y using

Equ(20) (to be given in the next section) ;

Step 4
Remarks ; (a) Different from the SED,the proposed

If A>y,return “yes” ;If A<y return “no”.

ESD uses all eigenvalues of the SCM to construct the
test statistic. If all eigenvalues of the SCM are equal,
then the ESD reduces to the SED. (b) If the signal
subspace is rank-one, i. e. , rank (R_ ) = 1, then the
smallest P—1 eigenvalues of IA(Y will be approximately
equal to a'f] and the proposed algorithm reduces to the
MED. In this sense,the MED can be viewed as a special
case of the ESD, (c¢) The main implementation
complexity for the MED, SED, and ESD lies in the
computing of the SCM defined in Equ (5) and the
eigenvalue decomposition of it. Obviously, the propose
ESD has the same computation complexity as the MED
and the SED.

2 Analysis of the Probability of False
Alarm and the Decision Threshold

Usually, the decision threshold is determined
according to P,. Therefore, the distribution function of
the test statistic under H, should be firstly derived.
When MN—+o and P is very small ,an asymptotic dis-

tribution can be given by!"’

In AlH, “< N(0.2P/MN) 9)
Noting that In(x) is a monotonically increasing function
with respect to x>0. Therefore ,the false alarm probability
can be expressed as

P,=Prob(In AlH,>In y) (10)
Given a target probability of false alarm,say P,, ,the as-
ymptotic threshold can then be calculated by combining
Equ(9)and Equ(10)

Yy =exp (Q7'(Py,)/2P/MN) (11)
where exp(x)and Q' («x)denote the exponential function
and the inverse Marcum () function, respectively. As
mentioned above,y,, is valid for the applications with a
very large sample size and a very small sample dimen-
sion. However, it becomes not accurate enough in the
practical application with a large sample dimension and
would cause the loss of the detection performance ( see
Table 1 and Fig. 1 in Sec.4). In the following, we will
give an improved decision threshold for the proposed ESD.

2
o . 1
Denote R, AR, |H,,we have R, ~W, (MN,OJ-I}]\;)

Using the property of Wishart distribution gives
MNo,’R, ~W,(MN,I,) (12)
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Applying the theorem of Bartlett decomposition yields' "’ Taking natural logarithm on both sides of Equ(14)yields
MNa';zlAin:TTT (13) In AlH,=1In det(T"T)-P In( MN) (15)

where T is a upper-triangular matrix with diagonal P

5 I;p 'g i & Using the equation det(T'T) = H £, we have
elements ; ~ oy, (2 =1, -, P), which are iy

. . P

independent of each other. Using Equ (13), the test In AlH, = z (In 2-In( MN)) (16)
statistic under H; can be rewritten as i=1

AlH,=(MN)™"det(T"T) (14) Define v, 21n ., ~In( MN-i+1) ,we obtain Equ(17)

Table 1 Actual for different sample sizes and sample dimensions when and are used

p 2 3 4 5 6 7 8 9 10

Yimp 0.0917 0. 0836 0. 0815 0. 0835 0. 0895 0. 0799 0.079 0. 0775 0. 0788

MN=1000
asy 0. 0939 0. 0836 0. 0788 0. 0753 0. 0778 0. 063 0. 0585 0. 0511 0. 0467
MN=2000 Yimp 0. 0941 0. 0969 0.0927 0. 0832 0. 0889 0. 0878 0. 0889 0. 0848 0. 0841
B Y ey 0. 0966 0. 0969 0. 0900 0. 0791 0. 0807 0. 0742 0. 0727 0. 065 0. 0613

MN=3000 Y imp 0.0963 0. 0900 0.0921 0. 0925 0.0897 0. 0856 0. 0896 0.0876 0.0911
B Vasy 0.0972 0.0901 0.0891 0.0862 0.083 0.0751 0.0772 0.0721 0.0716

P P . e e !
In AIH, = Z o, + Z In M]L—]yl (17) Unfortunately, this distribution is defined by a complex
i=1 i=1

[7

nonlinear Painleve II differential equation'”’ | and the

We can prove that the following asymptotic distribution solving heavily relies on either complicated programming

holds as the sample size MN is large(see Appendix) techniques or a commercial statistical software
v. "IN 1 —, 2‘ (18) package'""™"°!. Compared with the MED and the SED,
! MN-i+1 MN-i+1

Using the fact that v;(i=1,---,P)are all independent

the determination of the threshold for the ESD does not

need complex numerical computation and can meet the

of each other, from (17),we can obtain the following real-time requirement in  spectrum  sensing. ( ¢ )

distribution Obviously,the computation of the threshold in Equ(20)

a.s. 2
In AUH, ~ N, 07) (19) does not need any information of the primary signal and
where the wireless channel. For a practical application, the

- (| MN-i+1 1
w= 2 (ln I, - ) calculation of the threshold is needed only once for
. given values of M,N,P and Py,.

