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Abstract ; The gyro-equipped spacecraft attitude determination from a sequence of vector observations is investigated in
this paper. The spacecraft attitude determination is a nonlinear/non-Gaussian state filtering problem, so to use the classical
filters proposed based on the extended Kalman filter (EKF) or unscented Kalman filter (UKF) might fail, especially when an
accurate initial aprior state estimate is unexpectable. Recently the particle filtering algorithms have been applied to spacecraft
attitude determination. However some algorithms need a large number of state particles. This is a heavy burden for the com-
puters with limited capabilities. This paper is aimed to release the heavy burden by using dual-filter method, which temporal-
ly decomposed the attitude estimation from the rate gyro drift rate bias estimation at each iteration. Two novel filters including
a modified dual particle filter (DPF) and a new hybrid filter (HF) are proposed. Both filters use a same quaternion particle
filter which is a modification of a recently proposed algorithm, by using a slightly different resampling and regularizing algo-
rithm. The DPF uses an auxiliary particle bias filter, whereas the HF uses a UKF bias filter. Various computer-based simula-
tions are used to test the validity of the proposed novel filters and to compare them with several classical filters.
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. of vector observations in gyro-equipped spacecraft has
0 Introduction ) . . . . o
been intensively investigated and widely applied in

[1-

Spacecraft attitude determination from a sequence practice!' "2, The quaternion is a most popular attitude
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representation for the global attitude estimation, though
it is not a minimal representation because of its four di-
mensions. Various methods are proposed to keep the
normalization constraint that has to be addressed in
quaternion filtering problems. In general these methods
can be classified as constrained estimation scheme and

(351 The former

unconstrained estimation scheme
scheme assumes the quaternion estimation error covari-
ance matrix must be singular, and the central idea is to
use a nonsingular representation (i. e., quaternion)
for a reference attitude and a three-component repre-
sentation for the deviations from the reference. The lat-
ter scheme assumes no such singularity and treats the
four components of the quaternion as independent, but
it has to incorporate some special normalization stages.
More details about the two schemes and their advanta-
ges/disadvantages have been given in[3 -5].
Nonlinear filtering algorithms have been used to
estimate the quaternion and the gyro drift rate bias. Up
to now, a number of attitude determination filters have
been proposed, and some classical filters such as the
multiplicative extended Kalman filter (MEKF''!) | the
augmented extended Kalman filter ( AEKF'® ), and
the unscented Kalman quaternion filter ( USQUE'"!)
have been widely accepted. The MEKF and the US-
QUE are typical constrained estimation filters, which
are brought forward based on the EKF algorithm and
the UKF algorithm respectively. The AEKF is a typical
unconstrained estimation filter which is proposed based
on the EKF algorithm. Recently, the sequential Monte-
Carlo algorithms or the particle filtering methods'®’
have been applied to spacecraft attitude determination.
Cheng and Crassidis proposed a particle filter to deter-
mine the modified Rodrigues parameter ( MRP) and

the drift rate bias'®!.

However, the singularity associ-
ated with the MRP representation has to be addressed
by frequently switching to an alternative set of MRPs or
the quaternion, and also the ambiguity of the MRP has
to be addressed by using a so-called * CONDMRP’ so-
lution. Moreover, the six-dimensional particle filter

has to simultaneously observe several vectors and use a

huge number of particles ( as many as 2000, an im-
practical computation burden for current onboard com-
puters). As a result, the filter is not satisfied. A dif-
ferent estimator is proposed by Oshman and Carmi'®’
which consists of a quaternion particle filter ( QPF)
and a genetic algorithm ( GA) embedded gyro bias
maximum-likelihood estimator. The QPF is a numerical
unconstrained estimator which works directly with a
number of weighted quaternion particles, and it is able
to completely avoid the problem of singularity. This is
a remarkable advantage over the Kalman filter variants,
because they have to propagate and update the quater-
nion estimation error covariance matrix. The quaternion
ambiguity problem has also been eliminated by using a
special regularization method. The bias estimation is
temporarily decoupled from the quaternion estimation at
each iteration. Genetic algorithms are introduced to
search an optimal bias estimate from a maximum likeli-
hood cost function. The GA-embedded bias estimator is
interlacing with the QPF, therefore the combined atti-
tude determination filter is called by GA-QPF. The
simulated results show this filter ( even with 150 qua-
ternion particles and a 200-element population for the
bias estimator) can achieve a better performance with
respect to several classical filters in the simulation ca-
ses where the initial quaternion estimate is uncertain.
Nevertheless, the bias estimator seems sophisticated
and over computing time consuming. Jiang et al pro-
pose a dual particle filter which includes an attitude

