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Abstract. The emerging field of compressed sensing has potentially pow-
erful implications for the design of optical imaging devices. In particular,
compressed sensing theory suggests that one can recover a scene at
a higher resolution than is dictated by the pitch of the focal plane ar-
ray. This rather remarkable result comes with some important caveats
however, especially when practical issues associated with physical im-
plementation are taken into account. This tutorial discusses compressed
sensing in the context of optical imaging devices, emphasizing the prac-
tical hurdles related to building such devices, and offering suggestions
for overcoming these hurdles. Examples and analysis specifically related
to infrared imaging highlight the challenges associated with large format
focal plane arrays and how these challenges can be mitigated using com-
pressed sensing ideas. C© 2011 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.3596602]
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1 Introduction
This tutorial describes new methods and computational
imagers for increasing system resolution based on recently
developed compressed sensing (CS, also referred to as
compressive sampling)1, 2 techniques. CS is a mathemati-
cal framework with several powerful theorems that provide
insight into how a high resolution image can be inferred
from a relatively small number of measurements using so-
phisticated computational methods. For example, in theory a
1 mega-pixel array could potentially be used to reconstruct
a 4 mega-pixel image by projecting the desired high resolu-
tion image onto a set of low resolution measurements (via
spatial light modulators, for instance) and then recovering
the 4 mega-pixel scene through sparse signal reconstruc-
tion software. However, it is not immediately clear how to
build a practical system that incorporates these theoretical
concepts. This paper provides a tutorial on CS for optical
engineers which focuses on 1. a brief overview of the main
theoretical tenets of CS, 2. physical systems designed with
CS theory in mind and the various tradeoffs associated with
these systems, and 3. an overview of the state-of-the-art in
sparse reconstruction algorithms used for CS image forma-
tion. There are several other tutorials on CS available in the
literature which we highly recommend;3–7 however, these
papers do not address important technical issues related to
optical systems, including a discussion of the tradeoffs asso-
ciated with non-negativity, photon noise, and the practicality
of implementation in real imaging systems.

Although the CS theory and methods we describe in this
paper can be applied to many general imaging systems, we
concentrate on infrared (IR) technology as a specific example
to highlight the challenges associated with applying CS to
practical optical systems and to illustrate its potential benefits
for improving system resolution. Much of the research and
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development in IR imaging is driven by a continued desire
for high resolution, large-format focal plane arrays (FPAs).
The push for high quality, wide field-of-view IR imagery
is particularly strong in military applications. Modern mar-
itime combat, for example, requires consideration of small,
difficult-to-detect watercraft operating in low-light environ-
ments or in areas where obscurants such as smoke or marine-
layer haze make conventional imaging difficult. While high
resolution IR imaging can meet these challenges, there is
a considerable cost in terms of power, form factor, and fi-
nance, in part due to higher costs of IR detector materials
and material processing challenges when constructing small
pitch FPAs. Despite recent advances,8–10 copious research
funds continue to be spent on developing larger format ar-
rays with small pitch. CS addresses the question of whether
it is necessary to physically produce smaller sensors in order
to achieve higher resolution. Conventional practice would
require one sensor (e.g., focal plane array element) per im-
age pixel; however, the theory, algorithms, and architectures
described in this paper may alleviate this constraint.

1.1 Paper Structure and Contribution
In Sec. 2, we introduce the key theoretical concepts of CS
with an intuitive explanation of how high resolution imagery
can be achieved with a small number of measurements. Prac-
tical architectures which have been developed to exploit CS
theory and associated challenges of photon efficiency and
noise, non-negativity, and dynamic range are described in
Sec. 3. Section 4 describes computational methods designed
for inferring high resolution imagery from a small number of
compressive measurements. This is an active research area,
and we provide a brief overview of the broad classes of
techniques used and their tradeoffs. These concepts are then
brought together in Sec. 5 with the description of a physical
system in development for IR imaging and how CS impacts
the contrast of bar target images commonly used to assess
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the resolution of IR cameras. We offer some brief concluding
remarks in Sec. 6.

2 Compressed Sensing
The basic idea of CS theory is that when the image of inter-
est is very sparse or highly compressible in some basis (i.e.,
most basis coefficients are small or zero-valued), relatively
few well-chosen observations suffice to reconstruct the most
significant nonzero components. In particular, judicious se-
lection of the type of image transformation introduced by
measurement systems may dramatically improve our ability
to extract high quality images from a limited number of mea-
surements. In this section we review the intuition and theory
underlying these ideas. By designing optical sensors to col-
lect measurements of a scene according to CS theory, we
can use sophisticated computational methods to infer critical
scene structure and content.

2.1 Underlying Intuition
One interpretation for why CS is possible is based on the
inherent compressibility of most images of interest. Since
images may be stored with modern compression methods
using fewer than one bit per pixel, we infer that the criti-
cal information content of the image is much less than the
number of pixels times the bit depth of each pixel. Thus
rather than measuring each pixel and then computing a com-
pressed representation, CS suggests that we can measure a
“compressed” representation directly.

More specifically, consider what would happen if we knew
ahead of time that our scene consisted of one bright point
source against a black background. Conventional measure-
ment of this scene would require an FPA with N elements to
localize this bright spot with accuracy 1/N , as depicted in
Fig. 1(a). Here, I j is an indicator image for the j’th pixel on
a

√
N × √

N grid, so that x j is a direct measurement of the
j’th pixel’s intensity. In other words, the point spread func-
tion being modeled is a simple Dirac delta function at the
resolution of the detector. If the one bright spot in our image
is in pixel k, then xk will be proportional to its brightness,
and the remaining x j ’s will be zero-valued.

However, our experience with binary search strategies and
group testing suggests that, armed with our prior knowledge
about the sparsity of the signal, we should be able to deter-
mine the location of the bright pixel with significantly fewer
than N measurements. For instance, consider the binary sens-
ing strategy depicted in Fig. 1(b). The first measurement im-
mediately narrows down the set of possible locations for our
bright pixel to half its original size, and the second measure-
ment reduces the size of this set by half again. Thus with only
M = log2 N measurements of this form, we may accurately
localize our bright source.

