文章编号: 0253-2409(2013)06-0698-05

Synergetic effect between Ni_2P/γ - Al_2O_3 and MoS_2/γ - Al_2O_3 catalysts on their performance in hydrodenitrogenation of quinoline

LIU Li-hua^{1,2}, LIU Shu-qun¹, CHAI Yong-ming², LIU Yun-qi², LIU Chen-guang²

(1. School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China;

2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555, China)

Abstract: The synergetic effect between Ni_2P/Al_2O_3 and MoS_2/Al_2O_3 catalysts on their performance in the hydrodenitrogenation of quinoline was proved by a simplified experimental design and explained by the remote control model through a migration of hydrogen spillover. The results indicated that the synergism factor of Ni_2P and MoS_2 is slightly higher than that of NiS_x and MoS_2 ; it decreases with the increase of reaction temperature. Since the spillover hydrogen with Ni_2P can increase the amount of hydrogenation active sites of MoS_2 , the hydrogenation rate of 1, 2, 3, 4-tetrahydroquinoline and 5, 6, 7, 8-tetrahydroquinoline to decahydroquinoline over the Ni_2P/Al_2O_3 and MoS_2/Al_2O_3 catalyst system is then greatly enhanced; as a result, Ni_2P is a superior promoter for MoS_2 catalyst for hydrodenitrogenation.

Keywords: hydrogen spillover; synergetic effect; hydrodenitrogenation; MoS₂; Ni₂P; quinoline **CLC number**: TE624 **Document code**: **A**

Recently, more stringent fuel specifications have been implemented in many countries to minimize air pollution and prevent exhaust treatment catalysts from poisoning. The development of hydrotreating catalysts with superior performance has attracted considerable attention. However, the origin of the synergism of the active components on the catalysts was still not well understood. Many models for synergism have been proposed; among them, the Co (Ni)-Mo-S model proposed by Topsøe et al^[1] and the remote control model developed by Karroua and Delmon^[2,3] are two of most accepted ones.

In the Co (Ni)-Mo-S model, the effect of promoter on molybdenum sulfide catalysts has been attributed to the amount of promoter atoms that can be accommodated on the edges of MoS₂ layers and also to the electronic transfer that is induced by the promoter atom on Mo atoms located at these sites^[4]. The new "brim site" model proposed by Topsøe is consistent with the known facts in many aspects such as inhibitions, steric and poisoning effects [5,6]. In the remote control model, the synergism is related to hydrogen spillover (H_{so}) , which migrates from a donor phase (such as Co_9S_8 , NiS_x and noble metals) to an acceptor phase (such as MoS_2 and WS_2) that hereby is activated. By using a reactor system of physically separated, layered catalyst beds, Villarroel et al^{$[7 \sim 11]} provided direct proof of the role of a remote</sup>$ control; they demonstrated that Mn, Fe, Co, Ni, Cu, and Zn sulphides were able to generate H_{so} and

thus to promote the Mo sulfide in stacked beds. The investigation of such a synergism was further from hydrodesulfurization (HDS) to hydrodenitrogenation (HDN) reactions^[12,13].

Transition metal phosphides are novel catalytic materials with excellent performance in HDS and HDN. Recently, it was found that the introduction of Ni_2P to MoS_2 catalyst led to markedly higher HDS activity in dibenzothiophene^[14~16], which is related to the high hydrogenation capability of nickel phosphide. In this work, therefore, we endeavor to determine the synergetic effect between Ni_2P and MoS_2 on the HDN of quinoline by a simplified experimental design as well as the role of such a synergism, if present, in the HDN reaction.

1 Experimental

1.1 Catalyst preparation

 SiO_2 (Qingdao Ocean Chemical Plant, China) was used as the separator between two physically separated catalyst beds. Ammonium tetrathiomolybdate (ATTM) was prepared following the routes reported in the literature^[17]. Nickel hypophosphite, quinoline, carbon disulfide and decalin were purchased from Sinopharm Chemical Reagent Co., Ltd. of China.

 γ -Al₂O₃ with a BET surface area of 265.9 m²/g and pore volume of 0. 65 cm³/g was used as the catalyst support. Ni₂P/Al₂O₃ catalyst with the Ni₂P content of 4% was prepared by the thermal

Received date: 2013-03-01; Received in revised form: 2013-04-29.

Corresponding author: LIU Li-hua, E-mail: chemliulh@yahoo.com.

