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ABSTRACT

In this paper, we discuss various aspects of using fuzzy classification with a GIS. In particular, we show how
fuzzy membership functions to particular classes can be computed for composite regions composed of lots of
smaller regions belonging to different classes and how variables taking values in ranges with different
boundary conditions can be handled in a mathematically rigorous way. We demonstrate our methodology for
the problem of assessing the risk of desertification of burned forest areas in the Mediterranean region.

1. INTRODUCTION

The objective of the present work is to assess the
degree of risk of desertification of burned forest areas
using a fuzzy classification technique. It is important
to estimate the risk of desertification in order to take
proper measures for its prevention. Since the
parameters involved in the study are fuzzy in nature
and have to be classified by using fuzzy labels like
low, medium, high etc., it is felt that it could be more
appropriate to use fuzzy logic. Moreover, the use of
remote sensing techniques and GIS along with fuzzy
logic to evaluate the degree of risk would help an
expert in a very efficient planning of resource
allocation and decision making.

Work that has already been done on forest fire
includes mapping and monitoring of forest fire areas
(Prevedel, 1995), assessment of vegetation change
(Jakubauskas et al., 1990) and restoration of burned
areas (Greer, 1994)}. Though there have been
published work on assessment of areas affected by
forest fire (Jakubauskas et al., 1990), the concept of
vagueness has never been considered. Attempts have
been made to include uncertainty in the data
(Stassopoulou), but only in terms of probability
functions and not partial membership functions.
There have been attempts to use GIS for the
classification (Rokos et al., 1993), but as on today no
GIS package offers a facility to handle vague
definitions.

The crux of any fuzzy logic problem lies in deriving
the membership functions. In most of the fuzzy
control systems, membership functions are chosen
arbitrarily by the users based on their experience and

perspectives (Mandel, 1995). Hence the membership
functions given by two users could be quite different.
More recently, membership functions have been
designed using optimisation procedures (Mandel,
1995) and fuzzy B-splines (Wang et al., 1995). In
image analysis and pattern recognition problems, the
derivation of membership functions is still an issue,
but attempts have been made to analyse the flexibility
and uncertainty in membership function evaluation
using bound functions and spectral fuzzy sets
(Kaufmann, 1975). The most commonly used shapes
for membership functions are triangular, trapezoidal
and Gaussian.

In the present work, the membership functions have
been derived by assuming Gaussian error
distributions and extra experiments have also been
performed with uniform error distributions. Arc/Info
GIS has been used to store data and also to derive
necessary secondary data and then the rules given by
the experts have been implemented by using simple
fuzzy operators.

2. FUZZY MEMBERSHIP FUNCTIONS

2.1. Study Parameters

The data that are used for the study pertain to a few
sites in Attica, Greece. The variables that influence
the degree of desertification were defined by the
experts as Soil Erosion and Regeneration Potential.
While the soil erosion is influenced by Ground Slope,
Rock Permeability and Soil Depth, the Regeneration
Potential is influenced by Ground Aspect and Soil
Depth. Some of the data regarding slope and aspect
could be derived from Digital Elevation Models using
the GRID module of Arc/Info GIS package.
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2.2. Membership Functions

Let us assume that the class membership of a fuzzy
variable is determined by a measurement concerning
the variable performed with a given accuracy
expressed by the standard error in the measuring
process. In other words, let us say that the value of a
given variable ¢ is measured to be pu and the error in
this measurement is assumed to be Gaussian with
zero mean and standard deviation . Our objective is
to derive the membership functions of classes defined
for the variable ¢ as ranges of its values. It is obvious,
for example, that if 7 is assigned to a certain class ¢ if
its value ranges between f, and (,, then the probability
of ¢ belonging to this class is given by
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where 7, and f,,c are the minimum and maximum
values that ¢ could take.

