doi: 10.3969/j.issn.2095-0780.2014.01.002

尼罗罗非鱼(♀)×萨罗罗非鱼(δ) F_1 家系 亲权关系微卫星分析

罗明坤¹,郭金涛¹,赵金良¹,叶卫²,符云²,陈辉崇² (1. 上海海洋大学,农业部淡水水产种质资源重点实验室,上海 201306;

2. 广东省淡水名优鱼类种苗繁育中心, 广东 广州 511453)

摘要:利用尼罗罗非鱼(Oreochromis niloticus)第2代遗传连锁图谱标记,对3组不同尼罗罗非鱼(♀)×萨罗罗非 鱼(Sarotherodon melanotheron)(δ)杂交 F₁ 家系内亲权关系进行分析。结果显示,86个微卫星位点中共筛选出20 个在尼罗罗非鱼、萨罗罗非鱼中存在差异的扩增位点,含13个种间特异性和7个共享带差异位点。尼萨杂交 F₁ 中,平均等位基因2.90,平均多态信息含量0.439,位点多态性较高。3个尼萨杂交 F₁ 家系组间遗传距离0.362 ~0.504,组内个体间遗传距离0.245~0.316,组内遗传距离明显小于组间。利用3个种间特异位点组合,可对 3个不同家系组父、母本个体进行鉴别。通过对各组亲本与子代位点基因型分析,家系A、B和C组分别使用4、 8和12个特异位点组合进行亲权鉴定,累积排除概率分别为99.99%、99.99%和99.91%,家系A、B组分别含 3个半同胞家系,家系C组含2对非同胞或4个半同胞家系。

关键词:尼罗罗非鱼;萨罗罗非鱼;杂交;家系;亲权分析;微卫星 **中图分类号**:S917.4 **文献标志码**:A **文章编号**:2095-0780-(2014)01-0009-07

Analysis of paternity and relatedness in *Oreochromis niloticus* (\Im) × Sarotherodon melanotheron (\Im) hybrid F_1 families by microsatellite markers

LUO Mingkun¹, GUO Jintao¹, ZHAO Jinliang¹, YE Wei², FU Yun², CHEN Huichong²

 Key Lab. of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Shanghai Ocean University, Shanghai 201306, China; 2. Guangdong Freshwater Famous Fish Seed Breeding Center, Guangzhou 511453, China)

Abstract: We conducted an analysis of paternity and relatedness in 3 family groups of *Oreochromis niloticus* (\mathfrak{P}) × *Sarotherodon melanotheron* (\mathfrak{S}) hybrids F_1 with different parental information and different sizes by microsatellite markers from the 2nd genetic linkage map of Nile tilapia. The results show there were 20 loci with different-sized alleles in *O. niloticus* and *S. melanotheron* detected in 86 pairs of microsatellites, including 13 specific loci and 7 shared allelic loci. The average number of alleles in F_1 was 2. 90 and of polymorphism information was 0. 439. The genetic distance among the 3 family groups was 0. 362 ~ 0. 504, and within each group was 0. 245 ~ 0. 316. The individual parents in the 3 different family groups were effectively identified by 3 completely higher polymorphic markers combinations. Using genotypic information, 4, 8 and 12 loci were needed for accurate paternity identification in family group A, B and C with high parent exclusion probability of 99. 99%, 99. 99% and 99. 91%, respectively. Groups A and B contained 3 half-sib families, while group C contained 2 pairs of non-sib families or 4 half-sib families.

Key words: Oreochromis niloticus; Sarotherodon melanotheron; hybrid; family; paternity analysis; microsatellite marker

收稿日期: 2013-05-06; 修回日期: 2013-05-29

资助项目:现代农业产业技术体系建设专项资金(CARS-49-4B);上海高校知识服务平台项目(ZF1206)

作者简介:罗明坤(1989-),男,硕士研究生,从事水产动物遗传育种与繁殖研究。E-mail:mingkunluo@163.com 通信作者:赵金良(1969-),男,博士,教授,从事水产动物遗传育种与繁殖研究。E-mail:jlzhao@shou.edu.cn