It is easiest to see that this approach should work in the
setting where there is only one nonzero pixel in the original
scene and measurements are noise-free. Compressed sensing
provides a mechanism for transforming this intuition into
settings with noisy measurements where (i) the image
contains a small, unknown number (K � N ) of nonzero
pixels or (ii) the image contains significantly more structure,
such as texture, edges, boundaries, and smoothly varying
surfaces, but can be approximated accurately with K � N
nonzero coefficients in some basis (e.g., a wavelet basis).
Case (i) is depicted in Fig. 1(c), and case (ii) is depicted
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Fig. 1 Potential imaging modes. (a) Each detector in a focal plane
array measures the intensity of a single pixel. This corresponds to a
conventional imaging setup. For an N-pixel image, we would require
N elements in the FPA. (b) Binary system for noise-free sensing of
an image known to have only one nonzero pixel. The first measure-
ment, x1, would indicate which half of the imaging plane contains
the nonzero pixel. The second measurement, x2, combined with x1,
narrows down the location of the nonzero pixel to one of the four
quadrants. To localize the nonzero element to one of N possible
locations, only M = log2 N binary measurements of this form are
required. (c) An extension of the binary sensing system to images
which may contain more than one non-zero pixel. Each measure-
ment is the inner product between the image and a binary, possibly
pseudorandom, array. Compressed sensing says that if M, the num-
ber of measurements, is a small multiple of log2 N, the image can be
accurately reconstructed using appropriate computational tools. (d)
Similar concepts hold when the image is sparse or compressible in
some orthonormal basis, such as a wavelet basis.

in Fig. 1(d). The CS approach requires that the binary
projections be constructed slightly differently than those
considered in Fig. 1(b), e.g., using random matrices, but
each measurement is nevertheless the (potentially weighted)
sum of a subset of the original pixels.

2.2 Underlying Theory
The above concepts are formalized in this section. We only
provide a brief overview of a few main theoretical results in
this burgeoning field and refer readers to other tutorials3–7

for additional details. Consider an N -pixel image (which we
represent as a length-N column vector) f �, represented in
terms of a basis expansion with N coefficients:

f � = Wθ� =
N∑

i=1

θ�
i wi ,

where wi is the i’th basis vector and θ�
i is the corresponding

coefficient. In many settings, the basis W � [w1, . . . , w N ]
can be chosen so that only K � N coefficients have sig-
nificant magnitude, i.e., many of the θ�

i ’s are zero or very
small for large classes of images; we then say that θ� �
[θ�

1 , . . . , θ�
N ]T is sparse or compressible. Sparsity (or, more

generally, low-dimensional structure) has long been rec-
ognized as a highly useful metric in a variety of inverse
problems, but much of the underlying theoretical support
was lacking. More recent theoretical studies have provided
strong justification for the use of sparsity constraints and

Optical Engineering July 2011/Vol. 50(7)072601-2

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 04/16/2014 Terms of Use: http://spiedl.org/terms



Willett, Marcia, and Nichols: Compressed sensing for practical optical imaging systems...

quantified the accuracy of sparse solutions to underdeter-
mined systems.11, 12

In such cases, it is clear that if we knew which K of the
θ�

i ’s were significant, we would ideally just measure these
K coefficients directly, resulting in fewer measurements to
obtain an accurate representation of f �. Of course, in general
we do not know a priori which coefficients are significant.
The key insight of CS is that, with slightly more than K
well-chosen measurements, we can determine which θ�

i ’s are
significant and accurately estimate their values. Furthermore,
fast algorithms which exploit the sparsity of θ� make this
recovery computationally feasible.

The data collected by an imaging or measurement system
are represented as

x = R f � + n = RWθ� + n, (1)

where R ∈ R
M×N linearly projects the scene onto an

M-dimensional set of observations, n ∈ R
M is noise asso-

ciated with the physics of the sensor, and x ∈ R
M
+ is the

observed data. (Typically n is assumed bounded or bounded
with high probability to ensure that x , which is proportional
to photon intensities, is non-negative.) Sparse recovery al-
gorithms address the problem of solving for f � when the
number of unknowns, N , is much larger than the number of
observations, M . In general, this is an ill-posed problem as
there are a possibly infinite number of candidate solutions for
f �; nevertheless, CS theory provides a set of conditions on
R, W , and f � that, if satisfied, assure an accurate estimation
of f �.

Much of the CS literature revolves around determining
when a sensing matrix A � RW allows accurate reconstruc-
tion using an appropriate algorithm. One widely used prop-
erty used in such discussions is the restricted isometry prop-
erty (RIP):

Definition 2.1 (Restricted Isometry Property11): The ma-
trix A satisfies the restricted isometry property of order K
with parameter δK ∈ [0, 1) if

(1 − δK )‖θ‖2
2 ≤ ‖Aθ‖2

2 ≤ (1 + δK )‖θ‖2
2

holds simultaneously for all sparse vectors θ having no more
than K nonzero entries. Matrices with this property are de-
noted RIP(K , δK ).

[In the above, ‖θ‖2 � (
∑N

i=1 θ2
i )1/2.] For example, if the

entries of A are independent and identically distributed ac-
cording to

Ai, j ∼ N
(

0,
1

M

)
or

Ai, j =
{

M−1/2 with probability 1/2

−M−1/2 with probability 1/2
,

then A satisfies RIP(K , δK ) with high probability for any in-
teger K = O(M/ log N ).11, 13, 14 Matrices which satisfy the
RIP combined with sparse recovery algorithms are guaran-
teed to yield accurate estimates of the underlying function
f �, as specified by the following theorem. [As shown below,
‖θ‖1 �

∑N
i=1 |θi |.]

Theorem 2.2 (Noisy Sparse Recovery with RIP
Matrices3, 15): Let A be a matrix satisfying RIP(2K , δ2K )

with δ2K <
√

2 − 1, and let x = Aθ� + n be a vector of noisy
observations of any signal θ� ∈ R

N , where n is a noise or
error term with ‖n‖2 ≤ ε. Let θ�

K be the best K -sparse ap-
proximation of θ�; that is, θ�

K is the approximation obtained
by keeping the K largest entries of θ� and setting the others
to zero. Then the estimate

θ̂ = arg min
θ∈RN

‖θ‖1 subject to ‖x − Aθ‖2 ≤ ε, (2)

obeys

‖θ� − θ̂‖2 ≤ C1,K ε + C2,K
‖θ� − θ�

K ‖1√
K

,

where C1,K and C2,K are constants which depend on K but
not on N or M.

In other words, the accuracy of the reconstruction of a
general image f � from measurements collected using a sys-
tem which satisfies the RIP depends on a. the amount of
noise present and b. how well f � may be approximated by
an image sparse in W . In the special case of noiseless acqui-
sition of K -sparse signals , we have ε = 0 and θ� ≡ θ�

K , and
Theorem 2.2 implies exact recovery so that θ� = θ̂ .

