文章编号: 1000-4750(2014)02-0237-05

瞬态热传导区间反演分析

杜秀云 1,2, 唐祯安 1, 薛齐文 3

(1. 大连理工大学电子信息与电气工程学部,辽宁,大连 116024; 2. 辽宁师范大学物理与电子技术学院,辽宁,大连 116029; 3. 大连交通大学土木与安全工程学院,辽宁,大连 116028)

摘 要:基于区间有限元和矩阵摄动理论,引入同伦技术,建立了瞬态热传导不确定性区间参数反演识别的数值 求解模式。利用测量信息和计算信息的区间残差构造同伦函数,将反演识别问题转化为一个优化问题进行求解。时间域上,引入时域精细算法进行离散,空间上,采用八节点等参元技术进行离散,并结合区间有限元法,建立了便于敏度分析的不确定性正反演数值模型。该模型不仅考虑了非均质和参数分布的影响,而且也便于正演和反演问题的敏度分析,可对导热系数和热边界条件等宗量的区间范围进行有效的单一和组合识别,并给出了相关的数值算例。数值结果表明了所建数值模型的有效性和可行性,并具有较高的计算精度。

关键词:区间反演;热传导;不确定性;同伦技术;精细算法

中图分类号: O242; O551; TB12 文献标志码: A doi: 10.6052/j.issn.1000-4750.2012.09.0713

INTERVAL INVERSE ANALYSIS OF TRANSIENT HEAT CONDUCTION PROBLEM

DU Xiu-yun^{1,2}, TANG Zhen-an¹, XUE Qi-wen³

- (1. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China;
 - 2. School of Physics and Electronic Technology, Liaoning Normal University, Dalian, Liaoning 116029, China;
 - 3. Advanced Technology Laboratory in Railway Vehicle, Dalian Jiaotong University, Dalian, Liaoning 116028, China)

Abstract: A general numerical model is presented for the interval inverse transient heat conduction problem with interval parameters. The homotopy method and interval finite element method based on the element and interval extension theory were used. The inverse problem was formulated implicitly as an optimization problem with the homotopy functional of squared residues between calculated and measured quantities. A time stepping scheme was used for transient analysis. An eight-point finite element model was given with interval finite element method based on the element. Single and combined identifications can be carried out for thermal parameters and boundary conditions etc., taking account of inhomogeneity and parameters distribution. Satisfactory numerical validation was given. The results show that the proposed numerical model can be applied to solve the inverse heat conduction problem with interval parameters in a transient state, showing its high computational precision and efficiency.

Key words: interval inverse analysis; heat conduction; uncertainty; homotopy method; precise algorithm

瞬态热传导问题是实际工程中十分普遍的现象,相关反问题研究是一个有广泛实际应用前景的 交叉领域。近年来,众多学者针对瞬态热传导反问 题开展了大量研究,利用确定的测量信息对相关参数进行有效的识别,如传热系数的识别、边界条件的识别、边界形状的识别、热源项的识别等^[1-2]。

收稿日期: 2012-09-28; 修改日期: 2013-02-27

基金项目: 国家自然科学基金重点项目(90607003,61131004); 国家自然科学基金项目(10802015); 中国博士后基金项目(2011M500556); 辽宁省高等学校杰出青年学者成长计划项目(LJQ2011046); 辽宁省百千万人才工程基金项目(2010921091)

通讯作者: 杜秀云(1976-), 女, 吉林人, 讲师, 博士生, 从事 3D IC 力热分析和区间分析(E-mail: duxiuyun@sohu.com).

以往的研究中,热传导反问题相关参数均看作确定性量来进行处理,进行确定性的反演分析。但在实际中,由于仪器精度和其他偶然误差,测量温度信息是一随机值。另外,许多结构的热物性参数以及边界条件存在误差和不确定性,如果不将其定量化或者模型化,就难以给出合理的分析结果。

对于不确性问题,区间模型是 3 种主要处理方法之一。该模型适用于统计信息不足以描述不确定参数的概率分布或隶属函数,或者仅知道不确定参数的取值范围,并想获得响应的区间范围的情况。近年来,针对不确定性问题的区间分析方法,取得一些有用的成果,基于最优参数区间集的区间方法现已引起学者的关注^[3-4]。目前有部分学者针对热传导不确定性问题进行了研究^[5-6],但是其侧重点是进行正演不确定性问题的分析,相关反问题的研究还相对较少,尤其是多宗量的不确定性反演问题。

同伦算法是一种有效的反演算法,并被应用于 反问题的求解^[7]。以往研究大多是以待反演参量与 其真实值间的 2 范数距离来构造同伦函数,而以待 反演参量与真实值之间的 Bregman 距离来构造同伦 函数还不多见。文献[8]曾应用 Bregman 距离构造同 伦函数,对确定性的热传导反问题进行了有效求 解,但对不确性问题的反演识别似未曾见到。本文 尝试将同伦技术应用于含有区间参数的瞬态热传 导不确定性反问题的求解,为热传导问题的区间反 演求解探索一条有效途径。