罗非鱼原产非洲,具食性广、生长快、适应性 强等特点,是联合国粮农组织向全世界推广的优良 养殖鱼类,也是中国淡水养殖第6大品种^[1]。不 同罗非鱼种类的养殖性能不同,其中尼罗罗非鱼 (Oreochromis nilocitus)是养殖最普遍的种类,它生 长速度快,但耐盐性较差^[2];萨罗罗非鱼(Sarotherodon melanotheron) 耐盐能力强, 但生长极其 缓慢^[3]。为充分利用中国丰富的咸、海水资源, 培育耐盐性强、生长快的罗非鱼养殖新品种,2004 年上海海洋大学开展了尼罗罗非鱼(♀)×萨罗罗 非鱼(ð)远缘杂交试验,并成功获得了耐盐新品 种——"吉丽"罗非鱼(品种登记号: GS-02-002-2009)^[4]。然而尼罗罗非鱼(♀)×萨罗罗非鱼(♂) 为远缘杂交,两者隶属于不同的属,存在明显的生 殖隔离,不能进行自然交配,杂交受精率极低^[5]。 为提高杂交成功率,生产实践中常采用多雌与多雄 混合受精模式,即同时挤出数尾雌鱼成熟卵与数尾 雄鱼精液混合,从而导致同一批次受精卵发育个体 间的亲缘关系(同胞、半同胞或非同胞)以及亲权 关系信息不明确。

微卫星标记具有多态性高、重复性好、共显性 遗传等优点,是家系鉴定、群体遗传结构、亲缘关 系分析等较为理想的分子标记^[6-8]。文章通过筛选 获得尼罗罗非鱼、萨罗罗非鱼种间差异性分子标记, 分析了不同尼罗罗非鱼(Ŷ)×萨罗罗非鱼(δ)F₁家 系组间差异以及各组内个体间的亲权关系,以建立 尼萨杂交 F₁家系与系谱分子信息,为耐盐罗非鱼家 系选育和育种技术的完善提供基础依据。

1 材料与方法

1.1 试验材料

尼罗罗非鱼(♀)×萨罗罗非鱼(δ)F₁家系是 2012 年7月于广东国家级罗非鱼良种场通过人工 混合受精获得,共3组。家系A组的繁殖亲本为1 雌3雄(编号♀A₁及 δ A₁、 δ A₂、 δ A₃),F₁随机 取9尾;家系B组的繁殖亲本为1 雌3雄(编号♀ B₁及 δ B₁、 δ B₂、 δ B₃),F₁随机取16尾;家系 C组的繁殖亲本为2 雌2雄(编号♀C₁、♀C₂及 δ C₁、 δ C₂),F₁随机取30尾。分别剪取鳍条,于 无水乙醇中保存。

1.2 试验方法

1.2.1 DNA 提取 采用动物基因组 DNA 提取 试剂盒提取鳍条 DNA, 用1.2% 琼脂糖凝胶电泳检

测 DNA 完整性与纯度,用紫外分光光度计检测浓度,并稀释至 50 $\text{ng} \cdot \mu \text{L}^{-1}$,置于 – 20 ℃冰箱中保存备用。

1.2.2 引物筛选 根据第2代罗非鱼微卫星遗 传连锁图谱^[9],随机选取了86个微卫星位点,并 从 GenBank 中下载这些微卫星位点的引物序列, 由上海捷瑞生物工程技术服务有限公司合成。表1 为筛选得到的20对在尼罗罗非鱼和萨罗罗非鱼中 均扩增出差异条带的引物。

1.2.3 PCR 扩增与电泳检测 反应总体积 25 μ L,内含1 μ L 基因组 DNA,12.5 μ L 2×*Taq* PCR MasterMix(含1 U *Taq* 酶; 0.5 mmol·L⁻¹ dNTP each; 20 mmol·L⁻¹ Tris-HCl, pH = 8; 100 mmol· L⁻¹ KCl; 3 mmol·L⁻¹ MgCl₂),正、反向引物各1 μ L,9.5 μ L 去离子水。在 Eppendorf Mastercycler Gradient PCR 仪上扩增。PCR 反应条件为 94 °C 预 变性 5 min,94 °C 30 s,56~64 °C(根据表1中各 引物的退火温度进行调整)30 s,72 °C 30 s; 30 个 循环,72 °C 延伸 10 min。PCR 扩增产物用 8% 非变 性聚丙烯酰胺凝胶电泳分离、银染检测,数码相机 拍照。