Note that if the noise were Gaussian white noise with
variance σ 2, then ‖n‖2 ≈ σ

√
N , so the first term in the er-

ror bound in Theorem 2.2 scales like σ
√

N . If the noise
is Poisson, corresponding to a low-light or infrared setting,
then ‖n‖2 may be arbitrarily large; theoretical analysis in this
setting must include several physical constraints not consid-
ered above but described in Sec. 3.2. Additional theory on
reconstruction accuracy, optimality, stability with respect to
noise, and the uniqueness of solutions is prevalent in the
literature.3, 12, 16 Finally, note that the reconstruction (2) in
Theorem 2.2 is equivalent to

θ̂ = arg min
θ∈RN

1

2
‖x − Aθ‖2

2 + τ‖θ‖1 and f̂ = W θ̂ , (3)

where τ > 0 is a regularization parameter which depends on
ε. Methods for computing this and related formulations are
described in Sec. 4.

A related criteria for determining the quality of the mea-
surement matrix for CS is the worst-case coherence of
A ≡ RW .17–19 Formally, denote the Gram matrix G � AT A
when the columns of A have unit norm and let

μ(A) � max
1≤i, j≤N

i 
= j

|Gi, j | (4)

be the largest off-diagonal element of the Gram matrix. A
good goal in designing a sensing matrix is to therefore choose
R and W so that μ is as close as possible to M−1/2. There
also exist matrices A associated with highly overcomplete
dictionaries where N ≈ M2 and μ(A) ≈ 1/

√
M .20 Several

recent works have examined the recovery guarantees of CS
as a function of μ(A),17, 21–26 such as the following:

Theorem 2.3 (Noisy Sparse Recovery with Incoher-
ent Matrices21): Let x = Aθ� + n be a vector of noisy
observations of any K -sparse signal θ� ∈ R

N , where K
≤ [μ(A)−1 + 1]/4 and n is a noise or error term with
‖n‖2 ≤ ε. Then the estimate in Eq. (2) obeys

‖θ� − θ̂‖2 ≤ 4ε2

1 − μ(A)(4K − 1)
.
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One of the main practical advantages of coherence-based
theory is that it is possible to compute μ for a given CS
system. Furthermore, Gersgorin’s circle theorem27 states that
if a matrix has coherence μ then it satisfies RIP of order (k, ε)
with k ∼ ε/μ; this fact was used in several papers analyzing
the performance of CS.19, 28, 29

Many of the ideas connected to CS, such as using the
�1 norm during reconstruction to achieve sparse solutions,
existed in the literature long before the central theory of CS
was developed. However, we had limited fundamental insight
into why these methods worked, including necessary condi-
tions which would guarantee successful image recovery. CS
theory provides significant inroads in this direction. In partic-
ular, we now understand how to assess when a sensing matrix
will facilitate accurate sparse recovery, and we can use this
insight to guide the development of new imaging hardware.
Given a particular CS system, governed by A = RW , let the
ratios ρ = K/M and δ = M/N , respectively, quantify the
degree of sparsity and the degree to which the problem is un-
derdetermined. It has been shown that for many CS matrices,
there exist sharp boundaries in ρ, δ space that clearly divide
the “solvable” from “unsolvable” problems in the noiseless
case.30, 31 This boundary is shown in Fig. 2 for the case of
a random Gaussian CS matrix (entries of A are drawn in-
dependently from a Gaussian distribution); however it has
been shown by Donoho and Tanner30 that this same bound-
ary holds for many other CS matrices as well. Above the
boundary, the system lacks sparsity and/or is too underde-
termined to solve; below the boundary, solutions are readily
obtainable by solving Eq. (2) with ε = 0.

Finally, it should be noted that the matrix R is a model
for the propagation of light through an optical system. The
reconstruction performance is thus going to depend not only
on the RIP or incoherence properties of R, but also on mod-
eling inaccuracies due to misalignments, calibration, diffrac-
tion, sensor efficiency and bit depth, and other practical chal-
lenges. These model inaccuracies can often be incorporated
in the noise term for the theoretical analysis above, and typ-
ically play a significant role in determining overall system
performance.

0 0.2 0.4 0.6 0.8 1
0
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0.6
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1

δ=M/N

ρ=
K

/M

 "Solvability" boundary

Fig. 2 For a CS matrix A with Gaussian distributed entries, the
boundary separates regions in the problem space where (2) can
and cannot be solved (with ε = 0). Below this curve solutions can be
readily obtained, above the curve they cannot.

3 CS Imaging Systems and Practical Challenges
To date there have been several CS imaging devices built
and tested in the laboratory. In general, the central challenge
addressed by these methods is to find an architecture which
effectively balances between a. physical considerations such
as size and cost, b. reconstruction accuracy, and c. reconstruc-
tion speed. We review several recently proposed architectures
in this section and outline some of the challenges associated
with non-negativity and photon noise in this section.

3.1 Imaging Systems
Developing practical optical systems to exploit CS theory is
a significant challenge being explored by investigators in the
signal processing, optics, optimization, astronomy, and cod-
ing theory communities. In addition to implicitly placing hard
constraints on the nature of the measurements which can be
collected, such as non-negativity of both the projection vec-
tors and the measurements, practical CS imaging systems
must also be robust and reasonably sized. Neifeld and Ke32

describe three general optical architectures for compressive
imaging: 1. sequential, where measurements are taken one at
a time, 2. parallel, where multiple measurements are taken
simultaneously using a fixed mask, and 3. photon-sharing,
where beam-splitters and micromirror arrays are used to col-
lect measurements. Here, we describe some optical hardware
with these architectures that have been recently considered
in literature.

3.1.1 Rice single-pixel camera
Perhaps the most well-known example of a CS imager is the
rice single-pixel camera developed by Duarte et al.33, 34 and
the more recent single-pixel microscope.35 This architecture
uses only a single detector element to image a scene. A dig-
ital micromirror array is used to represent a pseudorandom
binary array, and the scene of interest is then projected onto
that array before the aggregate intensity of the projection is
measured with a single detector. Since the individual orien-
tations of the mirrors in the micromirror array can be altered
very rapidly, a series of different pseudorandom projections
can be measured successively in relatively little time. The
original image is then reconstructed from the resulting ob-
servations using CS reconstruction techniques such as those
described in Section 4. One of the chief benefits of this ar-
chitecture is that any binary projection matrix can readily be
implemented in this system, so that existing CS theory can
be directly applied to the measurements. The drawback to
this architecture is that one is required to keep the camera
focused on the object of interest until enough samples have
been collected for reconstruction. The time required may be
prohibitive in some applications. Although we can rapidly
collect many projections sequentially at lower exposure, this
increases the amount of noise per measurement, thus dimin-
ishing its potential for video imaging applications.