Thus, the probability of the variable ¢ belonging to

class c if its value was measured to be p with standard
error o, is given by
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To evaluate the error functions, the following rational
approximation is used [1]: For 0 £ x < e erf(x)=1 —
(a;t +a2t2 + 0313 +a4t4 o 6151‘5)6-xz

where
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p=0.3275911 a, = 0.254829592
a, = -0.284496736 a; = 1.421413741

ay=-1.453152027 as = 1.061405429

The error of this approximation is less than 1.5 x 107

A membership function of a certain class to be used
within the framework of fuzzy logic is a function
which when given as input a certain measurement,
returns the probability with which the variable can be
assigned to the particular class. Thus, we have to
define a membership function for each class we have
and each of these functions should be a function of
the measurement value. It should also depend
parametrically on the limiting values that define the
class and the error in the measurement. It is obvious
from the above that the membership function of class
c is given by equation (3) when plotted as a function
of u. Also, it is clear from the definitions that the
values of the functions sum up to 1. Different
membership functions could be used for the different
variables if extra information was available. Since the
fuzzy variables we have in our problem have their
own peculiarities when it comes to defining class
boundaries, we shall discuss each variable separately.

2.2.1. Slope

Slope has been classified into the following 4 classes
based on the degree to which they influence soil
erosion. It is obvious that the steeper the slope, the
greater is the soil erosion.

Gentle: 0 - 20%

Moderate : 21 - 40%
Moderately steep: 41 - 70%
Steep: > 70%

The membership function for each class of slope can
be derived with the help of equation (3) for various
values of ¢ within the class interval [f,,f,]. Now, the
probability of slope belonging to any particular class
for a given value of u can be evaluated from the
membership function. The slope can be expressed in
degrees or percent. When expressed as a percentage,
the slope is 100% when the angle is 45° and
approaches infinity as the angle approaches the
vertical which is 90°. From the mathematical point of
view, for every direction there is a twofold ambiguity
in estimating a slope as the ground may slope
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upwards or downwards. If we assume that one of
these directions is positive slope, the other can be
thought of as the negative slope. However, for the
purpose of evaluating the risk of soil erosion, positive
or negative slope does not matter. Thus, we do not
need to consider negative values of the measurement
u as this is always going to be given to us as a
positive number and the negative value case is the
mirror image of the positive value case. What matters
is how we treat the error distribution when class
boundaries are crossed. The choice of Gaussian error
probability density function implies that we have
infinite tails which must influence all membership
functions. In practice, if G(u), M;(n), My(n) and S(p)
indicate the membership functions for the classes
gentle, moderate, moderately steep and steep
respectively, we have:

G(p) = f(11;-20,20)

M (p) = £(14;20,40) + f(y1;-40,-20)

M,() = £(11;40,70) + £(u;-70,-40)

S(u) = £(1570,00) + fi(;-o0,-70)

where the function f(u;t,1,) is defined by equation

A3).

These functions are plotted in Figure-1 for ¢ = 4.5.
Note that for any particular value of the slope, the
values of the membership functions sum up to 1.
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Figure 1 - Membership Functions for Slope

2.2.2 Soil Depth

This is classified into 3 classes.

1. Bare: <5cm
2. Shallow: 5 - 30 cm
3. Deep: > 30 cm

The Gaussian distribution of the error in measuring
soil depth is truncated at x = 0O as soil depth cannot
have negative values. Thus, if B(u), S(u) and D(n)

are the membership functions for the classes Bare,
Shallow and Deep respectively, we have:

B(p) = f(1;0,5)
S(w) = £(1;5,30)
D(p) = f(1;30, o

where f(u;t,,f,) is given by equation (3) with 7, = 0
and fp,, = o. These functions are plotted in Figure-2
forc=2.5
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Figure 2 - Membership Functions for Soil Depth

2.2.3 Aspect

The aspect or orientation of a ridge can be expressed
as the angle the normal to the ridge forms with the
north direction. This angle could take a value from 0°
to 360° and it could belong to any of the following
classes :

1. North: 0 - 4°, 315 - 360°
2. East: 45 - 135°

3. South: 135 - 225°

4. West: 225 - 315°

The aspect takes a range of possible values with
cylindrical boundaries. The implication of this is that
theoretically, since the tails of the Gaussian
distribution are infinitely long, each class
membership function would be the sum of an infinite
number of contributions from segments of these tails
that are 360° apart i.e., an infinite sum of evaluations
of function (3) between limits that differ by 360°. In
practice, of course, the contribution from these tails is
insignificant from the mathematical point of view and
meaningless from the point of view of the particular
application that we are considering here. Thus the
membership functions N(u), E(u), S(u) and W(u) for
the four classes North, East, South and West
respectively are :
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N = f(u:0,45%) + f(u;315,360°) + f(u;360,405°)

E(u) = f(u;45,135°) + £(u;405,495°) +.....

S(w) = f(u;135,225°) + f(u ;495,585°) +.....