1.2.4 数据分析 根据电泳条带泳动距离判断 个体的基因型,如果电泳条带表现为1条,该基因 座为纯合型;如果电泳条带为2条,该座位为杂合 型。应用 Quantity One 软件进行电泳条带分析,估 算条带(等位基因)大小。利用 Popgen 1.32 软件统 计所有位点的等位基因数(*N_a*)、观测杂合度(*H_a*)、 期望杂合度(*H_a*);计算不同家系组间以及各家系 组内的遗传距离和相似指数。

根据每个个体扩增条带建立基因型矩阵,用 Cervus 3.0 软件分析各位点的平均等位基因数、多 态信息含量(PIC)、排除概率等信息,并在此基础 上进行各家系组内亲权鉴定。

2 结果

2.1 微卫星标记筛选

选取的 86 对微卫星引物中,28 对引物能同时 在尼罗罗非鱼、萨罗罗非鱼中稳定扩增出条带,再 从中筛选出在尼罗罗非鱼、萨罗罗非鱼中扩增条带 差 异 的 位 点 20 个。其 中 UNH957、GM004、 GM028、GM258、GM017、GM182、UNH919、 GM020、GM560、GM631、GM526、UNH974 和 GM641 为种间特异性位点,GM222、UNH990、

位点	GenBank 号	引物序列(5′→3′)	重复序列	退火温度/℃
locus	GenBank No.	primer sequence $(5^{\circ} \rightarrow 3^{\circ})$	repeat unit	annealing temperature
GM258*	BV005380	F: CCTTCACCTCCACCACTTTCT R: AGATCGAACGTCGTCCTCTG	(CA) _n	64
GM526*	BV005475	F: TCTTCCTCAGCCCATCTGTT R: CAACTGTTGGCAGTGACAG	(AC) _n	62
GM182*	BV005347	F: GACTTAGCCTCTGCCAATAC R: AGCCACATACCAACATCCAG	$(CT)_{m}(CA)_{n}$	62
GM017*	BV005269	F: CCCTCTGTTTCCATCTCA B: GATACCTGTCCATACCTCCTC	(CA) _n	56
GM028*	BV005277	F: GACAGACAGGAAATAAGGG B: AGCCTGATGGATGGTGA	(CA) _n	56
UNH990 [#]	G68270	F: GCCACAGGTGACCATGTTAG B: GCTCTCTGATTGCACTGACG	(TG) _n	62
UNH911 [#]	G68224	F: AAGAGGAGAGCACGGAAACA R: GTCACAAACCACAGCCAAGA	(AC) _n	60
GM641*	BV005536	F: TGCAGAAGGTTGCAGTGTTT R: GTCGGGGGCTCTTTGTAATCA	(TG) _n	58
GM276 [#]	BV005389. 1	F: CGCAGGAGGCTTTACCACA R: TCAAGTTGCGTCTCTGTCACC	(TG) _n	60
GM020*	BV005271.1	F: TTAAGCCACATTTATCTGCTC R: CTACACCGCTGGGACA	(CA) _n	58
UNH906 [#]	G68220	F: AACATGCTTTCAGCCTTCGT R: TGAGCAAATCCCGTCCATA	(AC) _n	56
GM222 [#]	BV005366	F: AACGGTGACATCTTCGCAACT R: GATTTGGCTATCTGGCGTGTG	(CA) _n	62
GM004*	BV005565	F: CATTCTTGGTCTTCCTGAC R: AACTACTAGGACTTGATGGG	$(CA)_{m}(AC)_{n}$	56
UNH919*	G68230	F: TGACAGCCTGGCATAATGAG R: CACTGAGACTGGAAGGCACA	(AC) _n	60
GM560*	BV005496	F: TGGAACAGCTTTCCTCAACC R: TCGCTGAGATTACACCATCG	(TG) _n	60
GM145 [#]	BV005330	F: AGCCATCCCCGTCTTTCT R: TATTTTCTGTGAGCCCGTTTG	(AC) _n	58
UNH974*	G68261.1	F: GCACGTCTGAGAGTGTGGAA R: CAGCTTTCACACCAGCCTAA	(GT) _n	60
GM676 [#]	BV005555	F: GATTCACGGCGATGAAGTCT R: CGTGAGCATCACCATCACTC	(CA) _n	62
UNH957*	G68251	F: CTCCGTGACACCAAGCTTTC R: ATCGCATCCACTACAAGCTG	(GT) _n	60