1. The pro-

particle filter and a bias particle filter''
posed attitude particle filter uses two attitude represen-
tations, the quaternion and the generalized Rodrigues
parameter (GRP'?!). The quaternion is used for ini-
tial quaternion particle sampling, time propagating,
observation updating, and particle resampling, while
the GRP is used for the computations of the mean and
the covariance matrix and the rougheing of the resam-
pled particles. A similar idea has been given in [9 ]
also. However, the GRP ambiguity problem has been
ignored in[ 11]. The bias particle filter is the direct

application of a standard particle filter (i. e. , bootstrap
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filter). Jiang et al'™’ proposed a marginalized particle
filter for spacecraft attitude determination, by applying
the Rao-Blackwellisation technique to an approximated
quaternion and bias estimation, where the bias vector
is partitioned from the augmented state of quaternion
and bias and assumed to be conditionally linear Gaussi-
an. Therefore the used bias estimator is a Kalman filter
in nature. However, the model approximation of the o-
riginal nonlinear/non-Gaussian attitude determination
problems destroy the normalization constraint of the
quaternion propagation, and its uncertain influence has
not been considered and investigated. Once again, the
GRP ambiguity problem has not been eliminated in this
work.

This paper proposes two novel attitude determina-
tion filters for a low-Earth satellite with a three-axis
magnetometer (TAM) and a three-axis gyro ( TAG).
The two filters are modified from the GA-QPF and the
DPF'""!. Both filters take the QPF as their quaternion
estimator, so that the frequent switching between the
GRP and the quaternion is avoided for the particle atti-
tude filter of [ 11], whereas the QPF given in this paper
uses a slightly different quaternion particle resampling
and regularizing methods. The main difference between
the two filters is using different bias estimators. One fil-
ter uses an auxiliary particle filter, which is believed to
be capable of resolving the state filtering problems with
small process noise better than the bootstrap filter'®!.
The other uses a UKF which is believed to be an appro-
priate algorithm for the gyro bias estimation of approxi-
mately Gaussian distribution and also for its low amount
of calculation. Hence the two novel filters are named of

the modified DPF and the HF respectively.

1  Gyro-equipped attitude determination state space

models

A general continuous dynamics model is given in

[1-2], which in general is discretized as"*""]

[q_k+1] _ |:¢k+1,k(wk) 4 ()

B Bi + M
where g, is the quaternion, ¢ = [q" q.]1", qis the

vector part and ¢, is the scalar part. 8, is the TAG drift
rate bias vector; {m,,} ., is a stationary zero-mean,
white noise process with covariance o> Atl,,, , wherein
At = t,,, —t;, Dy, ,(@,) is an orthogonal transition
matrix about the true angular velocity w, of the body
(B) frame with respect to the reference (R) frame,
(@, is resolved in B frame. ) and the matrix is given
¢k+1,k(wk) =
c0s(0. 5| e, [|A) L5, + w, o,
- c0s(0. 5| @, [|AL)

the true rate @, is unknown and is obtained from the
TAG measurement, e. g. , @, = @, —B; - 1,., Wherein
@, is the TAG measurement, 7, , is the zero-mean
white Gaussian measurement noise with covariance
ol /Aty @, = sin(0.5|e,|At) @/ |w@,| The

TAM vector observation model is given'*’

b, = Aby, + vy, (3)
where b, is the TAM measurement , by, , is the reference
geomagnetic field, vy, is the TAM observation noise
whose distribution is already known, A, is the attitude

matrix of the B frame with respect to the R frame and is

the matrix representation of the quaternion g, .
2 Modified dual particle filter

In this section, first the present quaternion parti-
cle filter which is slightly different from the QPF is
simply introduced, then an auxiliary particle bias filter
is completely given. Consider the resampling and regu-
larizing disturb the posterior representation'® | it is
better for the precision with a posterior estimation to
implement the computations of the mean and the covar-
iance before the resampling and regularizing stage.
2.1 Quaternion particle filter
2.1.1 [Initialization (k = 0)

A single vector observation can not make the three-
dimensional attitude completely observable, though the
rest uncertain attitude information is reduced to one di-
mension, i. e., the rotation angle around the vector.

