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ABSTRACT: 
 
This paper describes a line-based classification method, which labels TLS point clouds into vertical object, ground, tree and low objects. 
A local classifier implements labeling task on individual site independently of its neighborhood, the inference of which often suffers from 
similar local appearance across different object classes. In this paper, we describe an approach using contextual information as post-
classification improvement to a local generative classifier. The contextual information is expected to compensate for ambiguity in objects’ 
visual appearance. A generative classifier is produced using Gaussian Mixture Model (GMM), model parameters of which are iteratively 
optimized with Expectation-Maximization (EM). The model we use to incorporate contextual information is the Conditional Random 
Field (CRF), which improves the classification results obtained from GMM-EM classifier by incorporating neighborhood interactions 
among labeled objects as well as local appearance. The proposed method was validated with three TLS datasets acquired from RIEGL 
LMS-Z390i scanner using cross validation. 
 

1. INTRODUCTION 

Recently, 3D photo-realistic modeling of urban space has been 
attracting much attention from photogrammetric and computer 
vision communities as there is an increasing demand for many 
applications, like urban planning, augmented reality and personal 
navigation. The virtual urban space requires 3D geometric 
representation of not only rooftop from top-view (LOD1 and 
LOD2), but also street-level scenes (LOD3). Due to close range, 
high point density and accuracy and cost-effectiveness, Terrestrial 
Laser Scanning (TLS) is relatively new surveying tool, and has 
been rapidly adopted for modeling of urban street scenes. The 
urban street environment is composed of various street objects as 
well as moving objects with large degree of occlusions and 
shadows. Classifying such complex urban street scenes in an 
automated manner still remains as a challenging vision task.  
 
Supervised classification is a machine learning method, which 
learns mathematical models from training data. In supervised 
learning process, a set of features representing unique properties 
of target classes play key roles to successfully model a classifier, 
which is less sensitive to scene variations. A typical feature 
usually used is appearance-based property, such as colors, shapes, 
geometry and textures, which makes an object of interest 
distinguishable from the others. These features are analyzed 
within a homogeneous local space (e.g., per point, line, plane or 
other types of primitives) as object scale is usually not known in 
advance. Amongst those primitives, line is easily to be extracted 
and widely used for object understanding (line drawing analysis) 
from image sequences or point clouds. Moreover, TLS illuminates 
and records laser shots along a scan line. Thus, line primitive-
based scene analysis is well applicable to “per-scan line” 

classification, which might be suit for real-time monitoring 
application.  
 
In this paper we present a line segment-based classification of 
point clouds acquired from TLS using Conditional Random Field 
(CRF). The proposed classifier aims to identify four object classes 
of vertical, ground, tree and low objects from TLS data. Working 
at the line level, these objects are represented with linear features 
attributed with length, orientation, height and range. In our 
approach, line segments are first extracted in single scan lines 
(laser profile). To present the role of contextual information in 
classification, we used a generative classifier as a baseline 
classifier to obtain an initial prediction, which was improved by 
adding contextual information. In this generative classifier, we 
used the Gaussian Mixture Model (GMM) to model class 
conditional probability and its parameters were learned using 
Expectation Maximization (EM) algorithm from training data. 
However, the local classifier always suffers classification from 
similar local appearance. In order to rectify this error, while still 
maintaining the benefits of local generative classifier, semantic 
context was introduced as an additional constraint that enforces 
local label agreement. By incorporating local appearance as well 
as contextual information, CRF model is able to improve the 
previous classification results. We used the Limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) (Liu &Nocedal, 
1989) method to optimize the weights in CRF model. For the 
model configuration inference, we used the Loopy Belief 
Propagation (LBP) algorithm, which has been shown as a standard 
technique for approximate inference of graphs with cycles 
(Murphy et al., 1999). 
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The paper outlines following sections: Section 2 discussesrelevant 
previous works related to current research. In Section 3 we 
describe details of line segmentation per scan line and feature 
extraction. Then, we present our methodology of CRF in Section 
4and discuss our experimental results in Section 4 and 5. Finally, 
we draw our conclusions and give an outlook of future works in 
Section 6. 
 