Wi(n) = £(u;225,315°) + f(1;585,675°) +.....

With ;i = - o0 and £, = °°.

Figure3 shows these membership functions for ¢ =
18.
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Arc/Info. This GIS is better described in (Rokos et
al., 1993). Data included four test areas of different
sizes chosen based on the availability of relevant
satellite data. From these test areas, 53 sample sites
had been chosen in such a way that they would
represent maximum site variability. The various GIS
layers were of rock permeability, soil depth and a
Digital Elevation Model. The GIS data consisted of
both vector and raster data types. Table 1 shows the
different GIS layers used in the study.

Table 1 - GIS DATA and DATA TYPES
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Figure 3 - Membership Functions for Aspect

2.2.4 Rock Permeability

Rock permeability refers to the ease with which water
may run through the rock. The higher the rock
permeability, the lower is the risk of soil erosion. The
different types of rocks found in the study area are
Hard Limestone, Schists, Metamorphic, Calcareous
tertiary deposits, Siliceous tertiary deposits and
Colluvium. While the metamorphic rocks and schists
(which is an advanced grade of metamorphic rock)
are impermeable, the rest are permeable. In the data
that is available, rock permeability is defined for a
sample site as a whole. Since the information given is
only whether a sample site consists of either
permeable rocks or impermeable rocks, rock
permeability is considered as a non-fuzzy variable,
even though it need not necessarily be. We shall see
later that, in cases where we are concerned with the
classification of a composite site, i.e., a site that
consists of several patches each one having its own
geology, the membership of the composite region into
each one of the classes represented by the subregions
is calculated as the proportional area each class of the
subregions occupies within the composite region.

3. FUZZY CLASSIFICATION WITH GIS

3.1. The Role of GIS

The primary data to be used in the study to assess the
degree of risk of desertification were provided on the
Arc/Info GIS. Some secondary data were derived
from the primary data using the potentialities of

PRIMARY DATA
GIS LAYERS DATA TYPE
Sample site boundaries | vector
Soil depth vector
Rock permeability vector
DEM raster
DERIVED DATA
GIS LAYERS DATA TYPE
Slope raster
Aspect raster

Since the data regarding rock permeability, soil depth
and DEM were provided for the entire study area, the
required data were extracted by clipping with the
sample site boundaries. Pixel-wise slope and aspect
values were obtained from the DEM using the GRID
module of Arc/Info. GRID was used to derive the
slope and aspect values as it can accurately portray
continuous surfaces. GRID is a raster based geo-
processing system integrated with Arc/Info. A grid in
Arc/Info represents a single theme and is made up of
cells of a particular size representing the resolution of
the data and the cell values representing the class
within the theme to which it belongs. Each integer
grid would have an associated Value Attribute Table
which stores the cell values.

Slope is evaluated as the maximum rate of change in
value from each cell to its neighbours and an output
slope grid could have slope values in degrees or
percent. Aspect is evaluated as the direction of slope.
The pixel based slope values were generalised to each
sample site by averaging the slope values of all pixels
in the sample site. Since the aspect has cylindrical
boundaries, evaluating the mean aspect value of all
the pixels in a site could result in the aspect falling
into a completely wrong class. For example, if a site
contained aspect values belonging to North i.e.,
between 0 to 45° and 315 to 360°, then evaluating the
aspect value of the site as the mean of all pixel values
could classify it even into the class South'. In order
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to eradicate this problem, the following methodology
has been adopted.

1. All N pixel values of a site were sorted in
ascending order of aspect value.

2. A new sequence of N numbers was created by
subtracting 360° from each pixel value.

3. The old and the new sequences were
concatenated, thus creating a single sequence of

2N numbers i.e., twice as long as the previous
one, the first half of which is the same as the
second half shifted by -360°.

4. Mean and variance were then calculated in a
sliding window of length N.

5. The mean corresponding to the minimum
variance was chosen as the mean aspect value of
the site.
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[
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Figure 4 - Inducing Continuity in Aspect

Figure 4 gives an example of how this trick solves the
problem of discontinuity at 360°/0°. Suppose that N =
7 and the values X,.....X; are placed as shown along
the positive real axis of Figure 4. Clearly, the average
of these aspects should be either near 0° or 360°.
However, if we compute it by straight averaging , we
shall find a number near 180°. By shifting the
sequence 360° to the left, we create the ghost
members of the sequence X’} -.....X;. We then
consider every 7 successive members of this extended
sequence and compute their average and their
variance. The variance will be minimum when the
sliding window of length 7 contains numbers X';, X's,
X's, X7, X, Xy, X3. The average of these numbers
will be around 0 which is the correct value.

