文章编号: 0253-2409(2013)09-1136-10

吸热型碳氢燃料正癸烷热裂解机理、热沉及产物分布的理论研究

李国娜1,李春迎2,王渭娜1,沈 文1,吕 剑2,王文亮1

(1.陕西师范大学化学化工学院 陕西省大分子科学重点实验室,陕西西安 710100;2.西安近代化学研究所,陕西西安 710065)

摘 要:采用密度泛函理论(DFT)的 B3LYP 方法在 6-311G(d,p) 基组水平上对正癸烷裂解过程中涉及的反应物、产物及过 渡态进行了几何构型优化和振动频率计算,运用 B3LYP/aug-cc-pVTZ 方法计算单点能并构建势能剖面图。利用 TheRate 程 序包及 Eckart 校正模型计算了各反应速率常数 k。采用统计热力学原理求得不同温度下的热容 C^e_{p,m}及熵 S^e_{298 K},并通过设计等 键反应获得了各物种的标准生成焓△_fH^e_{298 K}。用 Chemkin II 程序模拟预测了产物分布,理论计算了热沉值,并讨论了温度、压 力对产物分布和热沉的影响。结果表明,C-C 键断裂过程是反应的初始步骤,且抽氢反应较β键断裂反应更易进行。裂解起 始温度为 500 ℃,反应主要发生在 600 ~ 700 ℃,其主要产物为氢气、甲烷、乙烯、乙烷、丙烯和 1,3-丁二烯,且产物分布随温度 不同而变化。模拟计算获得正癸烷在温度 600 ℃、压力 2.5 MPa 条件下的总热沉值为 2.334 MJ/kg,对应的热裂解转化率为 25.9%,该热沉值可以满足速率为 5~6 马赫数的飞行器的冷却要求。

关键词:正癸烷;热裂解机理;速率常数;动力学模拟;热沉;产物分布

中图分类号: TQ517 文献标识码: A

Theoretical study on the mechanism, heat sink and product distribution for thermal decomposition of endothermic hydrocarbon fuel *n*-decane

LI Guo-na¹, LI Chun-ying²,

WANG Wei-na¹, SHEN Wen¹, LÜ Jian², WANG Wen-liang¹

(1. School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province,

Shaanxi Normal University, Xi an 710100, China;

2. Xi' an Modern Chemistry Research Institute, Xi' an 710065, China)

Abstract: The geometry optimizations and vibrational frequencies of reactions, products and transition states involved in pyrolysis of *n*-decane were performed using the hybrid method B3LYP with 6-311G (d,p) basis set based on density functional theory. The potential energy surfaces of *n*-decane were built by the B3LYP/aug-cc-pVTZ methods. The rate constants of all reactions with Eckart correction were calculated by the TheRate program package. The heat capacity and entropy $(C_{p,m}^{\theta} \text{ and } S_{298 \text{ K}}^{\theta})$ at different temperatures were obtained by statistic thermodynamics. In order to calculate the standard formation enthalpy $(\Delta_r H_{298 \text{ K}}^{\theta})$ for all species, isodesmic reactions were designed. The Chemkin II program was used to model the product distribution and heat sink. The effects of the temperature and pressure on the heat sink and product distribution were discussed. The results show that the C-C bond breaking process is the initial step of all reactions and H-abstraction reaction is easier to proceed than the β -scission reaction. The cracking initial temperature is 500 °C and the reactions mainly occur in the range of 600 ~ 700 °C. The major products are hydrogen, methane, ethylene, ethane, propylene and 1,3-butadiene and the product distributions vary with temperatures. The total heat sink of *n*-decane is 2.334 MJ/kg at 600 °C and 2.5 MPa, with the conversions of 25.9% , which could meet the cooling requirement of aircrafts at 5 ~ 6 Mach number.

Key words: *n*-decane; mechanism of thermal decomposition; rate constant; kinetic modeling; heat sink; product distribution

高超音速飞行器工作在高速、高温、高强度燃烧 的恶劣环境下,燃烧室内温度可高达3000℃以上, 考虑到飞行器的体积、燃料制备及储存等问题,常规 燃料受到限制。吸热型碳氢燃料^[1,2]可作为可燃冷 却剂,是一类性能优良且能够很好地满足高超音速 飞行器冷却要求^[3]的新型碳氢燃料,具有更好的应 用前景。其冷却的本质是吸热型碳氢燃料在进入燃 烧室燃烧前,通过自身的热容、相变热和化学裂解反 应等吸收飞行器高温部位的热量发生裂解,生成燃 烧性能更高的富能小分子产物如乙烯、丙烯等化合

收稿日期: 2013-02-19;修回日期: 2013-05-04。

基金项目:国家自然科学基金(21173139)。

联系作者:王文亮, Tel: 029-81530815, Fax: +86-29-81530727, E-mail: wlwang@ snnu.edu.cn。

物,从而有效地解决飞行器的冷却和热管理问题。 碳氢燃料热裂解反应的主要产物为小分子低碳烃如 甲烷、乙烯、乙烷、丙烯、丙烷等,为了更好地了解该 反应的详细过程,提高反应的转化率和选择性,需要 对裂解过程的详细机理深入研究,预测产物分布和 转化率,从而为评价燃料的冷却效果等提供理论 依据。

实际应用的航空燃料组分是由几十乃至更多种 复杂的碳氢化合物混合而成,主要有直链烷烃、支链 烷烃、环烷烃、芳香烃和烯烃,故直接研究原燃料的 热裂解机理非常困难。因此,要选择一些具有代表 性的烷烃作为研究对象。正癸烷是典型的长直链烷 烃代表,是构建航空煤油替代模型的常用组分。在 实验方面,大多数烷烃热裂解的研究主要集中在正 庚烷、正辛烷、正十二烷和甲基环己烷等化合物,而 对于正癸烷的研究则很少。Zamostny 等^[4]对 C_{1,12} 的一系列碳氢化合物进行了热裂解实验研究,对比 了直链烷烃和支链烷烃热解产物的异同,但未进行 裂解机理的详细分析。Yu 等^[5]研究了 C_{10~14}的直 链烷烃在近临界和超临界条件下的热裂解。结果表 明,C10~14的直链烷烃裂解的主要产物为C1~m2的直 链烷烃和 C, ____1的 1-烯烃, 次级产物为顺、反-2-烯 $\mathcal{L}_{n-C_{m-1}}$ 和 $n-C_{m+1}$ 及 $C_{m+2,2,m,2}$ 的直链和支链烷烃 (m代表反应物中碳原子的个数),但未进行热沉计 算。焦毅等^[6]利用自制的常压裂解装置,研究了温 度及滞留时间对正癸烷裂解的影响,并发展了正癸 烷常压裂解模型。在理论方面,目前的研究主要集 中在正癸烷的燃烧机理方面,关于正癸烷热裂解机 理等研究则很少。只有 Zeppieri 等^[7]根据正庚烷机 理模型对正癸烷的氧化和热解提出了一个简化的骨 架机理。本研究选取正癸烷为燃料模型分子,旨在 研究吸热型碳氢燃料裂解机理,考察温度、压力等因 素对燃料裂解气相产物分布以及热沉的影响,从而 为吸热型碳氢燃料在高超音速飞行器上的应用提供 理论依据。