2. RELATED WORKS 

Most existing methods for TLS data classification have focused on 
geometric features extracted from laser point clouds. According to 
scales to extract geometric features, the methods can be 
categorized into two types:  point-based and surface-based. Point 
based method operates classification directly on individual laser 
point using feature vector extracted  on its local neighbors.(Triebel, 
et al, 2006;Munoz et al, 2008).While, surface-based classification 
algorithm firstly segments the laser scanning data into 
homogeneous surfaces and then implement classification by 
labeling these surfaces (Vosselman, et al., 2004; Belton & Lichti, 
2007; Pu & Vosselman, 2009). Both point-based and surface- 
based classification methods are typically implemented in 3D 
volumetric space. This might require computationally expensive 
process for constructing relational network or segmenting surfaces 
over large amount of points. However, it is a straightforward to 
consider segmenting line primitives and construct relational graph 
per scan line, instead of laser points or segmented surfaces, so as 
to improve computation efficiency (Jiang and Bunke, 1994).  
 
Sithole & Vosselman (2003) partitioned the airborne laser 
scanning data into two sets of families of orthogonal profiles 
running along x and y direction and then linked points if they 
conform to some rule, like height and slope. Zhao et al. (2010) 
used a line segment based classification for the TLS data collected 
from single-row laser scanner. In their work, planar objects, like 
building, road are extracted as straight line segment and free form 
objects, such as tree were extracted as small line segment or 
irregular points. Hu & Ye (2013) used Douglas–Peucker algorithm 
to segment the ALS scan line into line segment and classified 
them into buildings and vegetation based on local analysis using 
simple rules.  
 
With regards to the context-based classification, CRF is a natural 
way to model contextual relations amongst relational features 
(objects). It was originally proposed by Lafferty et al. (2001) to 
label sequential data. CRFs belong to the family of graphical 
models and represent data as a graph structure consisting of nodes 
and edges. Recently, many works on classifying laser scanning 
point using CRFs have been published. Lim & Suter (2009) 
presented a method to classify 3D outdoor terrestrial laser scanned 
data using multi-scale CRF model. The graph was constructed 
over a specifically designed 3D super voxels. Rusu et al.(2009) 
labeled an indoor point clouds using a point-wise CRFs according 
to the geometric surface they belong to, such as cylinders or 
planes. Shapovalov, et al.(2010) classified point cloud obtained 
from airborne laser scanning data using CRF. They firstly 
performed segmentation on the point cloud and then classified the 
segments.  
 
Unlike the methods mentioned above, we want to classify line 
segments rather than individual point or 3D supervoxels. Thus, we 
created a Line adjacent graph (LAG) to represent the relationship 

among line segments. The LAG graph is considered within each 
scan line, which means the graph is only constructed over those 
line segments locate at the same scan line. The relationship across 
scan lines was not considered here. For the line segmentation 
based classification, linear features were extracted. 
 

3. DATA PRE-PROCESSING 

3.1 Scan Line Generation 

Prior to line segment extraction, the whole scanning data was split 
into scan lines. The scanning TLS data is assumed to be 
sequentially observed in a discrete-time fashion, which is denoted 
by 
 

൥
ௌ௖௔௡௟௜௡௘ ଵ: ௉భ,భ,௉భ,మ……
ௌ௖௔௡௟௜௡௘ ଶ: ௉మ,భ,௉మ,మ……

……
ௌ௖௔௡௟௜௡௘௡: ௉೙,భ,௉೙,మ……

൩ 

 
Each scan line is considered as a stream of observed points. The 
width of each scan line is set as the scanning angle precision, here 
0.05 degree. Finally, the TLS data is split into a set of vertically 
continuous scan lines with an interval of 0.05 degree at azimuth 
angle (refers to the horizontal alignment). Figure1 shows an 
example of scan line. 
 

 
3.2 Line segment generation 

In urban environments, structured objects, like planar (building 
facade, ground) and cylinder (lamp post) objects, typically have 
continuous and smooth appearance. Therefore, neighboring points 
reflected from structured objects in the same scan line have 
similar range values. On the contrary, points from unstructured 
object, like tree, have large range differentiate value. Here, points 
has large range differentiate value with its neighbors is called 
“scattered points” and the points with small range differentiate 
value is called “smooth points” (Manandhar & Shibasaki, 2001). 
If assign enough small range differentiate threshold, “continuous 
smooth points” (i.e., smooth points are closely placed) could be 
clustered as one line segment. We used the range analysis 
referring to Manandhar&Shibasaki (2001) to extract line segment. 
Figure 2(a) shows the scattered points and smooth points and 
figure 2(b) shows the line segments produced by continues smooth 
points. It is observed that points from the two objects could be 
fallen into one line segments. For example, building points and 
ground points could be captured by one line segments. In order to 
fix this problem, the Douglas–Peucker algorithm is used to 
implement the line segment subdivision.  