3.1.2 Coded aperture imagers
Marcia and Willett,36 Marcia et al.37 Romberg,38 and Stern
and Javidi39 propose practical implementations of CS ideas
using coded apertures, demonstrating that if the coded aper-
tures are designed using a pseudorandom construction, then
the resulting observation model satisfies the RIP. Further-
more, the resulting sensing matrix R has a Toeplitz struc-
ture that allows for very fast computation within reconstruc-
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tion algorithms, providing a significant speedup over random
matrix constructions.40 The “random lens imaging” optical
system41 is another parallel architecture that is highly suit-
able for practical and implementable compressive imaging
since it provides a snapshot image (i.e., all M measurements
are collected simultaneously) and does not require complex,
and potentially large, imaging apparatuses.

3.1.3 CMOS CS imagers
Both Robucci et al.42 and Majidzadeh et al.43 have proposed
performing an analog, random convolution step in comple-
mentary, metal-oxide-semiconductor (CMOS) electronics. A
clear advantage to this architecture is that the additional op-
tics required for spatial light modulation are removed in fa-
vor of additional circuitry. In general, this seems to be a wise
trade-off to make, considering the immediate reduction in
imager size. The device described by Robucci et al.42 also
leverages the ability of CMOS electronics to perform fast,
block-wise inner products between the incoming data and a
pre-defined random sequence. In the cited work the authors
used a noiselet basis with binary {1,−1} coefficients for the
projection operation, however, the architecture is extremely
flexible and could admit many other choices (e.g., discrete
cosine transform). The CMOS implementation is also likely
to be low cost, relative to other approaches requiring expen-
sive optical components.

3.1.4 Spectral imagers
Tradeoffs between spectral and spatial resolution limit the
performance of modern spectral imagers, especially in
photon-limited settings where the small number of photons
must be apportioned between the voxels in the data cube,
resulting in low signal-to-noise ratio (SNR) per voxel. Gehm
et al.44 and Wagadarikar et al.45 proposed innovative, real-
time spectral imagers, where each pixel measurement is the
coded projection of the spectrum in the corresponding spatial
location in the data cube. This was first implemented using
two dispersive elements separated by binary-coded masks;
later, simpler designs omitted one dispersive element. In re-
lated work, objects are illuminated by light sources with
tunable spectra using spatial light modulators to facilitate
compressive spectral image acquisition.46 Finally, we men-
tion more recent examples of compressive spectral imagers,
such as compressive structured light codes where each cam-
era pixel measures light from points along the line of sight
within a volume density,47 and cameras that use dispersers
for imaging piecewise “macropixel” objects (e.g., biochip
microarrays in biochemistry).48

3.1.5 Application-specific architectures
Compressive imaging can afford other possible advantages
besides simply reducing the number of pixels. Shankar
et al. used CS to develop an infrared camera that signifi-
cantly reduced the thickness of the optics (by an order of
magnitude).49 Coskun et al.50 also used CS principles to elim-
inate optical components (a lens) in a fluorescent imaging
application of naturally sparse signals. Other recent works in-
clude the application of CS theory to radar imaging51 and the
recovery of volumetric densities associated with translucent
media (e.g., smoke, clouds, etc.).52 Still, other CS optical sys-
tems have also been proposed in a variety of applications in-
cluding DNA microarrays,53, 54 magnetic resonance imaging

(MRI),55 ground penetrating radar,56 confocal microscopy,57

and astronomical imaging.58

3.2 Non-negativity and Photon Noise
The theory in Sec. 2 described pseudorandom sensing ma-
trices that satisfied the RIP, and hence led to theoretical
guarantees on reconstruction accuracy in the presence of
Gaussian or bounded noise. However, these sensing matri-
ces were zero mean, so that approximately half of the ele-
ments were negative. Such a system is impossible to con-
struct with linear optical elements. In addition, Gaussian
or bounded noise models are not appropriate for all opti-
cal systems. Finally, we have the (typically not modeled)
physical constraint that the total light intensity incident upon
our detector cannot exceed the total light intensity entering
our aperture; i.e., ‖R f ‖1 ≤ ‖ f ‖1. These practical consid-
erations lead to an active area of ongoing research. Sev-
eral of the physical architectures described above were de-
signed based on zero-mean sensing models, and then sub-
jected to a mean shift to make every element of the sensing
matrix non-negative. In high SNR settings, reconstruction
algorithms can compensate for this offset, rendering it neg-
ligible. This adjustment is critical to the success of many
sparse reconstruction algorithms discussed in the literature,
which perform best when RT R ≈ I . In particular, assume
we measure x p = Rp f � + n, where Rp is defined as R − μR

for a zero-mean CS matrix R and μR � (mini, j Ri, j )1M×N ;
every element of Rp is non-negative by definition. Note
x p = R f � + μR f � + n. Since μR f � is a constant vector pro-
portional to the total scene intensity we can easily estimate
z � μR f � from data and apply sparse reconstruction algo-
rithms to x̂ � x p − ẑ ≈ R f � + n.37

In low SNR photon-limited settings, however, the com-
bination of non-negative sensing matrices and light inten-
sity preservation present a significant challenge to compres-
sive optical systems. In previous work, we evaluated CS
approaches for generating high resolution images and video
from photon-limited data.59, 60 In particular, we showed how
a feasible positivity- and flux-preserving sensing matrix can
be constructed, and analyzed the performance of a CS re-
construction approach for Poisson data that minimizes an
objective function consisting of a negative Poisson log likeli-
hood term and a penalty term which measures image sparsity.
We showed that for a fixed image intensity, the error bound
actually grows with the number of measurements or sensors.
This surprising fact can be understood intuitively by noting
that dense positive sensing matrices will result in measure-
ments proportional to the average intensity of the scene plus
small fluctuations about that average. Accurate measurement
of these fluctuations is critical to CS reconstruction, but in
photon-limited settings the noise variance is proportional to
the mean background intensity and overwhelms the desired
signal.

3.3 Dynamic Range
An important consideration in practical implementations of
CS hardware architectures is the quantization of the measure-
ments, which involves encoding the values of x in Eq. (1)
in finite-length bit strings. The representation of real-valued
measurements as bit strings introduces error in addition to
the noise discussed above. Moreover, if the dynamic range of
the sensor is limited, very high and low intensity values that
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are outside this range will be truncated and simply be given
the maximum and minimum values of the quantizer. These
measurement inaccuracies can be mitigated by incorporating
the quantization distortion within the observation model61, 62

and by either judiciously rejecting “saturated” measurements
or factoring them in as inequality constraints within the re-
construction method.63

4 CS Reconstruction Methods
The �2-�1 CS problem (3) can be solved in a variety of
ways. However, many off-the-shelf optimization software
packages are often unsuitable because the size of imaging
problems is generally prohibitively too large. For instance,
second-derivative methods require solving an N × N linear
equation at each iteration of the underlying Newton’s method.
In our settings, N corresponds to the number of pixels. Thus,
to reconstruct a 1024 × 1024 pixel image requires solving
a 10242 × 10242 linear system at each iteration, which is
computationally too expensive and memory intensive. In ad-
dition, the �1 term in the objective function in Eq. (3) is
not differentiable; thus, the �2-�1 CS reconstruction problem
must be reformulated so that gradient-based methods can be
applied. Finally, the �1 regularization common in CS can be
implemented efficiently using simple thresholding schemes
within the optimization algorithms; computational shortcuts
like this are not exploited in most off-the-shelf software. Cur-
rent sparse reconstruction methods are designed so that these
computational considerations are taken into account.