Foundation items: Major State Basic Research Development Program of China (973 Program, 2010CB226905); the Natural Science Foundation of Educational Committee of Anhui Province (KJ2013B243); the Youth Foundation of Huaibei Normal University (2012xq47, 2013xqz01).

本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813)。

decomposition of nickel hypophosphite. The support was impregnated in the solution of $Ni(H_2PO_2)_2 \cdot 6H_2O_2$; the resultant solid sample was then dried in a vacuum oven at 60 °C for 2 h and calcined under N₂ atmosphere at 300 °C for 3 h. The product was washed three times with deionized water to remove any impurities. The MoS_2/Al_2O_3 catalyst containing 18. 1% of MoO₃ was obtained by the impregnation of the support with a solution of ammonium tetrathiomolybdate (ATTM); the catalyst was dried for 2 h at ambient temperature and subsequently at 60 °C for 12 h, and then calcined under a flow of nitrogen at 400 °C for 3 h.

1.2 Catalyst characterization

Hydrogen temperature-programmed desorption $(H_2$ -TPD) was conducted with Quantachrome ChemBET 3000 instrument. Firstly, the promoter (0.1 g) was loaded in a quartz reactor and reduced in a H_2 flow at 500 °C for 2 h. Subsequently, it was cooled down to 100 °C and purged by a flowing He stream for 2 h to remove any excessive and physically adsorbed H₂. Finally, the treated sample was heated from 100 to 600 °C at a rate of 10 °C/min in a pure He flow. The desorbed hydrogen was detected through a thermal conduction detector (TCD).

1.3 Catalytic activity measurements

As shown in Figure 1, the stacked bed (C) was assembled as follows: the top layer consisted of 2 g Ni_2P/Al_2O_3 and the bottom layer was 2 g MoS₂/ Al_2O_3 ; they were separated by a 3-mm-thick SiO₂ layer to prevent the formation of a mixed phase. The remaining space in the reactor was filled with quartz sand. This "stacked bed" was denoted as Ni₂P// MoS_2 . Similarly, another "stacked bed" (D) represented as MoS₂//Ni₂P, with the same amounts of Ni_2P/Al_2O_3 in the bottom layer and MoS_2/Al_2O_3 in the top layer.

Figure 1 Scheme of different ways for loading catalysts in the reactor \bigcirc : Ni₂P/Al₂O₃; \bigcirc : MoS₂/Al₂O₃; \blacksquare : SiO₂

The HDN of quinoline was carried out in a fixedbed flow reactor. The liquid feed consisted of a solution of quinoline (1 000 μ g/g of nitrogen) and carbon disulfide (200 μ g/g of sulfur) in decalin was fed to the reactor by a high-pressure pump. The products were collected using a liquid-gas separator at 0 °C. Prior to getting the samples for analysis, these were stabilized at catalysts desired reaction temperature for at least 6 h. The compositions of the products were analyzed by using an Agilent 6820 gas chromatograph equipped with a HP-5 (30 m × $0.32 \text{ mm} \times 0.5 \text{ } \mu\text{m}$) packed column and FID detector.

HDN conversion ($x_{\rm HDN}$) was calculated by the following equation to evaluate the HDN activity of the catalysts:

$$x_{\rm HDN} = (c_{\rm Q0} - c_{\rm QR} - c_{\rm NC}) / c_{\rm Q0} \times 100\%$$
(1)
where c_represented the quipoline concentration

where c_{00} represented the quinoline concentration

in the feed, c_{OR} was the quinoline concentration in the product, and $c_{\rm NC}$ was the total concentration of all the nitrogen-containing intermediates in the product.

For quantitative description of the synergism of the stacked bed, the synergism factor^[11] was defined as a ratio of x_{HDN} (stacked bed)/ x_{HDN} (%) (single bed), where x_{HDN} (stacked bed) and x_{HDN} (single bed) were the HDN activities of the stacked bed and the sum of the single Ni₂P/Al₂O₃ and MoS₂/Al₂O₃ beds, respectively.

2 **Results and discussion**

To investigate the synergistic effect between Ni_2P/Al_2O_3 and MoS_2/Al_2O_3 catalysts on the performance of these catalysts in the HDN of quinoline, four tests were carried out in a microreactor. As listed in Table 1, the HDN activity of the stacked bed catalytic system is compared with the

single bed catalyst at different reaction temperatures. The Ni₂P/Al₂O₃ catalyst gives a very low HDN conversion, which is not strange because of the lower reaction temperature and Ni₂P loading^[18-22]. Meanwhile, the HDN conversion over the MoS₂/Al₂O₃ catalyst is 35. 2% at 320 °C, indicating a moderate activity of monometallic MoS₂/Al₂O₃ catalyst in quinoline HDN.