(a) Points in the orange mask 
are captured by scan line 2 

(b) Example of scan line 
Figure 1. Scan line generation. 
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Figure 2.Line segment extraction: (a) “smooth points” (red) and 
“scattered points” (blue); (b) “Continuous smooth points” are 
clustered into line segments (colour) and scattered points (black). 

3.3Feature extraction 

The features vector was extracted on the characteristics of line 
segment not individual point. In this work, two types of features 
were extracted, geometric feature (length and orientation) and 
location feature (height and range). Before feature extraction, the 
points locate at the same line segment were fitted using the least 
square line fitting.  
 
Due to the planar characteristics, line segments extracted from 
vertical object, like building and ground, are very long. These 
objects are mainly man-made and so their orientations are 
typically vertical or almost horizontal. However, due to sparse 
distribution and irregular shape, tree and low object are usually 
very short and do not have formal orientation. Length shows the 
line segment’s longest extension in 3D space. After straight line 
fitting, the normal vector of estimated lines was obtained. The 
distance between two endpoints along the normal vector is 
regarded as the length of the line segment.The orientation of a line 
segment is defined as an inner angle made between the line 
segment’s normal vector and Z axis.  
 
We observed that spatial arrangement of urban objects often 
shows typical patterns (rules), like building, tree and other objects 
should be higher than ground. Objects belong to the same label 
have similar distribution on height and have similar distance from 
a scanner’s center. The height of a line segment is defined by as 
the maximal Z value of the line’s member points. The range was 
calculated as the distance between the centroid of a line segment 
and the scanner center.  
 

4. CONDITIONAL RANDOM FIELD (CRF) 

Suppose we are given a set of N line segments x1, x2, …xN 
extracted from one scan line. The classification task is essentially 
to find a label yi∈ {1, . . . , K} for each line segment xi. In this 
research, we are interested in four kinds of instances, vertical 
object, ground, tree, low object, let Y={V, G, T, L}. We model the 
line segment classification in a probabilistic framework, which 
chooses the class label by maximizing the probability of class 
labels Y given the observed data X, P (Y|X). CRF model is a 
natural way to incorporate neighborhood interactions among the 
labels as well as the observed data. Let the feature vector extracted 
from line segments as the observed variable X and the 
corresponding unknown class labels as hidden variable Y, the 

conditional random field model the classification task as 
estimating the posterior probability P (Y|X) directly. In this 
research, the graph is considered within each scan line, which 
means the graph is only constructed over the line segments locate 
at the same scan line. The relationship across scan line was not 
considered here.  
 
Let G = (V, E) be the graph over line segments. Each line segment 
is regards as one node in the graph. If the nearest distance between 
two line segments is smaller than certain threshold (here it was set 
as 1 meter), one edge is created to connect them. It is noted that, 
different from the graph model of image, this graph does not 
follow a regular grid pattern. The CRF model is globally 
conditioned on the observation X. Given the fundamental theorem 
of random fields, the conditional distribution over the labels Y 
given observed data X has a general form in Equation (1): 
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Where i indicates the site, S is the total site set and Ni is the 
neighborhood of node i. X is the all of the observed feature 
vectors. Each feature vector is consists of a combination of feature 
descriptors extracted from line segment. Y is class labels 
associated with the observed feature vector X. P(Y|X) is the 
posterior probability to be estimated. Z(X) is the partition function. 
Ai(X,yi) and Iij(yi,yj) respectively stand for association penitential 
and interaction potential, the detail of which will be introduced in 
following parts.  
 
4.1 Association potential 

The association potential measures how likely the class label yi is 
assigned to the single node i given the global observations X and 
ignoring other nodes. It is related with a conditional probability 
P’(yi | X) of class yi given the data X in Equation (2): 
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Theoretically, the posterior probability of any local classifier can 
be used. In this experiment, the posterior probability is obtained 
using a local generative classifier in Equation (3) and (4): 
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P(xi)is merely a scaling factor to assure that posterior probabilities 
are summed up to one. Therefore, the major problem in the 
Bayesian classifier is how to estimate the likelihood P (xi | yi) and 
prior probability P (yi). The prior probability is simply assigned 
with equal values here. Due to the complexity of urban objects, 
the actual probability density function is a multimodal. Therefore, 
the mixture Gaussian approximation is a quite reasonable method 
to model likelihood, which is expressed as follows: 
 
 
 
 

(a) (b) 

(1) 

(2) 

(3) 

(4) 

(5) 
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where            is the Gaussian mixture component, αm is 
corresponding the weight, and M indicates the number of mixture 
components. The value of αk ranges from 0 to 1 for all 
components, and the sum of αm equals 1. The parameters   

},...,,,...,,,...,{ 111 mmm  define the Gaussian mixture 

probability density function. To estimate the parameters of the 
Gaussians Mixture model, the classic Expectation Maximization 
(EM) algorithm is used on the training label data.  (Bilmes, J. A., 
1998) gives practical details on the EM algorithm for 
classification using GMM. In this research, we use a uniform 
component value, three, for all class-conditional probabilities. 
 