1 理论计算方法

1.1 几何结构优化及能量计算

本研究采用密度泛函理论中的 B3LYP 计算方法,在 6-311G(d,p)基组水平上对正癸烷裂解反应 路径上各驻点(反应物、中间体、过渡态和产物)的 几何构型进行全参数优化并通过振动频率分析确认 了稳定点和过渡态结构,并在相同水平上进行内禀 反应坐标(IRC)分析,以证实各过渡态与相应反应 物和产物的相关性。为了获得更加精确的反应路径 能量信息,在相同水平上采用 B3LYP/aug-cc-pVTZ 方法对正癸烷裂解过程所涉及的所有物种进行单点 能计算,并且用 B3LYP/6-311G(d,p)水平上的零点 能进行校正,得到零点能校正后的能量,进而求得相 对能(relative energy)ΔE。所有电子结构计算均采 用 Gaussian03^[8]程序,在陕西师范大学理论与计算 化学研究室宝德高性能计算机群上完成。

1.2 速率常数计算

采用传统过渡态理论(TST)与 The Rate 程 序^[9]计算各温度下的速率常数。由于传统过渡态 理论未考虑量子力学隧穿效应,导致计算结果偏低, 因此,采用 Eckart 校正模型,通过(1)式得到校正后 的速率常数 *k*。

$$k(T) = \kappa(T)\sigma \frac{k_{\rm B}T}{h} \frac{q^{\neq}}{\prod q_{\rm R}} \exp(-\Delta E^{\neq} / RT)$$
(1)

式中, $\kappa(T)$ 为 Eckart 隧道校正因子, σ 为反应 对称数, $k_{\rm B}$ 为 Boltzmann 常数,h为 Planck 常数,R为 理想气体常数, q^{\neq} 为活化络合物配分函数, $q_{\rm R}$ 为包 含平动、转动、振动、位阻旋转的总摩尔配分函数,T为温度(300~3000 K), E^{\neq} 为活化能。

化学动力学模拟需要的动力学参数通常是根据 改进的阿伦尼乌斯方程:

 $k(T) = AT^{n} \exp(-E_{a}/RT)$ (2)

式中,A 为指前因子,n 为常数,E_a为拟合活化 能,T 为热力学温度,R 为摩尔气体常数。对过渡态 理论计算得到的不同温度下(300~3000 K)速率常 数 *k*(T) 拟合,以参数(A、n、E_a)形式给出。

1.3 热力学性质计算

标准生成焓 $\Delta_r H^{\theta}_{298 \text{ K}}$ 及热容 $C^{\theta}_{p,m}$ 等热力学性质 是衡量高能材料性能的重要参数。本研究中的物种 标准生成焓是在 B3LYP/6-311G(d,p)水平优化的 基础上结合等键反应计算获得。等键反应是计算化 合物生成焓的一种成功方法,在等键反应中反应物 和产物所有键的类型和数目相等,反应物和产物电 子环境相近,故由非完全基组和电子能量修正所导 致的误差可互相抵消,而获得可靠的生成焓。

基于统计热力学原理和优化得到的频率,求得 300~1500K的热力学性质,并拟合得到 $C_{p,m}^{\theta}$ 、 S_{m}^{θ} 和 H_{m}^{θ} 随温度变化的多项表达式。

$$\frac{C_{\rm p,m}^{\rm o}}{R} = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4$$
(3)

$$\frac{H_{\rm m}^{\rm o}}{RT} = a_1 + \frac{a_2}{2}T + \frac{a_3}{3}T^2 + \frac{a_4}{4}T^3 + \frac{a_5}{5}T^4 + \frac{a_6}{T}$$
(4)

$$\frac{S_{m}^{\circ}}{R} = a_{1}\ln(T) + a_{2}T + \frac{a_{3}}{2}T^{2} + \frac{a_{4}}{3}T^{3} + \frac{a_{5}}{4}T^{4} + a_{7}$$
(5)

式中, $C_{p,m}^{\theta}$ 为恒压摩尔热容,T为热力学温度, H_{m}^{θ} 为标准摩尔焓, S_{m}^{θ} 为标准摩尔熵,R为气体常数, $a_{i}(i=1 \sim 7)$ 为拟合参数。

2 结果与讨论

在 B3LYP/6-311G(d,p) 水平上优化得到了反 应物和产物的几何构型,优化得到的几何构型参数 与实验值接近,键长的最大偏差为0.0024nm,键角 的最大偏差为1.89°,说明本研究所选用的 B3LYP/ 6-311G(d,p) 方法优化结构是合理的。图1 为在 B3LYP/6-311G(d,p) 水平下优化得到的正癸烷的 几何构型。正癸烷的裂解遵循自由基链反应机理, 主要包括 C-C 键断裂反应、抽氢反应(氢及小分子 烷基自由基抽取碳氢化合物上的氢)及β键断裂反 应,该机理共包含47个反应、30个组分和41个过 渡态,同时这三类反应的反应路径及详细势能面曲 线见图2~图4。表1为由(2)式拟合给出的正癸烷 热裂解47个反应的速率常数的阿伦尼乌斯表达式. 计算结果与实验值接近。计算的正癸烷β键断裂反 应的部分速率常数结果与文献实验数据对比见图 5。正癸烷热裂解过程中各物种的热力学信息见表 2,其中的标准生成焓是通过设计等键反应得到的, 计算结果与实验值和文献值很接近,且最大偏差为 4.31 kJ/mol,表明 B3LYP/aug-cc-pVTZ 方法是准 确的。常压下温度对正癸烷热沉及转化率的影响情 况见表 3。总热沉在 *t* = 500 ~ 1000 ℃ 、*p* = 0.1 ~ 5.0 MPa随温度和压力的变化情况见表 4。常压下 正癸烷裂解的主要气相产物的产率和转化率随温度 的变化情况见图 6。正癸烷热裂解的详细机理、热 沉及主要气相产物分布等在以下部分进行详细 讨论。

图 1 在 B3LYP/6-311G (d,p)水平上优化得到的正癸烷的几何构型 Figure 1 Optimized geometries of the *n*-decane at the B3LYP/6-311G(d,p) level (unit:nm)