The HDN conversion attained over the stacked bed that consists of Ni₂P/Al₂O₃ and MoS₂/Al₂O₃ separated by 3 mm silica is higher than the sum of HDN conversions achieved over two single beds; for example, the HDN conversions over $Ni_2P//MoS_2$ and MoS_2/Al_2O_3 at 320 °C are 46.8% and 35.9%, respectively. As Ni₂P/Al₂O₃ and MoS₂/Al₂O₃ beds in the stacked bed are not directly contacted, these results unequivocally demonstrate that there is a synergistic effect between Ni₂P and MoS₂ on the HDN of quinoline, which can be explained by the remote control (RC) model; similarly, Valdevenito et al¹² also detected a synergistic effect on the HDN of pyridine over $NiS_x //MoS_2$. However, if Ni_2P/Al_2O_3 is situated under MoS_2/Al_2O_3 (Figure 1D), such a synergy effect cannot be observed; the catalytic performance of MoS_2/Al_2O_3 system is similar to that of two single beds. These indicate that the synergy effect only presents itself when the feed flows from the Ni₂P/Al₂O₃ phase to MoS₂/Al₂O₃ phase.

Table 1 HDN activity of Ni_2P/Al_2O_3 , MoS_2/Al_2O_3 , $Ni_2P//MoS_2$ and $MoS_2//Ni_2P$ catalysts

Catalyst bed	HDN conversion <i>x</i> /%					
	280 °C	300 °C	320 °C	340 °C		
Ni ₂ P/Al ₂ O ₃	0.1	0.2	0.7	2.1		
MoS_2/Al_2O_3	4.1	12.6	35.2	53.4		
Ni ₂ P//MoS ₂	7.8	18.5	46.8	65.4		
MoS ₂ //Ni ₂ P	4.5	12.7	36.1	54.8		

note: operating conditions are H_2 pressure of 2.0 MPa, WHSV of 3.0 h⁻¹, and H_2 /oil volume ratio of 600/1

Figure 2 shows the synergism factors over the $Ni_2P//MoS_2$ and $NiS_x//MoS_2$ stacked beds. The synergism factors are around 1. 18 ~ 1. 86 and the $Ni_2P//MoS_2$ catalyst system exhibits a slightly higher synergism factor than the $NiS_x//MoS_2$ system^[13]. Meanwhile, the synergism factor decreases with the increase of reaction temperature, in accordance with the previous reports^[8].

 H_2 -TPD profiles of the NiS_x/Al₂O₃ and Ni₂P/Al₂O₃ promoters are shown in Figure 3 to recognize the hydrogen species on them. Usually, the hydrogen species desorbed below 320 °C and above 320 °C are ascribed to those adsorbed on the metal sites and the

spilt-over hydrogen, respectively^[23]. There is no hydrogen desorption peak observed below 235 $^{\circ}$ C, which is different with the result reported by Chen et al^[24], because of their difference in the treatment conditions. Figure 3 indicates that abundant spillover hydrogen species are adsorbed on the Ni₂P/Al₂O₃ catalyst surface, whereas the NiS, $/Al_2O_3$ catalyst has much less spillover hydrogen species on the surface. It is related to the special structure of Ni₂P in which nickel owns a small positive charge; as a result, more hydrogen was adsorbed over Ni₂P than over NiS_x. This may facilitate the formation of the dissociated hydrogen species, which then migrates from Ni₂P to MoS₂ and removes S atoms from MoS₂ phase as H₂S to create more 3-fold coordinative unsaturated sites (CUS). Since the CUS are considered as the active sites, the presence of Ni_2P is then able to enhance the concentration of hydrogenation sites over the MoS₂ catalyst.