Oshman and Carmi make use of the fact and propose a

method to generate a number of initial quaternion parti-
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cles (or samples) which keep the normalization con-
straint. A detailed technique is presented in Appendix
B of [10]. However, the choice of an appropriate num-
ber of initial quaternion particles denoted by Ny depends
on simulation experience. Denote the initial prior qua-
ternion particle set by {g;, _, |1, and the corresponding
weight set by {¢',}15,. Clearly, ¢, = 1/Ny.
2.1.2 Observation update (k = 0,:+-,N)
Firstly calculate the likelihood probability of the
quaternion particle g, _; ,
P = P.(b, — A (gyyu1) by )
i=1,-,Ng (4)
where p,( +) represents the probability density of the
observation noise vy , .
Then calculate the weights {Li$i 1", and nor-

malize them as

Ly}

Ns ’
S Ligi
2.1.3 Computation of mean and covariance (k = 0,

’N)

The application of the classical solutions to com-

d);c = i=1""’NS

pute the mean and the covariance from the weighted
particle set to the weighted quaternion particles may de-
stroy the normalization constraint and get in trouble with
the quaternion ambiguity problem. One maximum poste-
rior probability ( MAP) approach and two minimum
mean square error ( MMSE ) approaches are recommen-
ded in [10] to compute the mean quaternion. Consider
a low accuracy of the MAP approach and the identical
character of the two MMSE approaches, this paper only
uses the second MMSE approach that is similar to Dav-
enport’ s well known ‘g-method’. The optimal quater-
nion estimate é_klk is the normalized eigenvector corre-

sponding to the largest eigenvalue of matrix K,
[Bk + B, - L,,,ir(B,) 4
4 ' tr(B,)

where tr( - ) is operation of ‘trace’, matrix B, and

i

vector { are respectively defined by

Ng
B, = Z &AL (gy)
i

B, - B,
{=|B,, -B,;
Bk,12 - Bk,21

. . . . . . 10
The quaternion estimation error covariance is glven[ !

Ns
Pf, = Z{ ol g ® gii] (g, @ g 1"
2.1.4 Resample and regularization (k£ = 0,++-,N)
Calculate the effective sample size Ne?f

1
Ng
Z{ (q;clk)z

If N:f <N Tq‘ where N Tq‘ is given threshold ( generally, NV Tq‘

Nt =

eff

= 2N,/3) , then resample the quaternion particles with
the systematic resampling algorithm'®’ and regularize
the resampled particles with samples drawn from the
Epanechnikov or Gaussian kernel'®. The weights of
the resampled particles are set to 1/Ng;. However a
special regularization has to be used to eliminate the
quaternion ambiguity. Inspired from the reference
[10], a slightly different regularization is used.
Denote the 3 x 3 matrix of the vector part of the

. . . . 4 q
quaternion estimation error covariance Pklk by PkI B and

q
P then draw sam-

its square root matrix by D, = e

ples as
Sq;s = hGDke;c’ 1= 15“',NS
where €. is sampled from a 3-dimensional zero-mean,
unit covariance Gaussian kernel
e, ~N(e, | 0,I,,),i =1, ,Ng
wherein N( | m,S) is a multivariate normal density
with mean m and variance S; A is the bandwidth of the

Gaussian kernel and is suggested with the optimal value
1/ (n+4)

he = [NS(2:1 n 1)]

. .o . . i
wherein n, = 4. The deviation quaternion particles § g,
are obtained from

) i\NT lT
sa LD 1T

T (g A1 ’

Finally, the diversity of the resampled quaternion parti-

’NS

cles is added as

Q_ilk = 812 ®q_§clk’ i =1, ,Ng
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2.1.5 quaternion particle propagation (k = 0,--+,N)
The TAG sample period Ah is much smaller than
the TAM sample period A:. Assume the two periods
satisfy Ky = At/Ah, where Ky, is an integer. The
quaternion particle is propagated by using
q_jc+j+llk+j = ¢k+j+l,k+j(g,k+j _Bkﬁ‘lk - ﬂi,k+j) .
q, 2+,1k+j-1 s
N, j =0, Kye -1 (5)

when j =0, let q_;:+ﬂk+j—1 = gy whenj = Ky — 1, let

i=1,

ﬂ+j+1|k+j = Qs Zokﬁ. is the jth TAG measurement
during the time interval [ ¢, ,¢,,; 15 By.1; = Bu, where
B, is the bias mean estimate given by the bias estima-
tor, 7, ,.; is obtained from N(n,, | 0,021,,,/Ah).
Note, the quaternion particle ¢, , keeps the normali-
zation constraint.
2.2 Auxiliary particle bias filter