2.1 热裂解路径

路径一:C-C 键断裂反应

依据自由基链反应机理可知,正癸烷裂解的最 初阶段是 C-C 或 C-H 键断裂生成多种自由基的过 程,此过程是链反应的起始步骤,一旦自由基生成, 其他反应会很快地进行。C-H 键解离能大于 C-C 键解离能,所以,C-H键的解离要比C-C的解离要 困难,与C-C键相比C-H键断裂可以忽略,故本研 究仅以 C1-H1 键的断裂作为参考。考虑到分子对 称性,故有五种不同位置的 C-C 键(即 C1-C2、C2-C3、C3-C4、C4-C5、C5-C6)的断裂方式。在B3LYP/ aug-cc-pVTZ//B3LYP/6-311G(d,p)水平上得到的 势能面曲线见图 2。由图 2 可知, C-C 或 C-H 键断 裂反应均为无过渡态反应,其中,C1-H1 键裂解能为 407.35 kJ/mol, C1-C2, C2-C3, C3-C4, C4-C5, C5-C6 键断裂能分别为 334.05、326.18、326.02、325.10、 321.83 kJ/mol。裂解能数据结果表明,C-C 键断裂 比 C1-H1 键断裂容易: C1-C2 键间的解离能最大, 最难断裂:C5-C6 键间的解离能最小,最易断裂:C2C3、C3-C4、C4-C5、C5-C6 键解离能相差不大,这与 文献[7]的结果一致。

路径二:抽氢反应

本研究中只考虑了 H 及 C_{1-4} 的自由基(CH₃、 C₂H₅、C₃H₇、C₄H₉)分别抽取正癸烷上氢的反应。 由于正癸烷有五种不同位置的碳原子,抽氢反应能 得到五种类型的癸基(即1-癸基、2-癸基、3-癸基、4-癸基、5-癸基)。因此,共有 25个抽氢反应(R17~ R41),以氢和甲基为例绘出的正癸烷在 B3LYP/ aug-cc-pVTZ//B3LYP/6-311G(d,p)水平上抽氢反 应的势能面曲线见图 3。图 3 中 10 个过渡态都仅 有一个虚频其振动模式符合抽氢反应模式。计算结 果表明,甲基自由基抽氢反应(R22~R26)能垒在 47~55 kJ/mol,而 H 抽氢的反应(R17~R21)能垒 在 11~24 kJ/mol,H 抽氢的反应能垒较低,较烷基 自由基抽氢更易进行。虽然各抽氢反应的能垒不 同,但若按照被抽取 H 的位置排序,均具有如下能 量关系:

 $\Delta E_{10} > \Delta E_{20} > \Delta E_{30} > \Delta E_{40} > \Delta E_{50}$

表 1 在 300~3 000 K 正癸烷热裂解反应拟合的速率常数

Reaction	Rate constant(k)
Direct C-C bond dissociation reactions (Ra ~ Rf)	k/s ⁻¹
$C_{10}H_{20} \rightarrow C_{10}H_{21} + H(Ra)$	$k = 5.79 \times 10^9 T^{1.15} \exp(-57.800/T)$
$C_{10}H_{22} \rightarrow C_0H_{10} + CH_1(Rb)$	$k_{\rm a} = 2.45 \times 10^4 T^{1.13} \exp(-47.400/T)$
$C_{10} \xrightarrow{H_{22}} C_{10} \xrightarrow{H_{10}} C_{1$	$k_{\rm b} = 2.16 \times 10^{4} T^{1.13} \exp(-46.300/T)$ $k_{\rm b} = 2.54 \times 10^{4} T^{1.13} \exp(-46.300/T)$
$C_1H_2 \rightarrow C_2H_1 + C_2H_2(Rd)$	$k_{\rm c} = 2.51 \times 10^{4} T^{1.13} \exp(-46.300/T)$
$C_{10}H_{22} \rightarrow C_7H_{15} + C_3H_7(Ha)$	$k_{\rm d} = 2.36 \times 10^{4} T^{1.13} \exp(-46.100/T)$
$C H \rightarrow 2C H (Rf)$	$k_{\rm e} = 3.75 \times 10^{-11} {\rm exp}(-45700/T)$ $k_{\rm e} = 3.88 \times 10^{4} T^{1.13} {\rm exp}(-45700/T)$
$\mathcal{C}_{10} \mathcal{H}_{22} \rightarrow \mathcal{L} \mathcal{C}_5 \mathcal{H}_{11} (\mathcal{H})$	$n_{\rm f} = 5.00 \times 10^{-1} {\rm cxp}(-5.0071)$
ρ -setssion reactions (KI ~ KIO) C H \rightarrow TS1 \rightarrow C H $_{\pm}$ H(P1)	$k = 1.20 \times 10^8 T^{2.00} \text{ avp}(-10.200/T)$
$C_{2}\Pi_{5}$ $(\Pi_{4} + \Pi_{1})$	$h_1 = 1.29 \times 10^{11} T^{0.80} \exp(-19200/T)$
$C H \rightarrow TS2 \rightarrow C H + C H (P2)$	$k_2 = 1.21 \times 10^{-1} \exp(-13.800/T)$ $k_2 = 6.50 \times 10^{11} T^{0.64} \exp(-12.800/T)$
$C H \longrightarrow TS4 \longrightarrow C H + C H (P4)$	$k_3 = 0.50 \times 10^{-11} \exp(-12.800/T)$ $k_4 = 6.82 \times 10^{11} T^{0.60} \exp(-12.200/T)$
$C_5 \Pi_{11} \rightarrow 154 \rightarrow C_2 \Pi_4 + C_3 \Pi_7 (R4)$	$k_4 = 0.82 \times 10^{-1} \exp(-15200/T)$
$C_{6}\Pi_{13} \rightarrow \Pi_{5} \rightarrow C_{2}\Pi_{4} + C_{4}\Pi_{9}(RS)$	$k_5 = 1.26 \times 10^{-1} \exp(-13000/T)$
$C_7 H_{15} \rightarrow 150 \rightarrow C_2 H_4 + C_5 H_{11} (R0)$	$k_6 = 6.89 \times 10^{-11} \exp(-13.100/T)$
$C_8H_{17} \rightarrow 1S/ \rightarrow C_2H_4 + C_6H_{13}(R/)$	$k_7 = 8.54 \times 10^{-11} \exp(-13000/T)$
$C_9H_{19} \rightarrow 158 \rightarrow C_2H_4 + C_7H_{15}(R8)$	$k_8 = 7.85 \times 10^{11} T^{0.64} \exp(-13.000/T)$
$1 - C_{10}H_{21} \rightarrow 159 \rightarrow C_2H_4 + C_8H_{17}(K9)$	$k_9 = 6.56 \times 10^{-10} \exp(-13000/T)$
$2 \cdot C_{10} H_{21} \rightarrow IS10 \rightarrow C_3 H_6 + C_7 H_{15} (R10)$	$k_{10} = 5.48 \times 10^{10} T^{100} \exp(-13200/T)$
$3 - C_{10}H_{21} \rightarrow ISII \rightarrow C_9H_{18} + CH_3(RII)$	$k_{11} = 7.16 \times 10^{10} T^{100} \exp(-14.300/T)$
$3 - C_{10}H_{21} \rightarrow 1S12 \rightarrow C_4H_8 + C_6H_{13}(R12)$	$k_{12} = 3.02 \times 10^{11} T^{0.0} \exp(-13.400/T)$
$4 - C_{10}H_{21} \rightarrow 1S13 \rightarrow C_5H_{10} + C_5H_{11}(R13)$	$k_{13} = 4.82 \times 10^{11} T^{5.71} \exp(-13.100/T)$
$4 - C_{10}H_{21} \rightarrow TS14 \rightarrow C_8H_{16} + C_2H_5(R14)$	$k_{14} = 3.34 \times 10^{11} T^{0.08} \exp(-13400/T)$
$5 - C_{10}H_{21} \rightarrow TS15 \rightarrow C_7H_{14} + C_3H_7(R15)$	$k_{15} = 4.65 \times 10^{11} T^{0.08} \exp(-13500/T)$
$5 - C_{10}H_{21} \rightarrow TS16 \rightarrow C_6H_{12} + C_4H_9(R16)$	$k_{16} = 3.46 \times 10^{11} T^{0.07} \exp(-15\ 000/T)$
H-atom abstraction reactions $(R17 \sim R41)$	$k/cm^3 \cdot molecule^{-1} \cdot s^{-1}$
$H+C_{10}H_{22} \rightarrow TS17 \rightarrow H_2+1-C_{10}H_{21}(R17)$	$k_{17} = 4.07 \times 10^{-19} T^{2.51} \exp(-1.320/T)$
$\mathrm{H+C_{10}H_{22}} \rightarrow \mathrm{TS18} \rightarrow \mathrm{H_{2}+2-C_{10}H_{21}(R18)}$	$k_{18} = 1.01 \times 10^{-17} T^{2.25} \exp(-443/T)$
$\mathrm{H+C_{10}H_{22}} \rightarrow \mathrm{TS19} \rightarrow \mathrm{H_2+3-C_{10}H_{21}(R19)}$	$k_{19} = 1.23 \times 10^{-17} T^{2.27} \exp(-487/T)$
$\mathrm{H+C_{10}H_{22}} \rightarrow \mathrm{TS20} \rightarrow \mathrm{H_{2}+4-C_{10}H_{21}(R20)}$	$k_{20} = 1.40 \times 10^{-17} T^{2.23} \exp(-383/T)$
$\mathrm{H+C_{10}H_{22}} \rightarrow \mathrm{TS21} \rightarrow \mathrm{H_2+5-C_{10}H_{21}(R21)}$	$k_{21} = 2.04 \times 10^{-17} T^{2.21} \exp(-315/T)$
$CH_3 + C_{10}H_{22} \rightarrow TS22 \rightarrow CH_4 + 1 - C_{10}H_{21}(R22)$	$k_{22} = 4.64 \times 10^{-32} T^{5.82} \exp(-2.580/T)$
$CH_3 + C_{10}H_{22} \rightarrow TS23 \rightarrow CH_4 + 2 - C_{10}H_{21}(R23)$	$k_{23} = 9.59 \times 10^{-31} T^{6.49} \exp(-2.180/T)$
$CH_3 + C_{10}H_{22} \rightarrow TS24 \rightarrow CH_4 + 3 - C_{10}H_{21}(R24)$	$k_{24} = 4.26 \times 10^{-31} T^{5.58} \exp(-2.260/T)$
$CH_3 + C_{10}H_{22} \rightarrow TS25 \rightarrow CH_4 + 4 - C_{10}H_{21}(R25)$	$k_{25} = 3.76 \times 10^{-31} T^{6.55} \exp(-2.240/T)$
$CH_3 + C_{10}H_{22} \rightarrow TS26 \rightarrow CH_4 + 5 - C_{10}H_{21}(R26)$	$k_{26} = 7.70 \times 10^{-31} T^{6.34} \exp(-2.210/T)$
$C_2H_5 + C_{10}H_{22} \rightarrow TS27 \rightarrow C_2H_6 + 1 - C_{10}H_{21}(R27)$	$k_{27} = 2.35 \times 10^{-36} T^{/.18} \exp(-3.420/T)$
$C_2H_5+C_{10}H_{22} \rightarrow TS28 \rightarrow C_2H_6+2-C_{10}H_{21}(R28)$	$k_{28} = 6.99 \times 10^{-37} T^{1.35} \exp(-2.710/T)$
$C_2H_5+C_{10}H_{22} \rightarrow TS29 \rightarrow C_2H_6+3-C_{10}H_{21}(R29)$	$k_{29} = 1.30 \times 10^{-37} T^{7.48} \exp(-2.860/T)$
$C_2H_5+C_{10}H_{22} \rightarrow TS30 \rightarrow C_2H_6+4-C_{10}H_{21}(R30)$	$k_{30} = 1.80 \times 10^{-37} T^{7.45} \exp(-2.830/T)$
$C_2H_5+C_{10}H_{22} \rightarrow TS31 \rightarrow C_2H_6+5-C_{10}H_{21}(R31)$	$k_{31} = 1.23 \times 10^{-37} T^{7.45} \exp(-2.800/T)$
$C_{3}H_{7}+C_{10}H_{22}\rightarrow TS32\rightarrow C_{3}H_{8}+1-C_{10}H_{21}(R32)$	$k_{32} = 1.56 \times 10^{-34} T^{6.29} \exp(-3.620/T)$
$C_{3}H_{7}+C_{10}H_{22} \rightarrow TS33 \rightarrow C_{3}H_{8}+2-C_{10}H_{21}(R33)$	$k_{33} = 1.53 \times 10^{-34} T^{6.24} \exp(-2.770/T)$
$\mathbf{C}_{3}\mathbf{H}_{7}+\mathbf{C}_{10}\mathbf{H}_{22}\rightarrow\mathbf{TS34}\rightarrow\mathbf{C}_{3}\mathbf{H}_{8}+3-\mathbf{C}_{10}\mathbf{H}_{21}(\mathbf{R34})$	$k_{34} = 1.59 \times 10^{-34} T^{6.18} \exp(-2.640/T)$
$C_{3}H_{7}+C_{10}H_{22} \rightarrow TS35 \rightarrow C_{3}H_{8}+4-C_{10}H_{21}(R35)$	$k_{35} = 1.38 \times 10^{-34} T^{6.17} \exp(-2.660/T)$
$C_{3}H_{7}+C_{10}H_{22} \rightarrow TS36 \rightarrow C_{3}H_{8}+5-C_{10}H_{21}(R36)$	$k_{36} = 1.03 \times 10^{-34} T^{6.18} \exp(-2.650/T)$
$C_4H_9+C_{10}H_{22} \rightarrow TS37 \rightarrow C_4H_{10}+1-C_{10}H_{21}(R37)$	$k_{37} = 2.83 \times 10^{-34} T^{6.09} \exp(-3.400/T)$
$C_4H_9+C_{10}H_{22} \rightarrow TS38 \rightarrow C_4H_{10}+2-C_{10}H_{21}(R38)$	$k_{38} = 3.45 \times 10^{-34} T^{6.16} \exp(-2.720/T)$
$C_4H_9+C_{10}H_{22} \rightarrow TS39 \rightarrow C_4H_{10}+3-C_{10}H_{21}(R39)$	$k_{39} = 1.42 \times 10^{-34} T^{6.28} \exp(-2.830/T)$
$C_4H_9+C_{10}H_{22} \rightarrow TS40 \rightarrow C_4H_{10}+4-C_{10}H_{21}(R40)$	$k_{40} = 1.22 \times 10^{-34} T^{6.27} \exp(-2.820/T)$
$C_4H_9+C_{10}H_{22} \rightarrow TS41 \rightarrow C_4H_{10}+5-C_{10}H_{21}(R41)$	$k_{41} = 8.49 \times 10^{-35} T^{6.29} \exp(-2.820/T)$