Figure 2 Synergism factors of the stacked beds of $Ni_2P//MoS_2$ and $NiS_x//MoS_2^{[13]}$

Figure 3 H_2 -TPD profiles of the Ni₂P/Al₂O₃ and NiS_x/Al₂O₃ promoters

Quinoline (Q) is usually chosen as the model compound of the HDN reaction, whose reaction mechanism has been studied by several groups^[25,26]. It is generally accepted that HDN of quinoline

proceeds exclusively via the fully saturated intermediates decahydroquinoline (DHQ) and 2propylcyclohexylamine (PCHA), i.e. $Q \rightarrow DHQ \rightarrow$ PCHA \rightarrow hydrocarbons^[27]. The compositions of liquid products for quinoline HDN at 320 °C are listed in Table 2. PCHA is not detected in the liquid product, indicating that the aliphatic C-N bond cleavage is an easy step for MoS₂ catalyst in this work. The breaking of C-N bond and hydrogenation of the aromatics ring are often supposed to be very slow. However, the concentration of DHQ is only around 5%, much smaller than that of THQ (1,2,3,

4-tetrahydroquinoline (THQ1) and 5, 6, 7, 8tetrahydroquinoline (THQ5)). So it may be concluded that the breaking of C-N bond in DHQ does not restrict the HDN of quinoline. THQ1 and THQ5 are the main nitrogen-containing intermediates, indicating that the conversion of quinline to THQ1 and THQ5 is very fast and likely reaches equilibrium during the reaction. It is then reasonable to assume that the hydrogenation of THQ1 and THQ5 to DHQ is the rate-determining step; as a result, any improvement on hydrogenation performance of MoS_2 catalyst may increase the HDN conversion.

Table 2 Liquid product distributions of quinoline HDN over various catalysts at 320 °C

Catalyst —	Product contents w/%					
	hydrocarbon	DHQ	OPA	THQ(THQ1+THQ5)	Q	
$Ni_2P/\gamma-Al_2O_3$	0.7	4.7	17.9	74.7(61.9+12.8)	1.1	
MoS_2/γ - Al_2O_3	35.2	5.4	7.2	33.5(21.6+11.9)	18.7	
Ni ₂ P//MoS ₂	46.8	5.0	5.4	28.0(18.0+10.0)	15.0	
MoS ₂ //Ni ₂ P	36.1	5.2	7.4	32.9(21.4+11.5)	18.3	

notes: Q: quinoline; OPA: ortho-propylaniline; DHQ: decahydroquinoline; THQ1: 1,2,3,4-tetrahydroquinoline; THQ5: 5,6,7,8-tetrahydroquinoline

The liquid product distribution over $Ni_2P//MoS_2$ catalyst are similar to that over MoS_2/γ -Al₂O₃; however, the $Ni_2P//MoS_2$ catalyst gives much lower concentrations of the intermediate THQ and DHQ but higher concentration of hydrocarbons than MoS_2/γ -Al₂O₃. The former is ascribed to the enhanced transformation rate of THQ to DHQ by hydrogenation and DHQ to PCHA by the rapid C-N bond breaking, while the latter is accounted for the increased consumption of DHQ through C-N bond cleavage to PCHA and hydrocarbons.

As mentioned before, a great amount of spillover hydrogen species is generated by Ni_2P with the special structure, which jumps to MoS_2 phase and increases the concentration of the hydrogenation active sites. Therefore, the introduction of Ni_2P is able to enhance the hydrogenation rate of THQ to DHQ; meanwhile, MoS_2 catalyst can rapidly transform DHQ and PCHA to hydrocarbons. As a result, the $Ni_2P//MoS_2$ catalyst system exhibits higher hydrogenation activity than the MoS_2/γ -Al₂O₃ catalyst; it is similar to the

results obtained from the HDS of $DBT^{[28]}$, in which H_{so} can modify the active sites by increasing the amount of hydrogenation sites rather than the hydrogenolisis sites of the MoS₂ catalysts.

3 Conclusions

A simplified experimental design proves that there is a synergetic effect between Ni_2P/Al_2O_3 and MoS_2/Al_2O_3 catalysts on their performance in the hydrodenitrogenation of quinoline. The results indicated that the synergism factor of Ni_2P and MoS_2 is higher than that of NiS_x and MoS_2 and it decreases with the increase of reaction temperature.

The synergetic effect can be explained by the remote control model through a migration of hydrogen spillover. Due to the special structure, Ni_2P phase can generate more spillover hydrogen species, which may accelerate the conversion of THQ to DHQ (the rate-determining step of quinoline HDN) by increasing the concentration of hydrogenation sites. As a result, Ni_2P is a superior promoter for MoS_2 catalyst for hydrodenitrogenation.