Based on the standard particle filter (e. g. , boot-

strap filter) , Pitt and Sheppard''

proposed a so —
called auxiliary particle filter that is able to automaticly
generate particles from the particles of the previous
time step which are most likely to the true state. Com-
pared to the bootstrap filter, this filter is effective to
deal with state filtering problems when the process
noise is small. Consider that the process noise 7, , is
small for the bias vector 8,, one can see the auxiliary
particle filter is a better bias estimator.

2.2.1

Draw initial aprior bias particles from the prior

Initialization (k = 0)

distribution p( 6, ) , say, a Gaussian distribution

Bo ~ NBo ! BoP2), i =1,,N,
where 8, and P,* are the initial bias mean estimate and
covariance estimate respectively. Denote the initial apri-
or bias particle set by {8}, _, } '*, and their corresponding
weight set by {¢’,}'7,. Clearly, ¢, = 1/N,.
Calculate the initial likelihood probability

(i) = Py(Bo - Ao(Q_fn -1 )bR,O) , i =1, ,Np,

where the N, initial quaternion particles {gp, _, |}, might
be chosen from the generated initial quaternion particle
set {gy _1.%,. Of course, this is for the case where N,

< N,. Otherwise, the extra N, — Ny + 1 quaternion par-

ticles {qp _; 17 ng+1 have to be additionally generalized.
In this paper, assume N, = N;. Finally, calculate the
weights {L), ¢, |, and normalize them as
¢(i) _ prn -1€0i—1
; Lf)l -1€0i—1

2.2.2 Bias particle propagation (kK = 1,-:-,N)

’ L = ls”'aNP

Firstly, calculate m) which is characterization of
B, given from B, . . This could be the mean or a
sample written as

m, =B . + ni,k—l’ i=1, N,
where ., ,; ~ N(0,03AtL5,;).
Secondly, calculate the likelihood probability of

some bias particle m}, by using a similar method as Eq.
(4)
Y, = p.(b, _Ak(lzlk—l)bk,k) s i =1, N,

™,
However g,,,_; is obtained as follows
~/

i _ -~ i i .
Gr14jitik-14j = ¢k—1+j+1,k-1+j(wk-1+j -m - 7h,k-1+j)

v

;
Qi1+ k-14j-1>

i = 1"“9NS’ ] = 09“"KRIG -1 (6)

N
. i o .ooA .
whenj =0, let Qi14jk-14j-1 = De-112-1 wherein g, ;;_, is

the MMSE quaternion estimate, whenj = Kz — 1, let

v

7

i _ i ~ . .th
Qui1 = Di14js11k14 > @y 18 the j° TAG measurement
~ N(O’

oI,.,/Ah). Since the vector observation equation

during the time interval [¢, ,,t,] ’ni,k—lﬁ‘

(3) shows no direct correlation with the bias, the bias
observation update is actually provided by the propaga-
ted quaternion particles, whereas the vector observation
equation is more convenient for the computation of the
likelihood probability than the quaternion prediction e-
quation.

Thirdly, calculate the weights { .} ,}?, and

normalize them as

select the high likely bias particles of previous time
step using the systematic resample method, e. g. ,

[{-, -,i'17 ] = RESAMPLE[ {m;,y; 1",
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where i’ represents the current particle ‘I’ is drawn
from the particle ‘i’ of previous time step.
Finally, the bias particles are propagated as
ﬂfclk—l = ﬁ;cl—llk—l + ni,k_l, I=1, N
where i1, ,_, ~ N(0,02Atl,,;).
2.2.3 Observation update (k = 1,:--,N)
Firstly, calculate the likelihood probability again

1[’2 = p.(b, _Ak(q_fclk—l)bR,k) s b=1,+,Np
where qif:,k_l is obtained by using a method similar to

Eq. (6), whereas B}, , is used instead of m,.