For example, gradient projection methods64, 65 introduce
additional variables and recast Eq. (3) as a constrained op-
timization problem with a differentiable objective function.
Gradient descent directions, which are generally easy to com-
pute, are used at each iteration, and are then projected onto
the constraint set so that each step is feasible. The projec-
tion involves only simple thresholding and can be done very
quickly, which leads to fast computation at each iteration. Al-
ternatively, methods called iterative shrinkage/thresholding
algorithms66–69 map the objective function onto a sequence
of simpler optimization problems which can be solved ef-
ficiently by shrinking or thresholding small values in the
current estimate of θ . Another family of methods based on
matching pursuits (MP)70–72 starts with θ̂ = 0 and greedily
chooses elements of θ̂ to have nonzero magnitude by iter-
atively processing residual errors between y and Aθ̂ . MP
approaches are well-suited to settings with little or no noise;
in contrast, gradient-based methods are more robust to nois-
ier problems. Additionally, they are generally faster than MP
methods, as A is not formed explicitly and is used only for
computing matrix-vector products. Finally, while these meth-
ods do not have the fast quadratic convergence properties that
are theoretically possible with some black-box optimization
methods, they scale better with the size of the problem, which
is perhaps the most important issue in practical CS imaging.

There is a wide variety of algorithms in the literature and
online available for solving Eq. (3) and its variants. Many
of these algorithms aim to solve the exact same convex op-
timization problem, and hence will all yield the same recon-
struction result. However, because of specific implementa-
tion aspects and design decisions, some algorithms require
fewer iterations or less computation time per iteration de-
pending on the problem structure. For instance, some algo-
rithms will exhibit faster convergence with wavelet sparsity
regularization, while others may converge more quickly with

a total variation regularizer. Similarly, if the A matrix has a
helpful structure (e.g., Toeplitz), then multiplications by A
and AT can be computed very quickly and algorithms which
exploit this structure will converge most quickly, while if A
is a pseudorandom matrix then algorithms which attempt to
limit the number of multiplications by A or AT may perform
better.

4.1 Alternative Sparsity Measures
While most of the early work in CS theory and methods
focused on measuring and reconstructing signals which are
sparse in some basis, current thinking in the community is
more broadly focused on high-dimensional data with under-
lying low-dimensional structure. Examples of this include
conventional sparsity in an orthonormal basis,11 small total
variation,73–77 a low-dimensional submanifold of possible
scenes,78–82 a union of low-rank subspaces,83, 84 or a low-
rank matrix in which each column is a vector representation
of a small image patch, video frame, or small localized col-
lection of pixels.85, 86 Each of the above examples has been
successfully used to model structure in “natural” images and
hence facilitate accurate image formation from compressive
measurements (although some models do not admit recon-
struction methods based on convex optimization, and hence
may be computationally complex or only yield locally opti-
mal reconstructions). A variety of penalties based on simi-
lar intuition have been developed from a Bayesian perspec-
tive. While these methods can require significant burn-in and
computation time, they allow for complex, nonparametric
models of structure and sparsity within images, producing
compelling empirical results in denoising, interpolating and
compressive sampling that are on par with, if not better than,
established methods.87

4.2 Non-negativity and Photon Noise
In optical imaging, we often estimate light intensity, which
a priori be non-negative. Thus, it is necessary that the recon-
struction f̂ = W θ̂ is non-negative, which involves adding
constraints to the CS optimization problem Eq. (3), i.e.,

θ̂ = arg min
θ∈RN

1

2
‖x − RWθ‖2

2 + τpen(θ )

subject to Wθ ≥ 0 (5)

f̂ = W θ̂

where pen(θ ) is a general sparsity-promoting penalty term.
The addition of the nonnegativity constraint in Eq. (5) makes
the problem more challenging than the conventional CS
minimization problem, and it has been shown that simply
thresholding the unconstrained solution so that the con-
straints in Eq. (5) are satisfied leads to suboptimal
estimates.88

In the context of low-light settings, where measurements
are inherently noisy due to low count levels, the inhomoge-
neous Poisson process model89 has been used in place of the
‖x − RWθ‖2

2 term in Eq. (5). The adaptation of the recon-
struction methods described previously can be very challeng-
ing in these settings. In addition to enforcing non-negativity,
the negative Poisson log likelihood used in the formulation
of an objective function often requires the application of rel-
atively sophisticated optimization theory principles.90–96
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4.3 Video
Compressive image reconstruction naturally extends to
sparse video recovery since videos can be viewed as
sequences of correlated images. Video compression tech-
niques can be incorporated into reconstruction methods to
improve speed and accuracy. For example, motion compen-
sation and estimation can be used to predict changes within
a scene to achieve a sparse representation.97 Here, we de-
scribe a less computationally intensive approach based on
exploiting interframe differences.98

Let f �
1 , f �

2 , . . . be a sequence of images comprising a
video, and let W be an orthonormal basis in which each f �

t
is sparse, i.e., f �

t = Wθ�
t , where θ�

t is mostly zeros. To re-
cover the video sequence { f �

t }, we need to solve for each f �
t .

Simply applying Eq. (5) at each time frame works well, but
this approach can be improved upon by solving for multiple
frames simultaneously. In particular, rather than treating each
frame separately, we can exploit interframe correlation and
solve for θ�

t and the difference 
θ�
t � θ�

t+1 − θ�
t instead of θ�

t
and θ�

t+1. This results in the coupled optimization problem:

[
θ̂t


θ̂t

]
= arg min

θt ,
θt

1

2

∥∥∥∥[
xt

xt+1

]
−

[
Rt 0

0 Rt+1

][
W 0

W W

][
θt


θt

]∥∥∥∥2

2

+ τ1‖θt‖1 + τ2‖
θt‖1 (6)

subject to Wθt ≥ 0, W (θt + 
θt ) ≥ 0,

where τ1, τ2 > 0 and Rt and Rt+1 are the observation ma-
trices at times t and t + 1, respectively. When θ∗

t+1 ≈ θ∗
t ,

then 
θ∗
t = θ∗

t+1 − θ∗
t is very sparse compared to θ∗

t+1, which
makes it even better suited to the sparsity-inducing �1-penalty
terms in Eq. (6). We use different regularization parame-
ters τ1 and τ2 to promote greater sparsity in 
θt . This ap-
proach can easily be extended to solve for many frames
simultaneously.98–100

4.4 Connection to Super-Resolution
The above compressive video reconstruction method has sev-
eral similarities with super-resolution reconstruction. With
super-resolution, observations are typically not compressive
in the CS sense, but rather downsampled observations of a
high resolution scene. Reconstruction is performed by: a. es-
timating any shift or dithering between successive frames,
b. estimating the motion of any dynamic scene elements, c.
using these motion estimates to construct a sensing matrix
R, and d. solving the resulting inverse problem, often with a
sparsity-promoting regularization term.