4.2 Interaction potential 

The interaction potential can be seen as a measure of how the 
labels at neighboring sites should interact given the observed data 
(Kumar and Hebert, 2006). In Equation (6), the interaction 
potential Iij provides a possibility to model the interaction of 
contextual relations of neighboring nodes.  
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For each edge connecting two nodes i and j, an edge feature vector 
μij depending on the observed data is generated. The generalized 
linear model (GLM) is usually utilized to model the interaction 
potential over edge feature vector μij in Equation (7).  
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When two neighboring nodes have different class label, the 
interaction potential is expected to be penalized, whereas 
corresponding labels are preferred. The degree of penalization 
depends on the edge feature vector μij and weight vector v, which 
is learned over training sample. Here, we use two methods to 
generate edge features, subtracting and concatenating two single 
nodes’ features.  
 
We use the difference between the location features (range and 
height) of two adjacent line segments because we assume that 
objects have closer spatial distance are more likely to have the 
same label. It is also noticed that due to occlusion and surface 
complexity, objects cloud be over-segmented into several short 
line segment, such as facade, ground, which is likely to be 
misclassified as tree or low objects. But when concatenate 
geometric features (length and orientation) of two adjacent nodes, 
edge connecting short building and ground line segments still have 
large value on geometric features but tree and low object do not 
have this kind of combination effect. In current study, the final 
mathematics CRF model is rewritten as  
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Where the )|( iiGMM xyP  is the posterior probability obtained 

from the GMM-EM classifier.  
 
4.3 Parameter learning and Inference 

There are two groups of parameters in Equation (8), parameters 
for association potential and interaction potential. The parameters 

involved in CRF could be learned at the same time by maximizing 
their conditional log-likelihood. However, in this research, we use 
a generative classifier as the input of association and it makes the 
parameter learning simultaneously intractable. Therefore, we 
decomposed the parameter learning into two stages. At first stage, 
parameters of Gaussian mixture model were learned over the 
labeled training data. Once it was done, the log posterior 
probabilities were used as the association potential. At the second 
stage, the weights of edge feature vector was learned using the 
limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 
method, which is a member of the broad family of quasi-
Newtonoptimization methods that uses a limited memory to 
approximate the inverse Hessian matrix, the detail of which can be 
check in Liu & Nocedal (1989). In our formulation, we simply 
have one weight w which represents the tradeoff between spatial 
regularization and our confidence in the classification.  
 
The final task of classification on CRF is inference, which can be 
seen as finding the best configuration with respect to some cost 
function. The graph we constructed is cyclic and the exact 
inference over this structure is an intractable problem (Kollar& 
Friedman, 2009). Loopy belief propagation (LBP) is an exact 
approximation solution for graphs with cycles (Murphy et al., 
1999). Computing the approximate gradient using LBP, and 
learning CRF model parameters using stochastic gradient-based 
optimization method, has been approved to work well in 
Vishwanathan et al. (2006). Following the work of Vishwanathan 
et al. (2006), we use L-BFGS for parameter learning and LBP for 
configuration inference.  
 

5. EXPERIMENT 

5.1Dataset 

The proposed method was validated with static TLS data, which 
was collected by RIEGL LMS-Z390i at three different sites, 
Seneca building (York University), Passy residence (York 
University) and one building in Distillery district (Toronto 
downtown). All of the three datasets contain our interest objects, 
vertical objects, ground, tree and low object. Moreover, they have 
similar distribution on appearance, location and arrangement. To 
comprehensively evaluate the role of contextual information in 
classification, we mainly present the results of two kinds of 
methods: 1) GMM-EM, it can be regarded as the CRF with only 
association potential and 2) CRF with both association and 
interaction potential.  
 
The K-fold cross validation was used here. There are 5323 scan 
lines in the all of the three datasets. Firstly, the 5323 scan lines 
were randomly divided into 5 equal size subsets. Each time, 
parameters of local generative classifier model and CRF model are 
learned on 4 subsets and then tested on the retained test subset, 
which was repeated five times. Classification performance was 
individually measured and then averaged. It is noted that the 
cross-validation was not used for parameter learning but only 
assessing how the trained model will generalize to an independent 
test dataset. The classification accuracy is estimated at the line 
segment level. At first, all points were manually labeled for 
ground truth. The ground truth of line segment was then assigned 
to be the majority vote of its member points’ labels.  
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5.2Qualitativeevaluation 

We take both qualitative and quantitative evaluation of the 
proposed CRF model. The overall classification result of the three 
datasets is presented in Figure3.  