3.2 Fuzzy Classification

The domain expert's knowledge was implemented
over the framework of GIS and then, the fuzzy
classification technique was used for decision
making. The domain expert's knowledge is expressed
by two sets of rules, one for natural regeneration
potential and the other for risk of soil erosion. Both
the antecedents and the consequents in the rules are
fuzzy. Rock permeability, soil depth, slope and aspect
were the fuzzy variables involved in the rules. The
rules are shown in the following Table 2 and Table 3.

Let x; be the value of slope in a site. Then

1x15 us(G), us(M), us(S)}

would represent the membership grades of x; to the
classes gentle, medium and steep of the fuzzy variable
Slope (S). Let x, be the aspect of a site in degrees,
Then,

{x2.uA(N), LA(E), uA(W), uA(S) }

would represent the membership grades of x, to the
classes North, East, West and South of the fuzzy
variable Aspect (A). If x5 is the value of Soil Depth,
then

{x3.uSD(B),uSD(S),uSD(D)}

represents the membership grades of x; to the classes
bare, shallow and deep of the fuzzy variable Soil
Depth (SD). If x, is the permeability of rock in the
site, then

{X4,ur(P),ur(D}

would represent the membership grades of x4 to the
classes permeable and impermeable of the variable
Rock Permeability(R).

The actual membership grades were evaluated from
equation (3) of section 2.

Once the membership grades to the fuzzy variables
are evaluated, the membership grades to the natural
regeneration potential and risk of soil erosion are
obtained from the fuzzy relations given in Table 2
and Table 3 using the fuzzy equivalents of Logical
AND and OR namely, Max and Min. Hence, the
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Table 2 - Tabulated rules for natural regeneration potential

SOIL DEPTH (SD)
BARE SHALLOW DEEP
A NORTH SG SL NL
S
P EAST SG SL NL
E
C WEST SE ML SL
T
(A) SOUTH SE ML SL
NL - No limitation SG - Strong Limitation
SL - Slight Limitation SE - Severe Limitation
ML - Moderate Limitation
Table 3 - Tabulated rules for risk of soil erosion
PERMEABILITY (R ) & SOIL DEPTH (SD)
PERMEABLE IMPERMEABLE
S BARE SHALLOW DEEP BARE SHALLOW DEEP
L GENTLE * SR NSR * HR SR
0]
P MEDIUM = MR SR * VHR MR
E
(S) STEEP * MR SR * VHR HR

* The land with bare soil is already eroded. No further erosion can occur.

NSR - No to slight risk
SR - Slight risk
MR - Moderate risk

STEEP includes MODERATELY STEEP

membership grades for natural regeneration potential
could be defined as

Mrp(NL) = [MA(N) Apsp(D)] Vv [HA(E) A psp(D)]
urp(SL)) = [Ua(S)Ausp(D)] v [Ma(N)Apsp(8)]V
[MAW)AUsD(D)IV[HA(E)Apsp(S)]

Mrp(ML) = [HA(S)ApsD(S)] VI[HaA(W)ARsD(S)]
Hrp(SG) = [ua(N)Apsp(B)] VIHA(ENMAPsp(B)]
HRrp(SE) = [Ua(S)Ausp(B)] VHA(W)AUsp(B)]

where RP represents the “Regeneration Potential', A
and v represent the Minimum and Maximum
operators respectively. While the Minimum operation
would give the largest fuzzy subset contained in the
sets, the Maximum operation would give the smallest
fuzzy subset contained in the sets. In other words, any
chain connected in a series position is associated with

HR - High risk
VHR - Very high risk

A and a chain connected in a parallel position is
associated with v.

The membership grades to the risk of soil erosion
could be derived from the following operations.

use(NSR) = [us(G)Apsp(D)ApR(P)]

use(SR) = [us(M)Apsp(D)Apr(P)]
VIus(S)Ausp(DIAUR }P)] vus(G)Apsp(S)AURP)] v
[us(G)Ausp(D)APRD]

use(MR) =

[usM)AUsD(S)AMRP)IV [Ms(S)AMsD(S)AURP) IV [s(M
IAUsp(D)ARRD]

use(HR) = [us(S)Apsp(D)Apr(D)]

VIus(G)Ausp H(S)Aurp(D)]

use(VHR) = [us(M)Apsp(S)Aur(D)]
VIps(S)Apsp(S)Apr(D)]
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where SE represents the “Risk of Soil Erosion'.