There are two key differences between super-resolution
image/video reconstruction and compressive video recon-
struction. First, CS recovery guarantees to place specific de-
mands on the size and structure of the sensing matrix; these
requirements may not be satisfied in many super-resolution
contexts, making it difficult to predict performance or as-
sess optimality. Second, super-resolution reconstruction as
described above explicitly assumes that the observed frames
consist of a small number of moving elements superimposed
upon slightly dithered versions of the same background; thus
estimating motion and dithering is essential to accurate re-
construction. CS video reconstruction, however, does not
require dithering or motion modeling as long as each frame
is sufficiently sparse. Good motion models can improve on
reconstruction performance, as shown in Sec. 6, by increas-
ing the amount of sparsity in the variable (i.e., sequence of
frames) to be estimated, but even if successive frames are
very different, accurate reconstruction is still feasible. This
is not the case with conventional super-resolution estimation.

5 Infrared Camera Examples
IR cameras are a particularly promising target for compres-
sive sampling owing in large part to the manufacturing costs
associated with the FPA. Demands for large format, high
resolution FPAs have historically meant even smaller pix-
els grown on even larger substrates. For typical materials
used in infrared imagers (e.g., HgCdTe, InSb), the manufac-
turing process is extremely challenging and requires (among
other things) controlling material geometry at the pixel-level.
Recent developments in FPA technology have resulted in
20 μm pitch FPAs across the infrared spectrum. Yuan et al.
(Teledyne Judson Technologies) have recently demonstrated
a 1280 × 1024, 20 μm pitch InGaAs FPA for the short-
wave infrared (SWIR) waveband, 1.0 to 1.7 μm.8 In the mid-
wave infrared, 3 to 5 μm, Nichols et al.9 used a 2048 × 2048,
20 μm pitch InSb FPA (Cincinnati Electronics), while Car-
mody et al. report on a 640 × 480, 20 μm pitch HgCdTe
FPA.10 Despite these advances, numerous research funds
continue to be spent on developing even larger format ar-
rays while attempting to decrease the pixel pitch to ≤ 15 μm.
The ability to improve the resolution of existing FPA tech-
nology without physically reducing pixel size, therefore, has
some potentially powerful implications for the IR imaging
community.

In this section, we explore taking existing focal plane ar-
ray technology and using spatial light modulation (SLM)
to produce what is effectively a higher resolution camera.
The specific architecture used will depend on whether one
is imaging coherent or incoherent light and on the physical
quantity being measured at the detector. For incoherent light,
typical imaging systems are linear in intensity and the focal
plane array is directly measuring this intensity. Thus, one
way to design a CS imager is to use a fixed, coded aper-
ture as part of the camera architecture.36, 38, 42, 101 The imager
shown schematically at the top of Fig. 3(a) illustrates one
such approach, whereby the aperture modulates the light in
the image’s Fourier plane. Mathematically, this architecture
is convolving the desired image intensity f with the magni-
tude squared of the point spread function |h|2 = |F−1(H )|2
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Fig. 3 Infrared camera examples. (a) Two possible IR camera architectures. In the first, a coded aperture is placed in the lens Fourier plane,
while in the second, two different phase masks are used to create the measurement matrix. (b) Panoramic midwave camera assembly.

where H is the mask pattern and F denotes the Fourier
transform. Low-resolution observations are then obtained by
downsampling the impinging light intensity either by in-
tegration downsampling at the detector or by subsampling
using SLMs. Each downsampling approach has its advan-
tages and disadvantages: integration downsampling allows
for more light and hence higher SNR observations, but re-
sults in loss of high frequency components and adversely
impacts the incoherence of A, whereas subsampling results
in much stronger theoretical properties but allows for less
light. Thus, depending on the light conditions, one approach
might be more suitable than the other. For example, in high
photon count regimes, subsampling will more likely yield
a more accurate reconstruction. Finally, if the mask is de-
signed so that the resulting observation model satisfies the
RIP property and the image is sparse in some basis (e.g.,
wavelet), then the underdetermined problem can be solved
for the high-resolution image f .36 Using this approach, the
spatial resolution of the modulation becomes the resolution
of the recovered image. That is to say, if we desire a 2× im-
provement in resolution, our coded aperture would possess
1/2 the pixel width of the FPA. Heuristically, one can think
of the convolution as a mechanism for spreading localized
(spatial) image information over all pixels at the detector.
One can additionally think of the fixed, known, mask pattern
as the unique “key” that allows the reconstruction algorithm
to then extract the true image, despite the apparent ambiguity
introduced by the detector downsampling. This is precisely
what the RIP property means physically for the system archi-
tecture, namely that it (a) modulates the image in a manner
that allows all of the needed information to be encoded in the
compressed samples, yet (b) ensures a unique solution to the
true image can be found. Although all the information needed
for reconstruction is present in the compressed samples, the
light blocked by the aperture decreases the signal-to-noise
ratio. One possible solution is to increase the camera integra-
tion time though this can result in motion blur artifacts.

Another possibility is to use the architecture shown at the
bottom of Fig. 3(a) as proposed by Rivenson et al.102 (see
also Romberg38). This architecture is more appropriate for

imaging coherent light. In this approach, one makes use of
Fourier optics to convolve the electromagnetic field associ-
ated with the image and a random phase pattern. A second
phase modulator, located at the image plane, is necessary
in order for the resulting sensing matrix satisfies the RIP.102

Note that the detector in this architecture needs to be capable
of measuring both real and imaginary parts of the complex
image (as opposed to image intensity). The potential advan-
tage of this architecture is that it modulates phase only, thus
light is not blocked as it is in the coded aperture architecture.
However, this camera architecture requires two SLMs, each
with its own inherent losses. Furthermore, detectors that can
measure the complex image field are far less common than
those that measure image intensity.