3 Simulations

Given the target P, ,the improved decision threshold can

. . In this section, the proposed ESD is evaluated
then be determined by combining Equ(10)and Equ(19)

numerically and compared with the other two eigenvalue

. a o)
Vi =exp( Q7 (Ppy ) V07 41) (20) based method including the MED and the SED. For il-
Remarks: (a) When MN—+o and P is very small, we

have u—0 and o°—2P/MN ,and then Yimp Y asy » Which

asy ? Gaussian distribution with a statistical covariance matrix

lustration , the received primary signal is assumed to be a

means that both vy, and y, are accurate enough in the pdo+ (1 —p ) I,, where p. denotes the correlation

scenario with a large sample size and a very small coefficient between the primary signal samples. For the

sample dimension. However,if P becomes large, then the real signal ,the decision thresholds for the MED and the

values of u and o would deviate from the asymptotic 7.91@

SED can be respectively computed as
ones, and then the asymptotic decision threshold vy,
would become invalid while the proposed vy, —is still

imp

(D In reference [ 9 ], the threshold of the SED is derived for the

valid. (b) As mentioned before ,the determinations of the , _
complex signal. For the real signal, the threshold can be calculated by

decision thresholds for both the SED and the MED need

to solve the inverse Tracy-Widom distribution. [ 11 ]for details).

simply replacing F3'(+) with F7'(+)in the complex one (see reference



% 6

FEE N EF . ARG PR T AN 6 3R

Busm ik 775

(N/]TN+\/7)_2/3

_meﬁ)Z(l Fll(l_Pf)]

YmED = MN (MNP)W
_(/MN-/P)*( (VMN-/P)™" j
Ysep = MN ( (MNP)I/é Fl (1_Pf>

where F;'(+)denotes the inverse CDF of Tracy-Widom
distribution of order 1.

Firstly ,the actual probabilities of false alarm of the
proposed ESD for different sample sizes and sample
dimensions are given in Table 1,where we set P, =0.1
and then obtain the thresholds,i. e. ,y,, and vy, ,using
the formulae derived in Equ (11 ) and Equ (20).
Comparing the target Py, = 0. 1 with the simulated

and y.  become more

imp

results, we see that both 7y,
accurate with the increasing sample dimension MN,
while the latter is more robust to the sample dimension
P. We also see that the theoretical threshold is a little
bit higher than the expected,which causes the actual P,
to be slightly lower than P, =0. 1. The effects of the
thresholds on the detection probability are demonstrated
in Fig. 1,where we fix MN=1 000 and p,=0.5. It can
be seen that better detection performance can be

achieved by using the improved threshold 1y, ,

especially for a large value of P.

§ 1.0 - - -
g

5 08 ——P=2
k) —— P=4
o

g 06 —— P=6
E —a— P=8
% 0.4 —a— P=10
=)

2

[=9

0'2—18 -16 -14 -12 -10 -8 -6 -4 -2
SNR/dB

Fig.1 The effects of the theoretical thresholds on the

solid lines:y, )

asy ? imp

detection performance ( dashed lines:y

Secondly, the detection performance of the ESD
compared with the MED and the SED for different
correlation coefficients is presented in Fig. 2, where the
improved threshold in Equ(20)is used for the ESD. As
can be seen, compared with the MED, the ESD shows
better sensing performance under low (p, = 0. 1) and
moderate (p, = 0. 5) correlation coefficients. When the
received signals are highly correlated (p, =0.9), the
ESD shows better sensing performance in the low SNR
region and slightly worse performance in the high SNR
region. Compared with the SED, the proposed ESD can
achieve higher detection probability in the high SNR

region ,especially for the highly correlated signal. On the
other hand, from the point of view of the false-alarm
probability ,the SED yields a far higher P, (about) than
the presetting Py, =0. 1,which indicates the asymptotic
threshold is far lower than the true one. The lower
threshold results in the unreliability of the detection per-
formance for the SED and also the reduction of the
actual spectral utilization for the cognitive user.
Obviously, the proposed ESD almost achieves the
desired ,which implies the threshold given by Equ(20)is

very accurate in practical applications.

1.0 a—
& 77— Pd for ESD
gg 08 -~ Pf for ESD
%%06 —— Pd for MED
S e --+- Pf for MED
25 04 —e— Pd for SED
E—E --o-- Pf for SED
_‘é’ < 0.2 0 & OC-0---0-=--0-=--B--—@---0--—0
& E: ::1:::2:::1:::%:::2:::2:::2:::3‘:::-_?