While evaluating the membership grades of risk of
soil erosion, slope has been classified into 3 classes
only, as for all practical purposes, slopes > 40% are
considered steep. Since only linguistic data were
available for soil depth and rock permeability and
also since a sample site could consist of more than
one type of rock permeability and more than one type

of soil depth, the membership grade to a particular
class of these variables was evaluated as the
proportion of a sample site belonging to that class.

Finally, to obtain the degree of risk of desertification
based on the natural regeneration potential and risk of
soil erosion, the fuzzy relations given in Table 4 were
used.

Table 4 - Tabulated rules for risk of soil erosion

REGENERATION POTENTIAL (RP)

NL SL ML SG SE
E NSR NR LR LR MR MR
Ié SR LR LR MR MR HR
S MR LR MR MR HR HR
i) HR MR MR HR HR VHR
N VHR MR HR HR VHR VHR
(SE)
NR - No risk HR - High risk
LR - Low risk VHR - Very high risk

MR - Moderate risk

The membership grades to the risk of desertification
were evaluated from the following equations.

Mp(NR) = urp(NL) A pse(NSR)

up(LR) = [prp(SL) A psgNSR)] v [purp(ML)A
use(NSR)] v [ugp(NL) A pse(SR)]
VIMRP(SL)ARse(SR)IV [urp(SLIA pse(MR)]

tp(MR) = [urp(SGIA pse(NSR)] v [urp(SE)AUsE
(NSR)IV [prp(ML) A pse(SR)IV [pre(SG)Ause}(SR)]
V [Mrp(SD)A psg(MR)] v [pgp(ML) A pse(MR)]
VIHre(NL) A pusp(HR)]V [uge (SL)

A pse(HR)]V [pre (NL) A psp(VHR)]

Hp(HR) = [urp(SE)A psg}(SR)] Vv [Urp(SG)Apse(MR)]
Vv [urp(SE) A pse(MR)] v

[Hrp(ML) A psp(HR)] Vv [urp(SG) A pse(HR)] v
[Hre(SL) A pse(VHR)] v

[urp(ML) A pse(VHR)]

up(VHR) = [urp(SE) A pse(HR)] Vv [Ugp(SG) A
use(VHR)] v [urp(SE) A uge(VHR)]

The results obtained by using input values from the
GIS were compared with the expert's classification.
These results are given in Table 5. The values in bold

represent the category into which the expert had
classified a site.

4 DISCUSSION AND CONCLUSIONS

From the above table it can be seen that the fuzzy
classification system agrees with the expert in 21 out
of the 53 sites when the input data are read from the
GIS. If we allow up to one neighbouring class
disagreement, the fuzzy classification system agrees
with the expert's classification in 45 out of the 53
sites. The fuzzy classification system becomes a
simple rule-based hard classifier when the input data
are the field data with which no uncertainty value can
be associated. In fact, the classification obtained by
the field data agrees everywhere with the expert (an
indication that the rules provided by the expert have
been correctly implemented). The disagreement we
observe between the GIS classification and the other
two, may stem from one of the following reasons:

e The regions that are totally wrongly classified are
the regions for which the GIS data are in complete
disagreement with the field data. Clearly the GIS data
are much more unreliable than the field data, mainly
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SAMPLE SITE RISK OF DESERTIFICATION
SITE No. | SITE NAME | NR LR MR HR VHR
1 B-2 0.000 0000 0038 0.567 0.130
2 B-6 0.000 0.000 0.000 0.000 0.875
3 B-5 0.000 0.000 0037 0.624 0.000
4 B-3 0.000 0048 0.154 0.627 0.000
5 B-1 0.000 0.000 0049 0.470 0.200
6 B-4 0.000 0.000 0.000 0.000 1.000
7 P-11 0.000 0.000 0998 0.000 0.000
8 P-9 0.000 0.000 0.520 0.480 0.000
9 P-12 0.000 0.000 0711 0.000 0.000
10 PD2-4 0.000 0.000 0.000 0.000 1.000
11 PD2-3 0000 0.000 0.000 0.000 1.000
12 P-10 0.000 0.253 0531 0.000 0.000
13 PD2-2 0.000 0000 0.027 0.090 0.803
14 PD2-1 0.000 0.000 0.000 0.000 1.000
15 P-8 0.000 0.830 0.170 0.000 0.000
16 P-7 0.160 0284 0.631 0.352 0.080
17 P-1 0.001 0.740 0.000 0.000 0.000
18 P-6 0.000 0937 0.000 0.000 0.000
19 PD1-7 0.000 0000 0021 0.752 0.000
20 PD1-6 0.000 0000 0.144 0617 0.000
21 P-3 0.000 0991 0.000 0.000 0.000
22 P-14 0.000 0.790 0.000 0.000 0.000
23 P-13 0.000 0.914 0.000 0.000 0.000
24 PDI1-5 0.000 0.000 0.094 0.648 0.030
25 PD1-4 0.000 0.000 0.098 0.581 0.020
26 P-5 0.000 0.992 0.000 0.000 0.000
27 PDI1-3 0.000 0.000 0012 0.515 0.00
28 P-4 0.284 0.710 0.000 0.000 0.000
29 PD1-2 0.000 0.000 0.000 0.000 1.000
30 P-16 0.042 0.582 0.000 0.000 0.000
31 PDI1-1 0.000 0.000 0.079 0.764 0.000
32 P-15 0.091 0639 0.000 0.000 0.000
33 P-2 0.001 0.670 0.000 0.000 0.000
34 L-1 0.000 0.000 0.558 0.436 0.000
35 L-2 0.000 0.000 0.061 0.525 0.000
36 13 0.000 0.000 0.008 0.709  0.000
37 L-5 0.000 0455 0.545 0.010 0.000
38 L-4 0.240 0.050 0.240 0.004 0.000
39 L-6 0.000 0.000 0.503 0.175 0.000
40 TB-1 0.000 0.000 0.146 0.496 0.360
41 TB-2 0.000 0.000 0.123 0.458 0.000
42 TP-2 0.000 0.022 0.040 0.040 0.000
43 TP-1 0.000 0.000 0.000 0.000 1.000
44 TP-3 0.000 0.071 0.570 0.000 0.000
45 TPD2-1 0.000 0.000 0.000 0.000 1.000
46 TPD1-3 0.000 0.000 0.002 0.614 0.000
47 TP-4 0.187 0.813 0.000 0.000 0.000
48 TPD1-2 0.000 0.000 0.000 0.872 0.000
49 TP-6 0.000 0798 0.027 0.190 0.000
50 TPD1-1 0.000 0000 0.000 0.591 0.000
51 TP-5 0.113 0490 0.000 0.000 0.000
52 TL-1 0.000 0366 0.572 0.330 0.000
53 TL-2 0.000 0.000 0.186 0.381 0.000

Table 5: RESULTS
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due to the difference in scale. (The test sites were only
of size 250 x 250 \ m%) Our approach is aimed
exactly at modelling this uncertainty, but the
approximation of the error distributions by Gaussians
may not be the best one. However, when we repeated
the calculations assuming uniform distributions, i.e.,
triangular or trapezoidal membership functions which
are commonly used, the results became much worse.
The correct modelling of this uncertainty is part of
our future work.

e We believe that by far the most significant reason
of disagreement between the fuzzy classification and
the expert's assessment is the expert's assessment
itself. This was not done using some sort of
accumulated experience and background knowledge
which should have been elicited by some Knowledge
Engineering techniques. It was rather done using a
linear superposition rule of class labels, which is the
very type of rule which we argue should be replaced
by fuzzy classification! Thus, there is no guarantee
that the expert's classification is more correct than the
fuzzy classification. Only the study of historical data
retrospectively  could  determine the  correct
classification method, but that is beyond the scope of
this project.

In summary, we have shown in this paper how the
fuzzy membership functions can be derived from the
error distributions in the measurement data and in the
information provided by the GIS layers. In particular,
we dealt with the case of free boundary conditions, as
is the case of measuring the soil depth, mirror image
boundary conditions, as is the case of ground slope,
and cylindrical boundary conditions, which is the
case in aspect. It must be emphasised that although in
the work presented here, we assumed Gaussian
distributions of errors, the approach could be used
with any type of error probability density function.
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