Then calculate the weights | W./W. | ™ and nor-
malize them as

/W
o = 1:’27;; L =1, N,
> v/
=1

2.2.4 Computation of Mean and Covariance (£ = 0,
-, N )

Np
B\ HE ; §0§ﬁ§clk
Np
Py, = lzl Gch(ﬂfclk _ﬁklk) (ﬂfslk _ﬁklk)T

2.2.5 Resample and regularization (k¥ = 0,:--,N)

This step is believed to be unnecessary for an aux-
iliary particle filter by Arulampalam et al'®' | but im-
proved by Pitt and Sheppard'™*!. This paper suggests
taking this step when the effective sample size N? is
below given threshold, e. g. , 2N,/3. The weights of
the resampled bias particles are set to 1/N,. Regularize

the resampled bias particles as follows

Bii = Bii + he VPglkEfc’ =1, ,Np
where ,/P?, is square root matrix; ¢, is sampled from a
3-dimensional zero-mean, unit covariance Gaussian
kernel as
g ~N(g0,L,,),1=1,-,N,

3 Hybrid filter

The difference of the HF from the modified DPF is
the use of a UKF bias estimator, which is a direct ap-
plication of the UKF algorithm to the 3-dimensional bi-

as estimation. The bias UKF is given as follows.

3.1 Initialization (kK = 0)

Denote the initial aprior mean estimate and covari-
ance estimate by ﬁO, 4= Bo and P8, = P, Use @, _,
and PS | to generate a initial bias sigma point set
{Bii 115, the weights for calculating the mean and the
covariance are denoted by {wg %, and {w'}°_, re-
spectively.

Then choose seven initial aprior quaternion parti-
cles from the set {g}, _, !5, and generate seven predic-
tion observation sigma points as

z(i) = Ao(l(t)l —l)bR,O’ i=0,-,6
3.2 Observation update (k = 0,+--,N)

Firstly, calculate the mean observation

(m,i) i

6
= Z [OPR 41
=0
Secondly, calculate the innovation and its covari-
ance respectively

1’2 =zk_£k

6
Do A AN
PkW’B = Z w/(cc g (z, —z,) (2, —z;,) +R,
i=0

where R, is the covariance of the observation noise vy ,
which is regarded as a zero-mean, white Gaussian
noise.

Thirdly, calculate the correlative covariance ma-

trix and the gain matrix respectively
6
i i A i ANT
Py = Z wl(s )(ﬂklk—l = Bui1) (Z - 24)
1=0

K? = PE(PPe)”
Finally, calculate the posterior mean and covari-
ance respectively
ﬁklk = Bklk—l + Kif]
Py, = P, - KiPP (K"
3.3 Bias sigma point propagation (k = 0,:--,N)
Firstly predict the bias mean and the covariance
matrix
ﬁlﬁllk = ﬁklk
Pl = Pl + ouAd
Secondly, use f,.,, and P2, to generate the
aprior bias sigma point set {B},,,]¢, the weights for
calculating the mean and the covariance are denoted by

{oii 1 7= and { @iy} 7., respectively.
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Then generate prediction observation sigma points as

T = Ak+1(l;c+llk)bk,k+19i =0, -,6
where

~

; _ ~ ; .
Qrijsriry = ¢k+j+1,k+j( @i~ Biiur)

V(
i
Qrijikej-1 9

i =19."’6’ j=0’."9KRlG_1

whenj =0, let q_2+j,k+j_1 = é_k,k , where é_k,k is the MMSE

v,
quaternion estimate, when j = Ky — 1, let g;,,, =
7

; ~ . th .
Qiijiiikey» @y is the j° TAG measurement during the

time interval [ ¢, ,z,,, ].
4 Simulation results and analysis

A typical small satellite considered in [15] is
chosen in the simulation section. The satellite runs in a
nearly circular low Earth orbit with an inclination of
82° and a height of 823 km, it is out of control and
spinning with an initial rate of 2. 0°/s. The real geo-
magnetic field vector is simulated using a 10-order in-
ternational geomagnetic reference field model. The ref-
erence vector is simulated using an 8-order model.
White and colored TAM measurement noise processes
are considered. The white Gaussian noise of 60 nT
(o) is used in the simulations of subsections 4.1 and
4.2, and the colored noise is introduced to the simula-
tions of subsection 4.3. The colored-noise model is de-
scribed by a first-order Markov process driven by white
noise''®. The *time constant’ of the Markov process
has been chosen corresponding to an orbital arc length
of 18°( about 300 s in this paper). The power spectral
density of the white-noise driving term has been cho-
sen, so that the magnitude of the colored noise will
match the white Gaussian noise used in subsections 4. 1
and 4. 2. The measurements period Az of the TAM is
10s. The TAG output is contaminated with a measure-
ment noise with two components: a white zero-mean
Gaussian process with intensity of o> =0.1( urad)?®/s
and a drift bias modeled as an integrated Gaussian
white noise with intensity of g2 =1 x 1077 (urad)?/