表1 20 对微卫星引物信息

Tab. 1 Information of 20 pairs of microsatellite primers

注: F. 正向引物; R. 反向引物; *. 种间特异性位点; #. 含共享带特异位点

Note: F. forward primer; R. reverse primer; *. specific loci of the intraspecific; #. containing shared with specific loci

F: TCCACCTGTGGAATGATGAG

R: CATGTTTGGGATCAGCATCA

UNH911、GM276、UNH906、GM676 和 GM145 为 含共享带的差异位点。

BV005528

GM631*

利用筛选的 20 个微卫星标记对 3 组尼罗罗非 鱼(♀)×萨罗罗非鱼(δ)F₁ 家系 55 尾个体进行扩 增,所检测位点的等位基因大小 110~305 bp,共 检测到等位基因 58 个,平均等位基因数 2.90,平 均观察杂合度为 0.860,多态信息含量为 0.439。 各位点的等位基因数(N_a)、有效等位基因数(N_e)、 观测杂合度(H_0)、期望杂合度(H_e)、多态性信息 含量(PIC)见表 2。

(GT)_n

58

All Rights Reserved. South China Fisheries Science http://www.schinafish.cn

Tab. 2 Genetic parameters at 20 loci in <i>O. niloticus</i> (\Diamond) × <i>S. melanotheron</i> (\Diamond) hybrids \mathbf{F}_1									
位点 locus	样本数 number of samples (N)	等位基因数 number of alleles (N _a)	有效等位基因数 effect number of alleles (N _e)	观测杂合度 observed heterozygosity (H ₀)	期望杂 expected heterozygosiy (H _e)	多态信息含量 polymorphim information (PIC)			
GM028	55	4.00	3.94	1.00	0. 747	0. 735			
GM020	55	3.00	2.98	1.00	0. 688	0.712			
UNH919	55	2.00	2.00	0.95	0. 530	0. 488			
GM182	55	3.00	2. 88	1.00	0. 625	0.664			
GM017	55	3.00	2. 22	1.00	0. 628	0.462			
UNH974	55	2.00	2.00	0.95	0. 530	0.266			
GM526	55	3.00	2. 10	1.00	0. 506	0. 494			
GM004	55	2.00	2.00	1.00	0. 506	0. 472			
GM631	55	3.00	2. 44	0.95	0. 592	0. 409			
GM258	55	4.00	2.74	1.00	0. 628	0. 398			
GM560	55	3.00	2. 57	1.00	0. 625	0. 488			
UNH957	55	4.00	2.93	1.00	0. 625	0. 421			
GM641	55	2.00	2.00	1.00	0. 562	0.462			
GM222	55	4.00	3.46	0.65	0. 448	0. 365			
UNH990	55	3.00	2. 12	0. 59	0. 412	0. 375			
UNH911	55	2.00	1.86	0. 68	0. 464	0. 411			
GM276	55	3.00	2.46	0.72	0. 512	0.312			
UNH906	55	4.00	3. 48	0. 77	0. 548	0. 303			
GM676	55	3.00	2. 42	0. 52	0.406	0. 269			
GM145	55	3.00	2. 63	0.66	0. 496	0. 288			
mean	55	2.90	2.56	0.86	0. 554	0. 439			