Table 1 Fitted rate constants of the reactions in the thermal pyrolysis of *n*-decane within $300 \sim 3000$ K

第41卷

表 2 正癸烷热裂解过程中部分物种在不同温度下的热力学数据

Table 2 Thermodynamic information of partial species involved in the thermal pyrolysis of *n*-decane at different temperatures

Specie	$ riangle_{ m f} H^{ m heta}_{ m 298~K}/$		$S_{298 \text{ K}}^{ heta}$	$C^{\theta}_{p,m}(T)/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1})$							
	$(kJ \cdot mol^{-1})$		$(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	300 K	400 K	500 K	600 K	800 K	1 000 K	1 500 K	
C ₁₀ H ₂₂	-245.18	-249.49 ^b	2 668.26	205.56	271.21	333.72	388.23	474.84	538.98	637.73	
$C_{9}H_{18}$	-102.05		2 245.30	177.11	233.22	285.77	331.16	402.67	455.43	536.64	
$\mathrm{C_8H_{16}}$	-81.09	-82.80^{b}	1 984.64	156.69	206.23	252.59	292.63	355.77	402.42	474.34	
$C_{7}H_{14}$	-60.08	-62.30 ^b	1 724.14	136.27	179.24	219.41	254.09	308.86	349.41	412.08	
$C_{6}H_{12}$	-39.62	-42.09 ^a	1 463.31	115.81	152.21	186.19	215.56	261.96	296.39	349.74	
$C_{5}H_{12}$	-143.18	-146.82 ^a	1 364.95	103.26	136.11	167.65	195.48	240.25	273.84	326.23	
$C_{5}H_{10}$	-18.28	-22.30 ^a	1 202.48	95.23	125.06	152.84	176.86	214.93	243.30	287.40	
C_4H_{10}	-125.85	-125.77ª	1 104.28	82.68	108.99	134.43	156.90	193.34	220.83	263.93	
C_4H_8	1.13	0.29ª	941.99	74.77	97.99	119.62	138.32	168.03	190.25	225.14	
C_3H_8	-105.14	-104.68 ^a	843.62	62.38	82.05	101.25	118.41	146.44	167.78	201.63	
C_3H_7	105.02	100. 79 ^a	767.81	66.36	83.89	100.25	114.52	137.57	155.18	183.51	
C_3H_6	18.83	19.71 ^a	681.66	54.68	71.13	86.48	99.79	121.17	137.32	162.92	

^a NIST data base^[10]; ^b reference^[11]

图 2 在 B3LYP/aug-cc-pVTZ//B3LYP/6-311G (d,p) 水平上正癸烷 C-C 键断裂反应势能面图 Figure 2 Potential energy diagram for the C-C bond dissociation reaction of *n*-decane obtained at the level of B3LYP/aug-cc-pVTZ//B3LYP/6-311G (d,p)

烷烃的脱氢速率与脱去的氢原子所连的碳原子 位置有关,且脱氢后生成的自由基越稳定则反应越

容易进行。研究表明,按照1°、2°、3°、4°和5°碳位, 产生的自由基越来越稳定,因此,脱氢反应的速率常 数越来越大。正癸烷的抽氢反应速率常数(k₁₇~ k_{11})见表1。由如上能量关系可知,5[°]碳原子的反应 能垒最低,故自由基进攻正癸烷生成5°自由基的反 应速率最快:抽取1°碳原子上的H能垒最高,故生 成1[°]自由基的反应速率最小。由图3(a)和3(b)可 以看出,抽取2°、3°、4°和5°碳原子上的H的能垒接 近,故速率常数也接近,这与表1中的结果一致。例 如,当温度为300 K 时,表1 中 R18~R21 反应的速 率常数 k₁₈~k₂₁分别为 8.64×10⁻¹³、1.02×10⁻¹²、1.31 ×10⁻¹²、2.13×10⁻¹² cm³/(molecule · s)⁻¹,数值很接 近。同时也与袁涛^[12]在正庚烷热解反应计算部分 提出的烷烃 H 提取反应中结果一致。袁涛^[12]指出, 2° 、 3° 、 4° 和 5° 碳原子对H束缚强度接近,而 1° 碳 对H的束缚最强.故速率最小。

图 3 在 B3LYP/aug-cc-pVTZ//B3LYP/6-311G (d,p)水平上正癸烷抽氢反应势能面图 Figure 3 Potential energy diagram for the H-atom abstraction reactions of *n*-decane obtained at the level of B3LYP/aug-cc-pVTZ//B3LYP/6-311G (d,p)

路径三:β键断裂反应

直链烷烃分子通过路径一和路径二生成了多种 烷基自由基,随后发生烷基自由基的β位断裂反应。 烷基自由基的β位断裂反应是碳氢化合物在高温条 件下裂解所涉及的一类非常重要的反应,其裂解产 物为小分子烯烃和更小的烷基自由基。发生β位断 裂反应的自由基包括由路径一裂解生成烷基自由基 (乙基、1-丙基、1-丁基、1-戊基、1-己基、1-庚基、1-辛 基、1-壬基)和由路径二抽氢反应得到5种类型的癸 基(1-癸基、2-癸基、3-癸基、4-癸基、5-癸基)。图4 为正癸烷裂解过程中所有可能的β位断裂反应 (R1-R16)及后续路径在B3LYP/aug-cc-pVTZ// B3LYP/6-311G(d,p)水平上得到的势能面曲线。 图4中这16个过渡态都仅有一个虚频其振动模式 符合β断裂模式,因TS1对应C-H键断裂,其能垒 较高,为160.8 kJ/mol,而TS2~TS16 过渡态对应 C-C 键断裂,能垒在 105~118 kJ/mol。与路径二中 抽氢反应的能垒相比抽氢反应能垒较低,因此抽氢 反应较β键断裂反应更易进行。

本研究计算的正癸烷的 β 键断裂反应的速率常数 $(k_1 \sim k_{16})$ 见表 1,计算的部分结果与文献实验数据对比情况见图 5。由图 5(a)可知,本研究计算的C₂H₅→C₂H₄+H速率常数的结果与 Curran^[13]在 298~2 000 K 下给出的结果吻合的很好,且本研究拟合的速率常数的表达式 $k_1 = 1.29 \times 10^8 \times T^{2.00} \times exp$ (-19 200/*T*) s⁻¹与 Feng 等^[14]从实验获得的结果 *k* = 1.11×10¹⁰×T^{1.037}×exp(-18 504/*T*) s⁻¹(*T* = 200~1 100 K)相符,而且本研究拟合的速率常数的温度范围较宽,在 300~3 000 K。由图 5(b)和图 5(c)反应 C₃H₇→C₂H₄+CH₃和 C₄H₉→C₂H₄+C₂H₅ 计算出的速率常数与文献实验数据的结果很接近。