s’. The true initial drift rate bias is set to 0.1 °/h on

each axis. The sampling period Ah of the TAG is 1s.
4.1 Effects of various particle numbers on perform-
ances of the modified DPF and the HF

Various particle numbers are chosen to test the
performances of the modified DPF and the HF. For
convenience, let N, = Ng. The initial bias mean esti-
mate and the covariance estimate are given

Bo = [0.2°/h 0.2°/h 0.2°/h] (7)
P? = diag(0.4°/h, 0.4°/h, 0.4°/h) (8)

To evaluate the quaternion and the bias filtering errors,

two indexes used in [ 10] are introduced. One is for
the quaternion estimation error (in degrees) evaluation
and is given

Sa = 2arccos(8q,)
where 8q, is the scalar component of the error quaterni-
on 8q. The other is the TAG bias estimation error norm
(in °/h).

The time histories of the quaternion estimation er-
rors of four HF filters ( Ny, = 120,Ng = 300, Ngp =
600 and Ny, = 900) show the steady-state estimation
errors are not more than 0.25° and the differences a-
mong them are slight. These HF filters converge from
large initial errors ( > 150°) into the steady-state er-
rors in about 10min. Similar results are obtained from
the modified DPF. However the bias estimation errors
of the modified DPF filters and those of the HF filters
shown in Fig. 1 are different. Fig. 1a shows the bias er-
rors of the HF filters always remaining in the neighbor-
hood of some constant bias during the whole time inter-
val. Fig. 1b shows that the errors of the modified DPF
filters first increasing and then remaining in the neigh-
borhood of some constant bias. By far it is not difficult
to find that the effects of particle numbers on the atti-
tude and bias filtering performances of the two novel
filters are not very crucial or clear when 900 = N, =
N, = 120. Therefore, in the following simulations, N
= Np = 120 are used.

In addition, a large initial bias estimate is used to
test the convergent performance of the HF, e. g. ,

Bo = [1.0°/h 1.0°/h 1.0°/h]

P = diag(1.0°/h, 1.0°/h, 1.0°/h)
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Fig.1 Bias norm estimation errors of modified DPF

and HF with various numbers of particle

However, it takes the HF about 11h to reach the
steady-state attitude estimation error of 0.25°, and the
bias norm estimation error indeed decreases to a nearly
constant rate. As shown in Fig. 2, the slow rate does
not mean the bias UKF is an inefficient filter in nature.
The real reason, we suspect, is that the innovated in-
formation from the vector observations can not be di-
rectly fed back to the observation updating of the bias
estimate. Unless mentioned, the initial bias estimate
used in the simulations is better estimated as given in
Egs. (7) and (8).

4.2 Effects of initial quaternion estimate on filtering
performances

The two novel filters have been compared to the
MEKF and the USQUE. Different initial quaternion es-
timates have been considered for the MEKF and the
USQUE, while the modified DPF and the HF generate
the initial quaternion particles using the technique in

Appendix B of[ 10].

Bias norm estimation error /(° /h)

0.2 I i i I r 1
0 10000 20000 30000 40000 50000 60000

Time /s

Fig.2 Bias norm estimation errors of HF

with a bad initial bias estimate

4.2.1 Constant initial quaternion of small estimation
error

In this example, an initial quaternion estimate
whose norm attitude error is 50° has been chosen for
the MEKF and the USQUE. A large initial attitude co-
variance matrix has been chosen for the MEKF and the
USQUE. Though the large matrix might be physically
meaningless, it can speed up the convergence.

The results show that the four filters converge to
the steady-state quaternion estimation errors at almost
same rate and their quaternion estimation errors are of
same level. However, the MEKF and the USQUE
reach their bias estimation errors equivalent to HF in a-
bout 10000 s and the errors of all the three filters are
lower than the modified DPF almost during the whole
time interval, as shown in Fig. 3.