表 2 尼萨 F₁ 20 个位点的遗传参数分析

2.2 家系组间、组内遗传差异

根据各位点扩增结果的等位基因频率,计算出 尼罗罗非鱼(♀)×萨罗罗非鱼(δ)F₁家系组间、 组内的遗传距离及相似性指数(表3)。家系组间遗 传距离 0.362~0.504,相似指数 0.527~0.684。 各家系组内子代间的遗传距离 0.245~0.316,相 似指数 0.673~0.752。家系组内子代间的遗传距 离明显小于家系组间的遗传距离(P<0.01)。

利用3个高度多态性的种间特异性引物 GM020、GM028 和 GM182, 通过位点联合方式可 分别鉴别出家系 A、B 和 C 组的父、母本个体,部 分电泳扩增结果见图2。

2.3 家系组内亲子关系

利用13个种间特异位点分别对3组尼罗罗非

表3 3 组尼萨 F₁ 家系组间和组内的遗传距离及相似性指数

Tab. 3 Genetic distance and similar index among 3 O. niloticus

 $(\ \) \times S.$ melanotheron $(\ \)$ hybrids \mathbf{F}_1 groups

注:斜线上方为相似性指数,下方为遗传距离

Note: Above the slashare the similarity indexes; under the slash are the genetic distances.

鱼(♀)×萨罗罗非鱼(δ)杂交家系内 F₁个体及其 亲本进行基因分型,亲权鉴定结果见表4。A 组家系

图 2 3 组尼萨杂交亲本 GM020(a)、GM028(b)、GM182(c)位点扩增结果

M. DNA 标记; 1. $\Diamond A_1$; 2~4. $\Diamond A_1$ 、 $\Diamond A_2$ 、 $\Diamond A_3$; 5. $\Diamond B_1$; 6~8. $\Diamond B_1$ 、 δB_2 、 δB_3 ; 9~10. $\Diamond C_1$ 、 $\Diamond C_2$; 11~12. δC_1 、 δC_2 Fig. 2 Amplification of GM020 (a) and GM028 (b), GM182 (c) in parents of 3 *O. niloticus* (\Diamond) × *S. melanotheron* (δ) groups M. molecular marker; 1. $\Diamond A_1$; 2~4. δA_1 , δA_2 , δA_3 ; 5. $\Diamond B_1$; 6~8. δB_1 , δB_2 , δB_3 ; 9~10. $\Diamond C_1$, $\Diamond C_2$; 11~12. δC_1 , δC_2

中已知母本1尾,通过 GM028、GM020、UNH919 和 GM182 共4 个特异性位点组合,可准确鉴定9 尾 F₁ 中个体的真实父本,累积排除概率达99.99%,A 组 家系中含3 个半同胞家系。B 组家系中,已知母本1 尾,通过 GM028、GM020、GM182、UNH974、 GM526、GM004、GM631 和 GM560 共8 个位点组合 鉴定,16 尾 F₁ 亲子鉴定累积排除概率达99.99%, B 组家系中也包含 3 个半同胞家系。C 组家系中父本与母本各 2 尾,双亲均为未知,通过 GM028、GM020、GM182、GM526、GM004、GM631、GM560、UNH919、GM017、GM641、UNH957和GM258 共12 个位点组合鉴别,对 F₁ 亲子鉴定的累积排除概率达 99.91%,C 组家系中含 2 对非同胞家系和4 对半同胞家系。