图 4 在 B3LYP/aug-cc-pVTZ//B3LYP/6-311G (d,p)水平上正癸烷β断裂反应势能面图 Figure 4 Potential energy diagram for the β-scission reactions of *n*-decane obtained at the level of B3LYP/aug-cc-pVTZ//B3LYP/6-311G (d,p)

2.2 热沉预测

一定实验条件(流量、压力、热载荷)下,单位质 量燃料的吸热能力称为热沉,它是评价吸热型碳氢 燃料性能的一个重要指标。燃料总热沉(HST)由 物理热沉(HSP)和化学热沉(HSC)组成。物理热 沉主要包括燃料自身的热容显热和相变潜热,化学 热沉是燃料在高温发生化学反应所吸收的热量。吸 热型碳氢燃料的物理热沉有限,不足以满足冷却需 要,额外的热沉需要从燃料在化学裂解反应中获得。

图 5 计算速率常数与文献实验数据的对比 Figure 5 Comparison of the computational rate constants with the reference experimental data (a): $C_2H_5 \longrightarrow C_2H_4 + H_1$; (b): $C_3H_7 \longrightarrow C_2H_4 + CH_3$; (c): $C_4H_9 \longrightarrow C_2H_4 + C_2H_5$

总热沉可近似表示为:

 $Q(T) = \Delta_{1}^{\epsilon} H_{m}^{\theta}(298 \text{ K}) + \Delta H_{3} + \Delta_{r} H_{m}^{\theta}(gas, T)$ (6) 式中, $\Delta_{1}^{\epsilon} H_{m}^{\theta}(298 \text{ K})$ 为相变潜热, ΔH_{3} 为热容 显热, 两者之和为物理热沉(HSP), $\Delta_{r} H_{m}^{\theta}(gas, T)$ 为 温度 T 时的标准摩尔气相反应焓, 即化学热沉 (HSC)。 基于 Chemkin II 程序^[17] 模拟预测了正癸烷热 裂解的热沉值。表 3 为常压下温度对正癸烷热沉及 转化率的影响情况,表 4 为总热沉随温度和压力的 变化情况。模拟条件为封闭均相恒温恒压的完全搅 动反应器 (PSR)模型,并设定压力 $p = 0.1 \sim$ 5.0 MPa,500~1000 °C,反应时间设定为 1 s。

表 3 常压下正癸烷不同温度时的热沉及转化率

Table 3 Values of heat sink and conversion of *n*-decane at atmospheric pressure and different temperatures

t∕°C	x/%	$HSC/(MJ \cdot kg^{-1})$	$HSP/(MJ \cdot kg^{-1})$	$HST/(MJ \cdot kg^{-1})$	HSC/HST /%	HSP/HST /%
500	0.1	0.001	1.583	1.584	0.06	99.94
550	0.6	0.011	1.752	1.763	0.62	99.38
600	6.3	0.120	1.926	2.046	5.87	94.13
650	39.5	0.865	2.105	2.970	29.12	70.88
700	79.1	1.891	2.289	4.180	45.24	54.76
750	98.9	2.425	2.477	4.903	49.46	50.52
800	100.0	2.725	2.670	5.395	50.51	49.49
850	100.0	3.273	2.866	6.139	53.31	46.69
900	100.0	4.062	3.066	7.128	56.99	43.01
950	100.0	4.908	3.269	8.177	60.02	39.98
1 000	100.0	5.494	3.475	8.969	61.26	38.74

由表3可知,常压下物理热沉随温度升高而增 大,温度平均每提高50℃物理热沉值平均增加约 0.2 MJ/kg。当温度低于500℃时,化学热沉值为 零,总热沉就是物理热沉,说明在此温度范围正癸烷 未发生裂解反应,转化率为零。当温度为500℃时, 化学热沉值为0.001 MJ/kg,转化率为0.1%,说明 正癸烷开始裂解,这与文献[18]中实验测量的裂解 起始温度一致。随着反应温度的升高,裂解转化率 增大,化学热沉值逐渐升高,这与热裂解的机理相符 合。从化学热沉值增加的幅度来看,在600~700℃ 热沉值增加幅度很大,温度提高50℃化学热沉值平 均增加约1.0 MJ/kg,但当温度在700~1000℃热 沉提高幅度变小,温度每提高50℃热沉值平均增加 约0.6 MJ/kg,说明裂解反应主要发生在600~ 700℃。在700℃时正癸烷裂解转化率为79.1%, 此时大部分正癸烷已开始裂解,化学热沉占到了 45.24%。当温度升高到800℃时,虽然转化率已达 100%,但此后随温度升高化学热沉仍显著增大,产 物分布发生显著改变,说明正癸烷向更深度的方向 发生裂解。

总的来说,压力对热沉的影响不是很大,由表4 可知,在500~680℃,总热沉随着压力增大稍有增 加,这与文献[19]中该温度段的结果一致。在 680~1000℃,总热沉随着压力增大反而缓慢减小, 其原因可能是随着压力增大反应向反应物方向移 动,驱使某些放热反应发生,导致总热沉有减小的趋 势。当温度为600℃、压力为2.5 MPa时,正癸烷的 总热沉值为2.334 MJ/kg,对应的热裂解转化率为 25.9%,该热沉值即可满足速率为5~6马赫数的飞 行器的冷却要求^[20]。若再提高温度或压力进行热 裂解来调控反应的转化率,将可以获得更大的热 沉值。

Table 4 Values of heat sink of *n*-decane at different temperatures and pressures