Obviously, the classical filters can achieve a bet-
ter performance with much less calculation when the
initial quaternion estimation error is small. If a good
initialization is expectable, either the MEKF or the US-
QUE is a more promising filter.

4.2.2 Constant initial quaternion of large estimation
error

In this example, a worse initial quaternion esti-
mate whose norm attitude error is 160° has been cho-
sen for the MEKF and the USQUE. Compared to those
above results, the modified DPF and the HF keep al-
most same performances, whereas the performances of

the other two classical filters sharply degenerate and
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Fig.3 Bias norm estimation errors of four filters
with constant initial quaternion estimate

('small-error case)

are much worse than the two novel filters. Fig. 4 shows
that, the novel filters reach the quaternion estimation
error of less than 0. 25° in about 10 min, whereas the
USQUE and the MEKF need about 17 h respectively to
reach the errors of less than 0.5° and 1.5°. Obviously
the modified DPF and the HF are more promising when
the initial estimation error is large. Necessary to men-
tion, the better performance of the USQUE with respect
to that of the MEKF is obtained by regulating the UT
parameter (i.e., « € [0,1]). That is to say, the
same USQUE does not guaranteed in any case to a-
chieve a steady performance than the MEKF. In other
words, the classical filters depend more on the regula-

ting work than the novel filters do.

10

MEKF

e
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Fig.4 Quaternion estimation errors of four filters
with constant initial quaternion estimate

(large-error case)

4.2.3 Uncertain initial quaternion

In this part, the initial quaternion estimates of the
MEKF and the USQUE are ramdomly generated ac-
cording to a uniform distribution on the unit hyper-
sphere. The four filters are executed independently for
50 Monte Carlo runs. The maximum errors of the four
filters during 30000 s to 62000 s are chosen for each
run. The statistical distribution results of these maxi-
mum errors are given in Table 1. One can see that, the
HF in 50 runs all reaches the quaternion estimation er-
ror of less than 0. 5°. The convergent performance of
the modified DPF is a little worse than HF but much
better than the USQUE, The MEKF is the worst.

In addition, the average runtimes of the four fil-
ters are also tested. The results can be regarded as an
indirect evaluation of their average calculation a-
mounts. The 50 x4 runs are executed in the computers
of same computing capacity.
runtime of the MEKF as 1, then the USQUE, the HF,
and the modified DPF are 6, 60, and 170 respective-
ly. Surprisingly, the HF filter’ s runtime is only 10
times as the USQUE filter’ s. So the HF is a promising

filter for onboard applications.

If denote the average

Table 1 Statistical distribution results of quaternion
estimation errors of four filters with uncertain

initial quaternion estimates (50 runs)

Filter [0,0.5) [0.5,1) [1,2) [2,180]
/(%) /(%) /(%) /(%)
MEKF 64% 18% 12% 6%
USQUE 84% 8% 6% 2%
DPF 96% 4% 0% 0%
HF 100% 0% 0% 0%

4.3 Effects of colored observation noise on filtering
performances

In this example, the performances of the four fil-
ters using colored TAM measurements have been test-
ed. Use the third innovation (i.e., residual) compo-
nent processes of the MEKF, the USQUE, the modi-
fied DPF, and the HF respectively for the white noise
and the colored noise, an exact evaluation is done by

computing the time-averaged autocorrelation''”!

N N, W,
- 1 ks 4 e -172
N 2 2
pi(A) = Z ViV z Uy, Z vk+X,i] ’
n, k=1 = b=t
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i=1,2,-,n,
where v, ; is the i" component of the innovation vector at
time #, ;A is the correlative step; n, is the dimension of the
innovation vector; N, is the number of the considered ob-
servation data points. If the innovation process is zero-
mean white Gaussian, the p,(1) is zero mean with vari-
ance of 1/N, for N, large enough. In this example, N, =
4000 and various A are used. The mean and variance re-
sults of p,(A) for the white noise and the colored noise
are respectively given in Table 2 and Table 3. For an op-
timal filter, the mean and the variance of p;(A) should be
0 and 2.5 x 10™* respectively. Table 2 shows that the

mean results for the four filters are comparable and close
to zero, whereas the variance resulis for the modified DPF
and the HF are considerably close to the optimal values
and the variance results for the two classical filters are far
from the optimal values. That is, the novel filters can
process the vector observations with white noise much
better than the classical filters do.
can be drawn from the results shown in Table.3. Compa-

Similar conclusions

ring Table 3 to Table 2, one can see the variance values
for the two novel filters which use the colored observations
have increased many times, while those for the classical

filters appear no remarkable varieties.