References

- [1] TOPSØE H, CLAUSEN B S. Importance of Co-Mo-S type structures in hydrodesulfurization [J]. Catal Rev Sci Eng, 1984, 26(3/4): 395-420.
- [2] KARROUA M, MATRALIS H, GRANGE P, DELMON B. Synergy between "NiMoS" and Co₉S₈ in the hydrogenation of cyclohexene and hydrodesulfurization of thiophene[J]. J Catal, 1993, 139(2): 371-374.
- [3] DELMON B. Are solid catalysts successfully emulating enzymes[J]. Chin J Catal, 2010, 26(8): 859-871.
- [4] TOPSØE H, CLAUSEN B S. Active sites and support effects in hydrodesulfurization catalysts[J]. Appl Catal, 1986, 25(1-2): 273-293.
- [5] TOPSØE H, HINNEMANN B, NØRSKOV J K, LAURITSEN J V, BESENBACHER F, HANSEN P L, HYTOFT G, EGEBERG R G, KNUDSEN K G. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts[J]. Catal Today, 2005, 107-108: 12-22.
- [6] LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN B, HELVEG S, NØRSKOV J K, CLAUSEN B S,

TOPS \emptyset E H, LAGSGAARD E, BESENBACHER F. Location and coordination of promoter atoms in Co- and Ni-promoted MoS₂-based hydrotreating catalysts[J]. J Catal, 2007, **249**(2): 220-233.