0 |
-394 —?2 20 -18 -16 -14 -12 -10 -8 -6 -4 -2

SNR/dB
(@)p=0.1
1.0 r —— Pd for ESD

8 -~ Pf for ESD
B g 0.8 - —— Pd for MED
EE --+- Pf for MED
« o 06 —— Pd for SED
b:ﬁ 04 --o-- Pf for SED,
2 ’
_‘é’ 8 028 e o e---@---0---0--g--0--0
> 0 $ ::ﬁ:__i:::i:::i::_1::2:::?_::%:::‘;
-24 —22 20 -18 -16 -14 -12 -10 -8 -6 -4 -2
SNR/dB
(b)p=0.5
- 10 —— PdforESD
S -<-- Pffor ESD
g 0.8~ —— pd for MED
8BS | T PrforMED
w5 o VO —— Pd for SED
28 4| 7 PfforSED_
z5 —
,_<§ g 0.2 0 05~ 0---g--"©"--9---6---0--—0---0
> 4 ::3:::1:::2:::1:::2:::t:::i::% =3

0
024 92 30 _18 —16 —14 1210 -8 —6 4 -2
SNR/dB
(©)p=0.9

Fig.2 Performance comparison of the ESD with the MED
and the SED for different correlation coefficients
(MN=1000,P=3)

Finally, the effects of the sample size and the
sample dimension are investigated in Fig. 3 and Fig. 4,
respectively. At first, the detection performance of the
new algorithm for different sample sizes is presented in
Fig.3,where we fix p,=0.5,P=3 or P=5,while the
sample sizes vary from 100 to 1 000. As expected, the

sensing performance for the ESD increases significantly
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with the increasing sample size. At the same time, the
sensing performance of the new algorithm with different
in Fig. 4. As

expected ,we observe that the sensing performance of the

sample dimensions is investigated
new algorithm can be further enhanced via increasing
the sample dimension of the received signal vector. For
example , the amounts of performance improvement for
both MN=200 and MN=1 000 are about 2 dB when the
sample dimension increases from the increasing sample

size.

LOT o nm=100
0. L —— NM=500
B e NM=1000

0.6
0.4

0.2

Probability of detection(P,)

05 1 1 1 1 1 1 1 1 1 1 |
-24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2
SNR/dB

Fig.3  Performance of the ESD for different sample sizes
(p.=0.5,dased lines:P=3,solid lines;: P=5)
1.0
0.8
0.6 -
04
0.2
—
() 1 1 1 1 1 1 1 1 1 1
94 22 20 -18 16 -14 =12 -10 -8 -6 -4 -2
SNR/dB
Fig.4 Performance of the ESD for different

sample dimensions(p, =0.5)

—— P=4
—— P=6

Probability of detection(P,)

4 Conclusion

A spectrum sensing algorithm based on the
eigenvalues detection has been introduced in this paper.
Correspondingly , the probability of false alarm and the
decision threshold are analyzed by using the multivariate
statistical theories. The proposed ESD can be used for
the sensing scenarios without the information about the
primary
importantly, the

signal and the wireless channel. More
proposed ESD keeps the same
computation complexity as the MED and the SED,while
it relaxes the calculation requirement of the decision
threshold by using a simple closed-form expression.
the effectiveness of the

Simulation results verify

proposed sensing method.

5 Appendix

Asymptotic Distribution of v,

MN-i+1
2

Define z; = and introduce a new variable

v/=./z,v,. Using the property of the moment of the chi-
square random variable'"®! | we get
28I (z,+k
Bl =2
I'(z)

The characteristic function of v/ can hence be given as

(i)
F(zi)

(21)

Efe"} =(z) YWE{ ()] =(z,)

where j = /=1 is the imaginary unit. Equivalently,

we have

In E{e"} =—jt./z, Inz, +Inl"(z,4j./z,t) -In I'(z,) (22)
Note that z;,(1<<i<P)is very large due to the fact

that usually MN is large while P is small in practical ap-

plications. We can then use the asymptotic expansion of

[13]

the log gamma function" " to expand the second and third

terms on the right hand side of Equ(22) according to z;

to get
B
In I'(z.+a) =(z.+a—i) In z.—z.+ln 27r+ z(a)z._1 +0(z7%)
i 13 2 13 13 2 2 12 i
— _L _ In 27 L -1 -2
In F(zi)—(zi 2jln TR +0(z7)

where a=j./z,t and B,(a)=a’ —a+1/6. Substituting the
above two equations into Equ (22 ), after some

manipulations ,we can obtain

w4 (L 2§ 2 7
Bl == = a2 ()

Noting that the right hand side of Equ(23)is just the

characteristic function of a Gaussian random variable ,we

as | 1 2
e L2 2%
K (2 MN=i+1 ’lj (24)

Using the property of the Gaussian random variable , we

then have

can easily obtain Equ(18).
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