位点 locus	家系组 family											
	$\operatorname{Q}\operatorname{A}_1$	δA_1	δA_2	δA_3	${\bf Q} \; {\bf B}_1$	δB_1	δB_2	δB_3	$\mathcal{P} \mathcal{C}_1$	${\rm Q} {\rm C}_2$	δC_1	ô C2
GM028	-	1,6	4,7	3, 9	-	-	6, 7	-	5, 8, 17	1, 4, 6, 29	4, 8, 17, 29	1, 5, 6
GM020	-	2,6	4,8	-	-	-	3, 6, 12	-	2, 3, 17	1, 6, 7, 27	2, 7, 17, 27	1, 3, 6
UNH919	-	1, 5	4, 7, 8	-	-	-	-	-	8, 9, 23	4, 20, 24	4, 8, 9, 23	20, 24
GM182	-	2, 5	-	3, 9	-	1, 4, 5, 8	7, 15	2, 9, 10	2, 3, 5, 12	20, 26, 27	2, 26, 27	3, 5, 12, 20
UNH974	-	-	-	-	-	5, 8, 16	_	-	-	_	-	_
GM526	-	-	-	-	-	1, 11, 16	-	-	3, 8, 10, 13	1, 14, 15	8, 10, 13, 14	1, 3, 15
GM004	-	-	-	-	-	-	6, 7, 14	2, 9, 13	2, 9, 18	6, 7, 15, 16	2, 7, 9, 18,	6, 15, 16
GM631	-	-	-	-	-	4, 5, 11	7, 12, 15	-	9, 21, 25	7, 20, 29	7, 9, 29	20, 21, 25
GM258	-	-	-	-	-	-	-	-	11, 25, 28	26, 29, 30	26, 29, 30	11, 25, 28
GM560	-	-	-	-	-	-	3, 7, 14	10, 13	21, 23, 28	4, 7, 30	4, 7, 23, 30	21, 28
UNH957	-	-	-	-	-	-	-	-	10, 11, 13	4, 14, 15	4, 10, 13, 14	11, 15, 16
GM641	-	-	-	-	-	-	-	-	10, 11, 22	6, 14, 19	10, 14, 22	11, 19
GM017	-	-	-	-	-	-	-	-	12, 13, 22	14, 19	13, 14, 22	12, 19

表 4 3 个家系组内亲子关系鉴定结果 Tab. 4 Paternity analysis in 3 O. niloticus (\mathfrak{Q}) × S. melanotheron (\mathfrak{d}) hybrids F₁ families

注:阿拉伯数字分别代表各家系组内 F1 个体编号

Note: Arabic numbers represent F1 individuals in each family group.

3 讨论

鱼类选育与生产管理中,拥有完整的系谱信息 至关重要。若鱼类养殖选育所得的后代个体间亲缘 关系不明确,则不可避免地会造成近交和遗传多样 性的丢失,明确的系谱信息有助于合理地利用选育 群体^[10-11]。亲子鉴定是明确亲代与子代间血缘关 系、系谱分析的重要环节与手段^[12]。在利用微卫 星位点进行家系亲权鉴定时,其排除非亲本的能力 依赖于微卫星位点数目以及位点等位基因的多样 性^[13]。王鸿霞等^[14]在凡纳滨对虾(Litopenaeus vannamei)家系分析中,利用6个微卫星多态信息含量 高的位点组合鉴定,其结果与原来10个微卫星位 点组合结果的累计排除概率相似,均达到 99%; CASTRO 等^[15]应用 11 个高多态性的微卫星标记对 人工诱导的雌核发育大菱鲆(Scophthalmus maximus)进行亲缘关系分析, 11个标记的累积非父排 除率为99.99%。于飞等[16]使用8个高多态性的微 卫星标记对大菱鲆7个家系进行系谱鉴别, 仅知单 亲基因型时,要达到95%以上累积排除概率至少 需要4个多态位点,而双亲基因型均未知时,则至 少需要 7 个多态位点。BJORNSTAD 和 ROED^[17]、 BLOTT 等^[18] 也认为拥有较多等位基因数的特异性 微卫星位点在个体识别和亲子鉴定中,有更高的识 别效率和成功率。由此可见,寻找多态性丰富的标 记是实现家系鉴定与亲权分析的重要前提。