Regardless of the specific architecture used, one could
either consider the coded apertures to be fixed patterns that
do not change in time or, given the state of SLM technology,
one could dynamically modify the pattern for video data.
This could potentially provide a benefit (i.e., help guarantee
the RIP) to the multiframe reconstruction methods described
in Section 4. Finally, we should point out that in a typical
camera the image is not located exactly one focal length away.
Rather, the system possesses a finite aperture D, designed in
conjunction with the focal length F L to collect imagery at
some prescribed range from the camera. In this more general
case there will still be a lens Fourier plane at which we can
apply our modulation, however, the location of the mask will
need to be specified to within δ ∝ λ(F L/D)2m. Diffraction
effects may also need to be considered in developing the
signal model to be used in solving the �2 − �1 reconstruction
problem; potential solutions to this problem for conventional
coded apertures have been described by Stayman et al.103

Central to each of the above-described architectures is the
availability of fixed apertures, digital micromirror devices,
or SLMs capable of spatially modulating the light at the
desired spatial resolution. A fixed coded aperture is clearly
the simplest design and can be manufactured easily to have
micrometer resolution using chrome on quartz. SLMs allow
codes to be changed over time, but current SLM technology
restricts the masks to have lower resolution than chrome on
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Fig. 4 (a) Original 128 × 128 bar target image for hot target T = 45 C, (b) Same imagery as (a) but downsampled by a factor of 2 to simulate
a 30 μm pitch camera, (c) Compressively sampled image using a simulated 30 μm pitch (d) Bar target at full resolution recovered from the
measurements (c) using Eq. (3). (e) Image slice of the medium resolution bar target image [the lower right set of bars in (a)]. (f) Contrast as a
function of bar target temperature.

quartz solutions.104 For example, Boulder Nonlinear Systems
manufactures a 512 × 512, 15 μm pitch device that can oper-
ate in the visible, short-wave IR, midwave IR, or long-wave
IR wavelengths and can be used to spatially modulate the
amplitude, phase, or both.105 Sections 5.1 and 5.2 illustrate
how coded-aperture IR imaging can be used to enhance the
resolution of existing IR cameras.

5.1 Midwave Camera Example
As an illustrative example, we consider bar target imagery
collected from a midwave infrared camera. The camera,
shown in Fig. 3(b), was designed for maritime search and
tracking applications. Optically, the camera is a catadioptric,
f/2.5 aperture system that provides a 360◦ horizontal and a
−10◦ to +30◦ elevation field of view. The core of the imaging
system is a 2048 × 2048 pixel, 15 μm pitch, cryogenically
cooled indium antimonide focal plane array. The sensor is
designed to operate in the 3.5 to 5 μm spectral band with
a CO2 notch filter near 4.2 μm. Additional details for the
camera are described by Nichols et al.9

In order to evaluate the compressive imaging reconstruc-
tion algorithm, we collected bar target imagery generated
using a CI System extended blackbody source held at fixed
temperatures ranging from 5 to 45C. Four bar patterns of
varying spatial frequencies occupied a 128 × 128 pixel
area. Figure. 4(a) shows the image acquired for a bar target
temperature of T = 45 C. This image was then downsam-
pled by a factor of 2 in order to simulate observations from a

lower resolution, 30 μm focal plane array. The downsampled
64 × 64 image is shown in Fig. 4(b). Low resolution, com-
pressed imagery was also generated by numerically applying
a fixed, coded aperture with random, Gaussian distributed
entries in the lens Fourier plane prior to downsampling [e.g.,
simulate the architecture of Fig. 3(a)]. That is to say the
degree of transparency for each of the elements in the mask
H is chosen to be random draws from a truncated Gaussian
distribution spanning the range 0 (no light blocked) to 1 (all
light blocked). Each sample collected by a 30 μm pixel is
therefore modeled as a summation over four, 15 μm blocks
of the image intensity convolved with the magnitude squared
of the point spread function h = F−1(H ). This process is
shown at the single pixel level in Fig. 5.

There are certainly multiple images that could give rise to
the same compressed sample value. What is remarkable about
CS theory is that it tells us that if the image is sparse in the
chosen basis and if we modulate the image in accordance with
the RIP property, then this ambiguity is effectively removed
and the true image recovered. The practical advantage to
using this system, as was pointed out in Sec. 3, is that the
information needed to recover the high resolution image is
encoded in a single low-resolution image. Thus there is no
need for multiple shots for the recovery to work. The cost,
however, as was already mentioned, is a decrease in signal to
noise ratio.

The compressed measurements are shown in Fig. 4(c) and
clearly illustrate the influence of the randomly coded aper-
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Fig. 5 Pixel-level description of the process by which data at the 15
μm scale are converted to compressed samples at the 30 μm scale.
The desired image intensity is convolved with a point spread function
dictated by the magnitude of the inverse Fourier Transform of the
mask pattern.

ture on the image. Finally, to recover the image, we solved
Eq. (3) using the gradient projection for sparse reconstruction
(GPSR) algorithm,64 which is a gradient-based optimization
method that is very fast, accurate, and efficient. The basis
used in the recovery was the length-12 Coiflet. We have
no reason to suspect this is the optimal basis (in terms of
promoting sparsity) for recovery; however among the var-
ious wavelet basis tried by the authors, little difference in
the results was observed. The image in Fig. 4(d) is the full
resolution (128 × 128) reconstruction.

Qualitatively it can be seen that the reconstruction algo-
rithm correctly captures some of the details lost in the down-
sampling. This comparison can be made quantitative by con-
sidering a “slice” through the 0.36 (cycle/mrad) resolution
bar target (lower right set of bars). Figure 4(e) compares the
measured number of photons in the original 45 C bar target
image to that achieved by interpolating the downsampled im-
age and the recovered image. Clearly, some of the contrast is
lost in the downsampled imagery, whereas the compressively
sampled, reconstructed image suffers little loss. Figure 4(f)
shows how the estimated image contrast behaves as a func-
tion of bar target temperature. Contrast was determined for
the bar target pixels as | max( f ) − min( f )|/ f̄ , where f̄ is the
mean number of photons collected by the background and

max( f ), min( f ) are, respectively, the largest and smallest
number of photons collected across the bar target.

Regardless of sampling strategy, the contrast is greater
near the extremes (T = 5 C, T = 45 C) and is lowest near
the ambient (room) temperature of T = 27 C as expected.
However, for areas of high contrast we see a factor of 2
improvement by using the compressive sampling strategy
over the more conventional bi-cubic interpolation approach.
We have also tried linear interpolation of the low-resolution
imagery and found no discernible difference in the results.
Based on these results we see that a CS camera with half
the resolution of a standard camera would be capable of pro-
ducing the same resolution imagery as the standard camera
without any significant reduction in image contrast.