Table 2  Statistical results for time-averaged autocorrelation indexes of four filters’ residuals

(the third component) in the white-noise case

. Mean Variance
Filter - - X X X .
Axis x Axis y Axis z Axis x Axis y Axis z
MEKF -5.7x1073 -7.6 x10~* 1.7 x10 72 1.7 x10 2 2.1x1072 1.6 x10 2
USQUE 2.7x107* 9.5x10? -6.5x107* 1.4 x10 2 8.9x1073 1.1x1072
DPF -7.0x107* 3.4x1073 3.3x1073 6.9 x10~* 6.1x10~* 5.3x107*
HF -6.4x107* 4.4x107? 5.8x1072 5.7x107* 5.8 x10~* 5.0x10~*
Table 3  Statistical results for time-averaged autocorrelation indexes of four filters’ residuals
(the third component) in the colored-noise case
. Mean Variance
Filter - - N X . X
Axis x Axis y Axis z Axis x Axis y Axis z
MEKF -4.4x1073 -9.3x1073 2.0x1072 1.8x1072 1.8x1072 1.6 x10 2
USQUE -7.7x107* 9.1x1073 1.1x107* 1.4x1072 9.7x1073 8.7 x1073
DPF 6.0x1073 1.5x1073 1.2x1072 3.1x1073 4.5x1073 3.4x1073
HF 5.5x1073 1.3x1073 9.0x1073 3.1x1073 4.7x1073 3.6 x10 73

5 Conclusions

Two novel filters are proposed for the gyro-e-
quipped spacecraft attitude determination from vector
observations. They are modified DPF and HF respec-
tively. Both filters consist of same quaternion particle
filter but use a different gyro drift rate bias estimator.
The modified DPF filter uses an auxiliary particle bias
filter, while the HF filter uses a UKF bias filter. An
extensive simulation study has been done to evaluate
the performances of the two novel filters and to compare
them with two classical filters: the MEKF and the US-
QUE.

Several important conclusions are drawn. The first

is, none of the considered filters can always achieve a

best estimation performance in any case. The classical
filters can achieve better estimation accuracy with re-
spect to the two proposed novel filters with much smal-
ler computing amounts when a good initial quaternion
estimate is expectable ; otherwise their convergent per-
formances are possibly reduced and even much worse
than those of the novel filters, whereas the proposed
filters are able to achieve the consistent estimation per-
formances in various cases. The second is, the effect
of the particle number on the estimation performance of
the modified DPF or the HF is not very crucial when
the number is large enough. Surprisingly, both the HF
and the modified DPF can achieve a better convergent
performance with only 120 particles. The HF is a

promising filter for the real-time spacecraft attitude de-
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termination applications. The third is, the novel filters particle filters for online nonliear/non-gaussian bayesian tracking
can process the vector observations much better than [J]. TEEE Trans. On Signal Processing, 2002, 52(2) : 174 ~188.

X . . . [9] Cheng Y, Crassidis J L. Particle filtering for sequential space-
the classical filters do. All considered filters show some & & o P
craft attitude estimation[ C]. AIAA Guidance, Navigation, and
certain robustness for colored vector observations. At Control Conf. and Exhibit, Rhode Tsland, USA, Aug, , 2004.
laSt, an advice that has been made by someone else is [10] Oshman Y, Carmi A. Attitude estimation from vector observation u-
repeated again, that is, the combined use of the classi- sing genetic-algorithm-embedded quaternion particle filter[ J]. Jour-
cal Kalman filter variants and the recently proposed nal of Guidance, Control, and Dynamics, 2006, 29(4) :879 ~891.
. . N . 1. . 11 iang X Y, Ma G F. S raft attitude estimation f; t
particle attitude determination filters is likely to achieve (1] Jiang o e pacectall athinde estmation from veclor
. . measurements using particle filter[ C]. The 4th Intel. Conf. on
a better estimation performance. For example, the HF ) ) . )
Machine Learning and Cybernetics, Guangzhou, China, Aug. ,
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