n/MDa	t/℃											
p/ Mra	500	550	600	650	680	700	750	800	850	900	950	1000
0.1	1.584	1.763	2.046	2.970	3.778	4.180	4.903	5.395	6.139	7.128	8.177	8.969
	(0.1)	(0.6)	(6.3)	(39.5)	(66.6)	(79.1)	(98.9)	(100)				
0.5	1.585	1.773	2.117	3.039	3.629	3.885	4.447	4.861	5.439	6.008	6.469	6.949
	(0.1)	(1.3)	(11.4)	(49.9)	(71.4)	(79.8)	(98.6)	(100)				
1.0	1.586	1.783	2.189	3.156	3.632	3.810	4.285	4.667	5.141	5.618	6.035	6.489
	(0.2)	(1.9)	(16.1)	(59.3)	(77.1)	(82.9)	(98.8)	(100)				
1.5	1.586	1.790	2.246	3.233	3.641	3.784	4.221	4.575	4.997	5.437	5.838	6.273
	(0.2)	(2.4)	(19.9)	(65.6)	(80.7)	(85.2)	(99.0)	(100)				
2.0	1.587	1.797	2.293	3.288	3.650	3.777	4.188	4.518	4.908	5.324	5.714	6.137
	(0.2)	(2.8)	(23.1)	(70.2)	(83.3)	(87.0)	(99.2)	(100)				
2.5	1.587	1.803	2.334	3.330	3.661	3.780	4.168	4.478	4.845	5.244	5.627	6.039
	(0.2)	(3.2)	(25.9)	(73.8)	(85.1)	(88.3)	(99.3)	(100)				
3.0	1.587	1.809	2.370	3.363	3.672	3.787	4.154	4.448	4.798	5.184	5.559	5.963
	(0.2)	(3.6)	(28.4)	(76.6)	(86.6)	(89.4)	(99.4)	(100)				
3.5	1.587	1.814	2.401	3.392	3.683	3.794	4.142	4.424	4.761	5.136	5.505	5.902
	(0.2)	(3.9)	(30.7)	(78.9)	(87.7)	(90.3)	(99.5)	(100)				
4.0	1.587	1.819	2.430	3.417	3.692	3.802	4.133	4.404	4.731	5.097	5.461	5.851
	(0.2)	(4.3)	(32.7)	(80.8)	(88.6)	(91.1)	(99.6)	(100)				
4.5	1.587	1.824	2.455	3.439	3.701	3.808	4.125	4.387	4.706	5.064	5.423	5.807
	(0.3)	(4.6)	(34.6)	(82.5)	(89.4)	(91.8)	(99.7)	(100)				
5.0	1.588	1.828	2.479	3.459	3.709	3.814	4.118	4.373	4.684	5.036	5.390	5.769
	(0.3)	(4.9)	(36.4)	(83.9)	(90.1)	(92.4)	(99.7)	(100)				

parenthesis presents the conversion (x/%), and the values between 850 and 1000 °C which are the same with at 800 °C have been omitted

2.3 产物分布

从热力学角度分析,燃料裂解生成烷烃的反应 是放热反应,而生成烯烃的反应为吸热反应,那么生 成乙烯、丙烯等不饱和烃比生成甲烷、乙烷、丙烷等 饱和烃更有利于吸热,且在生成烷烃的反应中生成 甲烷是放热最多的反应。因此,吸热型碳氢燃料在 裂解过程中生成低碳不饱和烃更有利于化学热沉的 提高。

依据 2.1 节所提出的正癸烷热裂解机理,结合 $C_{p,m}^{\theta}$ 、 S_{m}^{θ} 和 H_{m}^{θ} 热力学参数的拟合多项式以及由传统 过渡态理论计算获得的动力学数据,应用化学反应 动力学程序 Chemkin II 模拟正癸烷热裂解的产物 分布。模拟条件中反应器模型、设定压力和反应时 间与热沉计算相同,仅起始温度提升至 600 °C(裂解 主要发生在 600 °C以后)。模拟结果表明,正癸烷热 裂解的主要气相产物有氢气(H₂)、甲烷(CH₄)、乙 烯(C₂H₄)、乙烷(C₂H₆)、丙烯(C₃H₆)和 1,3-丁二 烯(C₄H₆)。常压下正癸烷裂解主要产物的产率 w (即每摩尔正癸烷裂解生成产物的物质的量)和转 化率 x 随温度的变化见图 6。

由图 6 可知,当温度低于 600 ℃时,裂解转化率 几乎为零,无产物生成,此后随着温度升高转化率迅 速增大。当升高到 800 ℃时转化率达到 100%,在 此温度区间内氢气、甲烷、乙烯各物质的产量均有所 增加,而乙烷、1,3-丁二烯、丙烯先增多后减少,同 时,产物产量之间的关系依次为:乙烯>甲烷>氢气> 1,3-丁二烯>丙烯>乙烷,说明乙烯、甲烷和氢气在 正癸烷裂解的主要气相产物中占主导地位。而在 600~700 ℃时乙烯量增加幅度最大,这也是在此区 间热沉值增加较大的原因。在 800~1000 ℃,正癸 烷已完全转化,气相产物分布与 600~800 ℃时不 同,说明正癸烷向更深度的方向发生裂解。当温度 达到 850 ℃时,乙烯产量最大,然后随温度升高急剧 减少,而氢气和甲烷的产量则急剧增大,这也是高温 段热沉值增加幅度相对较小的原因。 个组分和41个过渡态。其中,C-C键断裂过程是链 反应的起始步骤,一旦 C-C键断裂有自由基生成另 两种反应也随之进行,且抽氢反应较 β 键断裂反应 更易进行。正癸烷裂解起始温度为500 °C,且裂解 主要发生在600~700 °C。热裂解的主要气相产物 有氢气(H₂)、甲烷(CH₄)、乙烯(C₂H₄)、乙烷 (C₂H₆)、丙烯(C₃H₆)和1,3-丁二烯(C₄H₆)。理论 计算结果表明,生成乙烯等不饱和烃有利于正癸烷 化学热沉的提高,而饱和烃尤其是甲烷的生成不利 于化学热沉的提高,所以通过提高烯烃的生成量特 别是乙烯的生成有助于提高热沉。

压力对热沉的影响很小,在 500 ~ 680 ℃,当温 度恒定时总热沉随着压力增大稍有增加,在 680 ~ 1 000 ℃,总热沉随着压力增大反而缓慢减小。在 600 ~ 700 ℃,温度提高 50 ℃化学热沉值平均增加 约 1.0 MJ/kg;在 700 ~ 1 000 ℃,温度每提高 50 ℃ 化学热沉值平均增加约 0.6 MJ/kg。

3 结论

正癸烷热裂解机理主要包括 C-C 键断裂、β 键 断裂及抽氢三类反应,该机理共包含 47 个反应、30

致 谢:感谢四川大学李象远教授和王静波老师的指导和帮助。

参考文献

[1] 李春迎,李凤仙,杜咏梅,吕剑. 吸热型碳氢燃料五环[6.3.1.0^{2,7}.0^{3,5}.0^{9,11}]十二烷的催化合成[J]. 燃料化学学报,2007,35(5): 637-640.

(LI Chun-ying, LI Feng-xian, Du Yong-mei, LU Jian. Synthesis of endothermic hydrocarbon fuel pentacyclo [6.3.1.0^{2,7}.0^{3,5}.0^{9,11}] dodecane[J]. Journal of Fuel Chemistry and Technology, 2007, **35**(5): 637-640.)