5.2 SWIR Video Example
We now consider the application of compressive coded aper-
tures on video collected by a short-wave IR (0.9 to1.7μm)
camera. The camera is based on a 1024 × 1280 InGaAs
(indium, gallium arsenide) focal plane array with 20 μm
pixel pitch. Optically, the camera was built around a fixed,
f/2 aperture and provides a 6◦ field of view along the di-
agonal with a focus range of 50 m → ∞. Imagery were
output at the standard 30 Hz frame rate with a 14 bit
dynamic range. The video used in the following exam-
ple consists of 25 256×256 pixel frames cropped from
the full imagery. All video data were collected at the
Naval Research Laboratory, Chesapeake Bay Detachment,
in November 2009. We simulate the performance of a
low-resolution noncoded video system by simply downsam-
pling the original video by a factor of 2 in each direction. We
also simulate the performance of a low-resolution noncoded
video system and perform two methods for reconstruction:
the first solves for each frame individually while the second
solves for two frames simultaneously. For this experiment,
we again used the GPSR algorithm. The maximum number
of iterations for each method are chosen so that the aggregate
time per frame for each method is approximately the same.
The 25th frames for the original signal, the reconstruction
using the single-frame noncoded method, and the recon-
struction using the two-frame coded method are presented
in Fig. 6. The root-mean squared error (RMSE) values for
this frame for the single-frame noncoded and the two-frame
coded methods are 3.78% and 2.03%, respectively.

(a) (b) (c)

Fig. 6 SWIR compressive video simulation. (a) Original scene, (b) Reconstruction of the 25th frame without coded apertures (RMSE = 3.78%).
(c) Reconstruction using coded apertures (RMSE = 2.03%). Note the increased resolution, resulting in smoother edges and less pixelated
reconstruction.
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6 Conclusions
This tutorial is aimed at introducing optical engineers to
several of the theoretical breakthroughs and practical chal-
lenges associated with compressed sensing in optical sys-
tems. While many of the theoretical results are promising,
in that a relatively small focal plane array can be used to
collect high resolution imagery, translating this theory to
practice requires careful attention to the tradeoffs between
focal plane array size; optical component size, weight, and
expense; admissibility of theory in practical systems; and
choice of reconstruction method. Through proof-of-concept
experiments with a bar target and with video in SWIR sys-
tems, we demonstrate how compressed sensing concepts can
be used to improve contrast and resolution in practical optical
imaging settings.

Acknowledgments
The authors would like to thank Zachary Harmany for shar-
ing his sparse reconstruction algorithms for compressive
coded apertures. This work was supported by NSF CAREER
Awards CCF-06-43947, DMS-08-11062, DARPA Grant No.
HR0011-09-1-0036, NGA Award HM1582-10-1-0002, and
AFRL Grant FA8650-07-D-1221.

References
1. E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Trans. Inf. Theory 51(12), 4203–4215 (2005).
2. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4),

1289–1306 (2006).
3. E. Candès, “Compressive sampling,” in Proc. Int. Congress of Math-

ematicians, Madrid, Spain Vol. 3, pp. 1433–1452 (2006).
4. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag.

24(4), 118–121 (2007).
5. E. J. Candès and M. B. Wakin, “An introduction to compressive

sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
6. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Pro-

cess. Mag. 25(2), 14–20 (2008).
7. M. Fornasier and H. Rauhut, “Compressive sensing,” in Handbook

of Mathematical Methods in Imaging, Springer, Heidelberg, Germany,
(2011).

8. H. Yuan, G. Apgar, J. Kim, J. Laquindanum, V. Nalavade, P. Beer,
J. Kimchi, and T. Wong, “FPA development: from InGaAs, InSb,
to HgCdTe,” in Infrared Technology and Applications XXXIV, B. F.
Andresen, G. F. Fulop, and P. R. Norton, Eds., Proc. SPIE Defense,
Security, and Sensing Symposium Vol. 6940 (2008).

9. J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Model-
ing and analysis of a high performance midwave infrared panoramic
periscope,” Opt. Eng. 49(11) (2010).

10. M. Carmody, J. G. Pasko, D. Edwall, E. Piquette, M. Kangas, S.
Freeman, J. Arias, R. Jacobs, W. Mason, A. Stoltz, Y. Chen, and N.
K. Dhar, “Status of LWIR HgCdTe-on-Silicon FPA Technology,” J.
Electron. Mater. 37(9), 1184–1188 (2008).

11. E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory 15(12), 4203–4215 (2005).

12. J. Haupt and R. Nowak, “Signal reconstruction from noisy
random projections,” IEEE Trans. Inf. Theory 52(9), 4036–4048
(2006).

13. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency
information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

14. R. G. Baraniuk, M. Davenport, R. A. DeVore, and M. B. Wakin, “A
simple proof of the restricted isometry property for random matrices,”
Constructive Approx. 28(3), 253–263 (2008).

15. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” Commun. Pure Appl.
Math. 59(8), 1207–1223 (2006).

16. E. J. Candès and T. Tao, “The Dantzig selector: Statistical estimation
when p is much larger than n,” Ann. Stat. 35, 2313–2351 (2007).

17. J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004).

18. E. J. Candès and Y. Plan, “Near-ideal model selection by �1 mini-
mization,” Ann. Stat. 37, 2145–2177 (2009).

19. D. L. Donoho and M. Elad, “Optimally sparse representation in
general (nonorthogonal) dictionaries via �1 minimization,” Proc. Natl.
Acad. Sci. U.S.A 100(5), 2191–2202 (2003).

20. T. Strohmer and R. W. Heath Jr., “Grassmannian frames with applica-
tions to coding and communications,” Appl. Comput. Harmon. Anal.
14(3), 257–275 (2003).

21. D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of
sparse overcomplete representations in the presence of noise,” IEEE
Trans. Inf. Theory 52(1), 6–18 (2006).

22. D. L. Donoho and X. Huo, “Uncertainty principles and ideal
atomic decomposition,” IEEE Trans. Inf. Theory 47(7), 2845–2862
(2001).

23. D. L. Donoho and M. Elad, “Optimally sparse representation in
general (nonorthogonal) dictionaries via �1 minimization,” Proc. Natl.
Acad. Sci. U.S.A. 100(5), 2197–2202 (2003).

24. R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003).

25. J. A. Tropp, “Just relax: convex programming methods for identifying
sparse signals in noise,” IEEE Trans. Inf. Theory 52(3), 1030–1051
(2006).

26. A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss, “Approximation
of functions over redundant dictionaries using coherence,” in Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Baltimore, MD (2003).
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