 
Figure 3.Visulization of classification by CRF. (a) Seneca building, 
York University, (b) Passy residence,York University, (c) Building 
at Distillery district, Toronto. Red: Vertical objects; Blue: Ground; 
Green: Tree; Purple: Low object. 
 
To show the qualitative perspective of this CRF model, we choose 
a representative scan line and compare the classification result of 
the two methods, which is shown in figure 4.  
 

        
 
Figure 4. Classification result of the representative scan line 
obtained from GMM-EM (left) and CRF (right); Red: Vertical 
objects; Blue: Ground; Green: Tree; Purple: Low object. 
 
This scan line is taken from Seneca building, York University. In 
figure 4, it is clear to observe classification errors that suffer from 
similar local appearance using local classifier, which is a typical 
drawback of local likelihood model. The local generative classifier 
model cannot make a spatially coherent prediction. For example, 
building is found in tree; tree is found in building; and low object 
is right below building. However, CRF solution rectified this kind 
of misclassification by considering the neighborhood interaction 
of the data.  
 
5.3Quantitative evaluation 

As regard the quantitative evaluation, confusion matrices were 
created for the two classifiers. The omission error, commission 

error and overall classification accuracy were compared. The 
overall classification accuracy of two methods on each folder is 
showed in Table1. The advantage of the contextual information is 
clear, the overall classification accuracy increased by nearly 
6%.The omission error, commission error of each class describe 
the results in more details, are shown in Figure 5.  
 

 
Tabel 1. Cross-validation results obtained from GMM-EM and 
CRF classification.  
 

        
 
Figure 5.Per-class omission and commission errors caused by 
GMM-EM (left) and CRF (right). 
 
It is noted that the contextual information almost does not affect 
the commission error of building and ground but has great 
influence on tree and low object, respectively decreased from 8.91% 
to 2.81% and from 42.81% to 20.20%. Contextual information 
makes the omission errors of building dramatically drop from 
22.94% to 6.72%. The limitation of this contextual information is 
that it makes more low object misclassified as other classes, 
increased by 7.14. Moreover, it also has little influence on the 
omission errors of ground and tree. 
 

 
 

Figure 6. Label transition 
 
Figure 6 shows label (state) transition from GMM-EM to CRF 
prediction in detail, indicating how the contextual information 
improves classification performance. It is clearly observed that 

 GMM-EM CRF Improvement

Folder1 88.68 94.91 +6.23 
Folder2 89.92 95.93 +6.01 
Folder3 90.23 95.74 +5.51 
Folder4 89.55 95.19 +5.65 
Folder5 89.87 95.39 +5.52 

Averaged 89.65 95.43 +5.78 
(a) (b) 

(c) 
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contextual information mainly reduces the commission error 
between vertical object and tree as well as vertical object and low 
object. Statistics shows that there are 9848 line segment transited 
their labels, accounting for 8.26% of the total. In the total 9848 
transition, 8237 (83.64%) transition is positive, which means 
additional contextual constraint makes the prediction from false  
to true. We also observe that many correctly classified tree were 
changed to low object  and some correctly classified low object 
were changed to building. The latter explains relatively large 
increases in the omission errors of low objects. 
 

6. CONCLUSION 

This work approaches the problem of semantic classification in 
TLS LiDAR data. Here, we proposed the classic discriminative 
contextual classifier, CRF to classify TLS data. The CRF model 
introduces neighborhood interactions among the labels as well as 
the observed point cloud. By maximizing object label agreement 
according to the contextual coherence, CRF model compensates 
for ambiguity in objects’ local appearance. Performance of 
baseline classifier and this discriminative context classifier are 
evaluated. The experiment results show the improvements in 
classification accuracy are obtained by considering object label 
agreement, which validates the advantages of the discriminative 
context classifier model. As semantic classification of TLS data is 
still a hot topic, there are many work need to be done. In the future 
we hope to introduce new associate and interaction features to 
improve further the classification accuracy, like intensity and 
color. We also interested in exploring new ways to construct 
interaction potential, such as spatial arrangement of objects. In 
addition, we hope to find new parameter learning algorithm to 
ensure the parameters do not only fit the training data but also 
generalize to unseen test data.  
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