- [7] VILLARROEL M, BAEZA P, GRACIA F, ESCALONA N, AVILA P, GIL-LLAMBÍAS F J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Appl Catal A: Gen, 2009, **364**(1-2): 75-79.
- [8] VILLARROEL M, BAEZA P, ESCALONA N, OJEDA J, DELMON B, GIL-LLAMBÍAS F J. MD//Mo and MD//W [MD = Mn, Fe, Co, Ni, Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization [J]. Appl Catal A: Gen, 2008, **345**(2): 152-157.
- [9] BAEZA P, VILLARROEL M, ÁVILA P, LÓPEZ AGUDO A, DELMON B, GIL-LLAMBÍAS F J. Spillover hydrogen mobility during Co-Mo catalyzed HDS in industrial-like conditions[J]. Appl Catal A: Gen, 2006, 304: 109-115.
- [10] BAEZA P, URETA-ZAÑARTU M S, ESCALONA N, OJEDA J, GIL-LLAMBÍAS F J, DELMON B. Migration of surface species on supports: A proof of their role on the synergism between CoS_x or NiS_x and MoS_2 in HDS[J]. Appl Catal A: Gen, 2004, **274**(1-2): 303-309.
- [11] OJEDA J, ESCALONA N, BAEZA P, ESCUDEY M, GIL-LLAMBÍAS F J. Synergy between Mo/SiO₂ and Co/SiO₂ beds in HDS: A remote control effect[J]. Chem Commun, 2003, (13): 1608-1609.
- [12] VALDEVENITO F, GARCÍA R, ESCALONA N, GIL-LLAMBIAS F J, RASMUSSEN S B, LÓPEZ-AGUDO A. Ni//Mo synergism via hydrogen spillover, in pyridine hydrodenitrogenation[J]. Catal Commun, 2010, 11(14): 1154-1156.
- [13] LIU L, LIU B, CHAI Y, LIU Y, LIU C. Synergetic effect between sulfurized Mo/γ-Al₂O₃ and Ni/γ-Al₂O₃ catalysts in hydrodenitrogenation of quinoline[J]. J Nat Gas Chem, 2011, 20(2): 214-217.
- [14] LIU L, LI G, LIU B, LIU D, LIU Y, LIU C. Hydrodesulfurization performence study of Ni₂P-modiffied MoS₂/Al₂O₃ catalysts[J]. Chem Ind Eng Soc Chin, 2011, 62(5): 1296-1231.
- [15] GUAN Q, LI W. The synthesis and evaluation of highly active Ni₂P-MoS₂ catalysts using the decomposition of hypophosphites[J]. Catal Sci Technol, 2012, 2(11): 2356-2360.
- [16] LAN L, GE S, LIU K, HOU Y, BAO X. Synthesis of Ni₂P promoted trimetallic NiMoW/ γ -Al₂O₃ catalysts for diesel oil hydrotreatment [J]. J Nat Gas Chem, 2011, **20**(2): 117-122.
- [17] MCDONALD J W, FRIESEN G D, ROSENHEIN L D, NEWTON W E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates[J]. Inorg Chim Acta, 1983, 72(1): 205-210.
- [18] LU M, WANG A, LI X, DUAN X, TENG Y, WANG Y, SONG C, HU Y. Hydrodenitrogenation of quinoline catalyzed by MCM-41supported nickel phosphides[J]. Energy Fuels, 2007, 21(2): 554-560.
- [19] INFANTES-MOLINA A, CECILIA J A, PAWELEC B, FIERRO J L G, RODRÍGUEZ-CASTELLÓN, EJIMÉNEZ-LÓPEZ A. Ni₂P and CoP catalysts prepared from phosphite-type precursors for HDS-HDN competitive reactions[J]. Appl Catal A: Gen, 2010, **390**(1/2): 253-263.
- [20] KORÁNYI T I, COUMANS A E, HENSEN E J M, RYOO R, KIM H S, PFEIFER É, KASZTOVSZKY Z. The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts [J]. Appl Catal A: Gen, 2009, 365(1): 48-54.
- [21] KORÁNYI T I, VÍT Z, PODUVAL D G, RYOO R, KIM H S, HENSEN E J M. SBA-15-supported nickel phosphide hydrotreating catalysts
 [J]. J Catal, 2008, 253(1): 119-131.
- [22] WANG X, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides
 [J]. J Catal, 2002, 208(2): 321-331.
- [23] ARAI M, FUKUSHIMA M, NISHIYAMA Y. Interrupted-temperature programmed desorption of hydrogen over silica-supported platinum catalysts: The distribution of activation energy of desorption and the phenomena of spillover and reverse spillover of hydrogen[J]. Appl Surf Sci, 1996, 99(2): 145-150.
- [24] CHEN J, SUN L, WANG R, ZHANG J. Hydrodechlorination of chlorobenzene over Ni₂P/SiO₂ catalysts: Influence of Ni₂P loading[J]. Catal Lett, 2009, **133**(3-4): 346-353.
- [25] DEEPA G, SANKARANARAYANAN T M, SHANTHI K, VISWANATHAN B. Hydrodenitrogenation of model N-compounds over NiO-MoO₃ supported on mesoporous materials[J]. Catal Today, 2012, **198**(1): 252-262.
- [26] JIAN M, PRINS R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al₂O₃ catalysts[J]. J Catal, 1998, **179**(1): 18-27.
- [27] EIJSBOUTS S, VAN GESTEL J N M, VAN VEEN J A R, DE BEER V H J, PRINS R. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni, and Ni Mo catalysts[J]. J Catal, 1991, 131(2): 412-432.
- [28] ESCALONA N, GARCÍA R, LAGOS G, NAVARRETE C, BAEZA P, GIL-LLAMBÍAS F J. Effect of the hydrogen spillover on the selectivity of dibenzothiophene hydrodesulfurization over CoS_x/γ-Al₂O₃, NiS_x/γ-Al₂O₃ and MoS₂/γ-Al₂O₃ catalysts[J]. Catal Commun, 2006, 7(12): 1053-1056.

Ni, P和 MoS, 催化剂在喹啉加氢脱氮反应中的协同效应

刘理华^{1,2},刘书群¹,柴永明²,柳云骐²,刘晨光²

(1. 淮北师范大学 化学与材料科学学院, 安徽 淮北 235000; 2. 中国石油大学(华东) 重质油国家重点实验室, 山东 青岛 266555)

摘 要:设计实验证明了 Ni₂P 和 MoS₂ 催化剂在喹啉加氢脱氮反应中存在协同效应,该协同效应能够用氢溢流遥控模型理论 解释。Ni₂P//MoS₂ 的协同因子随反应温度升高而减小,并且略微大于相同反应条件下 NiS_x//MoS₂ 的协同因子。Ni₂P 产生 的溢流氢能够提高 MoS₂ 催化剂上加氢活性位的数量,促使 Ni₂P//MoS₂ 催化体系增加 1,2,3,4-四氢喹啉和 5,6,7,8-四氢喹 啉加氢生成十氢喹啉的速率,提高其脱氮活性;因此,Ni₂P 对 MoS₂ 催化剂是很好的助剂。

关键词: 氢溢流; 协同效应; 加氢脱氮; MoS₂; Ni₂P; 喹啉

中图分类号: TE624 文献标识码: A