- [2] 孙青梅,米镇涛,张香文. 吸热型碳氢燃料 RP-3 仿 JP-7 临界性质(t_c、p_c)的测定[J]. 燃料化学学报, 2006, **34**(4): 466-470.
 (SUN Qing-mei, MI Zhen-tao, ZHANG Xiang-wen. Determination of critical properties (t_c, p_c) of endothermic hydrocarbon fuels RP-3 and simulated JP-7[J]. Journal of Fuel Chemistry and Technology, 2006, **34**(4): 466-470.)
- [3] HERBINET O, MARQUAIRE P M, FREDERIQUE B L, FOURNET R. Thermal decomposition of n-dodecane: Experiments and kinetic modeling[J]. J Anal App Pyrolysis, 2007, 78(2): 419-429.
- [4] ZAMOSTNY P, BELOHLAV Z, STARKBAUMOVA L, PATERA J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products [J]. J Anal Appl Pyrolysis, 2010, 87(2): 207-216.
- [5] YU J, ESER S. Thermal decomposition of C_{10} - C_{14} normal alkanes in near-critical and supercritical regions: Product distributions and reaction mechanisms [J]. Ind Eng Chem Res, 1997, **36**(3): 574-584.
- [6] 焦毅,李军,王静波,王健礼,朱权,陈耀强,李象远. 正癸烷热裂解实验和动力学模拟[J]. 物理化学学报,2011,27(5):1061-1067.
 (JIAO Yi, LI Jun, WANG Jing-bo, WANG Jian-li, ZHU Quan, CHEN Yao-qiang, LI Xiang-yuan. Experiment and kinetics simulation on the pyrolysis of *n*-decane[J]. Acta Phys Chim Sin, 2011, 27(5): 1061-1067.)
- ZEPPIERI S P, KLOTZ S D, DRYER F L. Modeling concepts for larger carbon mumber alkanes: A partially reduced skeletal mechanism for *n*-decane oxidation and pyrolysis[J]. Proc Combust Inst, 2000, 28(2): 1587-1595.
- [8] FRISCH M J, TRUCKS G W. Gaussiah 03 [CP]. Gaussion, Inc., Wallingford CT, 2004.
- [9] DUNCAN W T, BELL R L, TRUONG T N. The rate: Program for ab initio direct dynamics calculations of thermal and vibrational-stateselected rate constants[J]. J Comput Chem, 1998, **19**(9): 1039-1052.
- [10] MANION J A, HUIE R E, LEVIN R D, BURGESS Jr, ORKIN V L, TSANG W, MCGIVERN W S, HUDEGENS J W, KNYAZEV V D, ATKINSON D B, CHAI E, TREREZA A M, LIN C-Y, ALLISON T C, MALLARD W G, WESTLEY F, HERRON J T, HAMPSON R F, FRIZZELL D H. Chemical Kinetics Database, NIST Standard Reference Database 17 (Web Version), Release 1. 4. 2, data version 08. 09 [2]. National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8380.
- [11] COHEN N. Revised group additivity values for enthalpies of formation(at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds
 [J]. J Phys Chem Ref Data, 1996, 25(6): 1411-1481.
- [12] 袁涛. 正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究[D]. 合肥:中国科学技术大学, 2010.
 (YUAN Tao. Experimental and kinetic modeling studies on pyrolysis and premixed flames of *n*-hptane and *iso*-octane[D]. Hefei: University of Science and Technology of China, 2010.)
- [13] CURRAN H J. Rate constant estimation for C₁ to C₄ alkyl and alkoxyl radical decomposition [J]. Int J Chem Kinet, 2006, **38**(4): 250-275.
- [14] FENG Y, NIIRANEN J T, BENCSURA A, KNYAZEV V D, GUTMAN D, TSANG W. Weak collision effects in the reaction $C_2H_5 \rightarrow C_2H_4 + H[J]$. J Phys Chem, 1993, **97**(4): 871-880.

- BENCSURA A, KNYAZEV V D, XING S B, SLAGLE I R, GUTMAN D. Kinetics of the thermal decomposition of the *n*-propyl radical
 [J]. Symp Int Combust Proc, 1992, 24: 629-635.
- [16] KNYAZEV V D, SLAGLE I R. Unimolecular decomposition of $n-C_4H_9$ and $iso-C_4H_9$ radicals [J]. J Phys Chem, 1996, 100(13): 5318-5328.
- [17] KEE R J, RUPLEY F M, MILLER J A, COLTRIN M E, GRCAR J F, MEEKS E, MOFFAT H K, LUTZ A E, DIXON-LEWIS G, SMOOKE M D, WARNATZ J, EVANS G H, LARSON R S, MITCHELL R E, PETZOLD L R, REYNOLDS W C, CARACOTSIOS M, STEWART W E, GLARBORG P, WANG C, ADIGUN O, HOUF W G, CHOU C P, MILLER S F. 2002 PaSR Application user manual: Modeling the mixing and kinetics in partially stirred reactors[Z]. Chemkin Collection Release 3.7, Reaction Design, Inc., San Diego, CA, 2002.
- [18] 贾贞健. 吸热型碳氢燃料正癸烷高温裂解机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
 (JIA Zhen-jian. Pyrolysis mechanism study of endothermic hydrocarbon fuel *n*-decane at high temperature[D]. Harbin: Harbin Institute of Techonlogy, 2011.)
- [19] 刑燕,方文军,谢文杰,郭永胜,林瑞森. 吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定[J]. 化学学报,2008,66 (20):2243-2247.

(XING Yan, FANG Wen-jun, XIE Wen-jie, GUO Yong-sheng, LIN Rui-sen. Thermal cracking and heat sink measurement of model compounds of endothermic hydrocarbon fuels under supercritical conditions[J]. Acta Chimica Sinica, 2008, 66(20); 2243-2247.)
 [20] 朱丹阳,吸热型碳氢燃料热沉的测定及影响因素[D]. 天津, 天津大学, 2004.

(ZHU Dan-yang. Measuring of heat sink of endothermic hydrocarbon fuels and some factors[D]. Tianjin: Tianjin University, 2004.)

《燃料化学学报》征稿简则

《燃料化学学报》是由中国科学院主管、中国化学会和中国科学院山西煤炭化学研究所主办。刊载国内外燃料 化学基础研究及其相关领域的最新研究成果和进展,涵盖煤炭、石油、油页岩、天然气、生物质,以及与此相关的环 境保护和应用催化等方面的内容。

栏目设置

研究论文 报道学术价值显著、实验数据完整的研究成果,全文一般不超过6000字;

研究快报 迅速报道学术价值显著的最新进展,全文一般不超过4000字;

研究简报 报道研究工作中的部分或阶段性的研究成果,全文一般不超过4000字;

综合评述 一般为预约稿(不超过8000字)。

投 稿

1. 本刊热忱欢迎国内外学者投稿,中英文稿件均可,请登陆本刊网站(http://rlhxxb.sxicc.ac.cn)注册投稿;

2. 来稿请邮寄单位推荐信,说明文稿无泄密和一稿多投等内容。

稿件及出版

(1) 审理结果一般在3个月内通知作者,对不宜采用的稿件会尽快通知。不刊用的稿件恕不退还;

(2) 刊出的稿件通知作者交论文发表费和审稿费。期刊印出后酌致稿酬,并赠期刊2份和分装本10份;

(3) 从 2000 年起本刊已入编中国学术期刊光盘版、网络版,均不再另外通知和另付稿酬。凡不愿加入者,请 投稿时说明。

联系方式:

通讯地址:山西省太原市桃园南路 27 号《燃料化学学报》编辑部 邮编:030001 联系电话:0351-2025214 4066044 传真:0351-2025214

E-mail: rlhx@ sxicc. ac. cn