该研究中尼罗罗非鱼(♀)×萨罗罗非鱼(δ) 为属间远缘杂交^[19]。从尼罗罗非鱼遗传图谱不同 连锁群的标记中,筛选获得了部分等位基因在尼罗 罗非鱼与萨罗罗非鱼种间存在差异的标记,包括 13个种间特异性位点和7个含共享带的差异位点。 在3组尼萨杂交 F₁家系中,平均位点检测到的等 位基因数为 2.90, 平均观察杂合度为 0.86, 平均 多态信息含量为 0.439, 表现出较丰富的信息含 量。家系组间遗传距离(0.362~0.504)显著大于 家系组内个体间溃传距离(0.245~0.316), 这与 李建林等^[20]在6个建鲤(Cyprinus carpio var. jian) 家系鉴定中的研究结果相似,通过遗传距离之间的 差异明确反映了家系间以及个体间的亲缘关系,进 而利用少量的高多态性微卫星标记得到较高的亲权 鉴定效率。根据 BOSTEIN 等^[21]提出的衡量基因变 异程度高低的多态信息含量指标,13个种间特异 位点中, GM028、GM020 和 GM182 这 3 个位点表 现为高度多态性(PIC > 0.5),利用它们的组合位 点可有效鉴别出3组 F_1 家系的父、母本个体,其 他10个位点都表现为中度多态(0.25 < PIC < 0.50),表明这些位点具有较高的遗传多态性,适 用于家系组内亲权关系的进一步分析。

为了消除共享型标记数据带来的分析不便, 文 章仅使用了13个种间特异性标记进行亲权关系分 析,通过观察各组家系内亲本与F₁个体在不同位 点的基因型特征,进而分析了3个尼罗罗非鱼 (♀)和萨罗罗非鱼(δ)杂交 F₁ 家系组内亲权关 系。在家系A组(F₁9尾)与B组(F₁16尾)中,当 母本已知时,分别需要利用4个和8个位点组合, 其亲权关系的累积排除概率达 99.99%; 在家系 C 组(F₁30尾)中, 父、母本均为未知, 12个位点组 合的累积排除概率为 99.91%。随候选鉴定群体的 个体数目增加,用于亲权关系分析的微卫星标记数 目也随之增加,这与张春雷等^[22]在哲罗鱼(Hucho taimen)微卫星亲子鉴定分析中的结果一致。通过 不同家系组内的亲权分析获知,家系A组中包含 了3个半同胞家系(同母异父),家系B组中也包 含3个半同胞家系(同母异父),家系C组中个体 间亲缘关系复杂,含2对非同胞家系($QC_1 \times \deltaC_1$) 与 $\mathcal{C}_2 \times \mathcal{C}_2 \setminus \mathcal{C}_1 \times \mathcal{C}_2 = \mathcal{C}_2 \times \mathcal{C}_1$)或4个 半同胞家系($QC_1 \times \delta C_1 = QC_1 \times \delta C_2$ 、 $QC_2 \times \delta$ C_1 与 \subseteq C_2 × δ C_2 为同母异父; \subseteq C_1 × δ C_1 与 \subseteq C_2 $\times \delta C_1$ 、 $\mathcal{Q} C_1 \times \delta C_2$ 与 $\mathcal{Q} C_2 \times \delta C_2$ 为同父异母)。 这些信息的获得为尼罗罗非鱼(♀)×萨罗罗非鱼 (δ)F₁ 家系种质管理、配组繁殖、避免近交衰退 提供了科学依据。

综上所述,与一般的亲权鉴定分析不同,文章 中的研究对象为尼罗罗非鱼(♀)×萨罗罗非鱼 (δ)属间远缘杂交 F₁后代,为此,利用成熟的尼 罗罗非鱼也一可同时扩增且有差异的多态遗传标记,共 筛选了 20 对微卫星标记。高度多态性的微卫星标 记是亲权分析的基础,在筛选的 13 个种间特异性 微卫星位点中,GM028、GM020 和 GM182 为高度 多态性位点,对不同杂交组中亲本的个体识别率 高,这些开发的标记适于亲本与杂交后代间的遗传 分析。同时,文章中的试验材料丰富,包含不同亲 本信息(1 雌 3 雄、2 雌 2 雄)与不同子代数目,针 对不同亲本与子代信息的亲权关系,需要建立不同 的微卫星标记系统(数目与多态性)加以判别分析。

参考文献:

- [1] 李思发. 我国罗非鱼产业的发展前景和瓶颈问题[J]. 科学养 鱼, 2003(9): 3-5.
- [2] LEMARIE G, BAROILLER J F, CLOTA F, et al. A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron [J]. Aquaculture, 2004, 240(1/ 2/3/4): 575 - 587.
- [3] LAVERTY G, SKADHAUGE E. Adaptation of teleosts to very high salinity[J]. Comp Biochem Physiol A, 2012, 163(3): 1-6.
- [4] 李思发,颜标,蔡完其,等.尼罗罗非鱼与萨罗罗非鱼正反交 鱼自繁后代 F₂ 耐盐性、生长性能及亲本对杂种优势贡献力的 评估[J].水产学报,2008,32(3):335-341.
- [5] LI S F, ZHAO Y, FAN W J, et al. Possible genetic reproductive isolation between two tilapiine genera and species: Oreochromis niloticus and Sarotherodon melanotheron [J]. Zool Res, 2011, 32 (5): 521-527.
- [6] O'CONNELL M, WRIGHT J M. Microsatellite DNA in fishes[J]. Rev Fish Biol Fish, 1997, 7(1): 331-363.
- [7] 陈文华,李建林,徐跑,等.五个家系吉富罗非鱼的遗传多样 性分析[J].生物技术通报,2009,8(3):83-87.
- [8] 李腾云,李思发.尼罗罗非鱼与萨罗罗非鱼回交子代遗传变异的微卫星分析[J].上海水产大学学报,2008,17(4):396-401.
- [9] LEE B Y, LEE W J, STREELMAN J T, et al. A second-generation genetic linkage map of tilapia (*Oreochromis* spp.)[J]. Genetics, 2005, 170(1): 237-244.
- [10] 孙效文,张晓锋,赵莹莹,等.水产生物微卫星标记技术研究进展及其应用[J].中国水产科学,2008,15(4):689-703.
- [11] 顾颖,李超,鲁翠云,等. 建鲤微卫星 DNA 亲权鉴定[J]. 遗传, 2012, 34(11): 1447-1455.
- [12] 鲁双庆, 刘臻, 刘红玉, 等. 鲫鱼(C. auratus auratus)4 群体

基因组 DNA 遗传多样性及亲缘关系的微卫星分析[J]. 中国 水产科学, 2005, 12(4): 371-376.

- [13] NORRIS A T, BRADLEY D G, CUNNINGHAM E P. Parentage and relatedness determination in farmed Atlantic salmon (*Salmo salar*) using microsatellite markers [J]. Aquaculture, 2000, 182
 (4): 73-83.
- [14] 王鸿霞,吴长功,张留所,等. 微卫星标记应用于凡纳滨对 虾家系鉴别的研究[J]. 遗传, 2006, 28(2): 179-183.
- [15] CASTRO J, BOUZA C, SANCHEZ L, et al. Gynogenesis assessment using microsatellite genetic markers in turbot (Scophthalmus maximums) [J]. Mar Biotechnol, 2003, 5(2): 584 - 592.
- [16] 于飞, 王伟继, 孔杰, 等. 微卫星标记在大菱鲆(Scophthalmus maximus L)家系系谱印证中的应用研究[J]. 海洋学报, 2009, 31(3): 127-136.
- [17] BJORNSTAD G, ROED K H. Evaluation of factors affecting individual assignment precision using microsatellite data from horse breeds and simulated breed crosses [J]. Anim Genet, 2002, 33 (5): 262-270.
- [18] BLOTT S C, WILLIAMS J L, HALEY C S. Discriminating among cattle breeds using genetic markers [J]. Heredity, 1999, 82(3): 613-619.
- [19] 楼允东,李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用[J].中国水产科学,2006,13(1):151-158.
- [20] 李建林,唐永凯,李红霞,等.利用微卫星标记进行6个建 鲤家系遗传结构分析和家系鉴定[J].江苏农业学报,2012, 28(4):917.920.
- [21] BOSTSEIN D, WHITE R I, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment polymorphisms[J]. Am J Human Genet, 1980, 32(2): 314-331.
- [22] 张春雷, 佟广香, 匡友谊, 等. 哲罗鱼微卫星亲子鉴定的应 用[J]. 动物学研究, 2010, 31(4): 395-400.