鉴于以上考虑,本文建立了具有区间参数的瞬态热传导反演识别的一种数值求解模式。以精细算法进行时域离散,结合基于单元分析的区间有限元法和矩阵摄动理论,并引入 Bregman 距离函数和同伦技术,建立了瞬态热传导区间参数的正反演识别模型,给出了相关的数值算例。计算结果表明,所提的求解模式能够对瞬态热传导问题的区间参数进行有效的反演识别,并具有较高的计算精度。

1 正演分析模型

对于确定性的瞬态热传导问题,由其控制方程 以及给定的边界条件和初始条件,并结合加权余量 技术,可以得到如下有限元控制方程^[9]:

$$M(\boldsymbol{\varphi})\dot{T} + K(\boldsymbol{\varphi})T = F(\boldsymbol{\varphi}) \tag{1}$$

其中:向量 φ 由导热系数 k_{ij} 、热容系数c、材料密度 ρ 、热流密度q、换热系数h、环境温度 T_a 、热源强度Q、第一类边界温度 \overline{T} 和初始温度 T_0 等参量组成,可以利用确定性的数值方法进行求解。

考虑各参数具有不确定性的最一般情况,式(1) 为含区间参数微分方程,其参数记为广义区间向量 $\boldsymbol{\varphi} = (\varphi_1, \varphi_2, \cdots, \varphi_n)^{\mathrm{T}}$,中值为 $\boldsymbol{\varphi}^c = (\varphi_1^c, \varphi_2^c, \cdots, \varphi_n^c)^{\mathrm{T}}$, 离差为 $\Delta \boldsymbol{\varphi} = (\Delta \varphi_1, \Delta \varphi_2, \cdots, \Delta \varphi_n)^{\mathrm{T}}$ 。区间向量可分解 表示为 $\boldsymbol{\varphi} = \boldsymbol{\varphi}^c + [-\Delta \varphi, \Delta \varphi] = \boldsymbol{\varphi}^c + \Delta \varphi \boldsymbol{e}_{\Delta}$, $\boldsymbol{e}_{\Delta} = [-1, 1]$ 。

对含有区间参数的微分方程,可利用基于区间分析的数值方法进行求解^[10]。结合基于单元的区间有限元法,有限元方程式(1)可以写为^[11]:

 $[M(\varphi^c)+\Delta M]\dot{T}+[K(\varphi^c)+\Delta K]T=F(\varphi^c)+\Delta F$ (2) 式中: $M(\varphi^c)$ 、 $K(\varphi^c)$ 、 $F(\varphi^c)$ 、 $\dot{T}(\varphi^c)$ 和 $T(\varphi^c)$ 与中值对应的热容矩阵、刚度矩阵、右端等效载荷 矩阵、温度一阶导数向量和温度向量; ΔM 、 ΔK 、 ΔF 、 $\Delta \dot{T}$ 和 ΔT 则分别为相对应的区间不确定性 矩阵。

有限元列式(2)在任意时刻均成立,忽略展开过程中的高阶小项,可得到下面方程组:

$$\mathbf{M}(\varphi^c)\dot{\mathbf{T}} + \mathbf{K}(\varphi^c)\mathbf{T} = \mathbf{F}(\varphi^c) \tag{3}$$

$$\mathbf{M}(\varphi^c)\Delta\dot{\mathbf{T}} + \mathbf{K}(\varphi^c)\Delta\mathbf{T} = \Delta F_1 \tag{4}$$

其中, $\Delta F_1 = \Delta F - (\Delta M \cdot \dot{T} + \Delta K \cdot T)$,由此可知,不确定控制方程式(2)可以分离为确定性部分和不确定性部分,各式中均含有与时间相关的项。

采用时域精细算法进行时域离散^[12],在每一个 离散时间段内,温度及梯度变换公式可分别写为:

$$T = \sum_{m=0}^{\infty} T^m s^m , \quad s = (t - t_0) / t_s$$
 (5)

$$\frac{d}{dt} = \frac{d}{ds}\frac{ds}{dt} = \frac{1}{t_s}\frac{d}{ds}, \quad T_{,t} = \sum_{m=0}^{\infty} \frac{(m+1)}{t_s} T^{m+1} s^m$$
 (6)

式中: t_0 代表时间步长的起始时间; t_s 表示时间步长; T^m 表示温度 T 展开的第m 阶系数项。

本文中,各参数在时域内均为常数,将式(5)~式(6)分别代入式(3)~式(4)中,可以得到在时域上确定性的有限元列式递推格式:

$$\frac{(m+1)}{t}\boldsymbol{M}(\varphi^{c})T^{m+1} + \boldsymbol{K}(\varphi^{c})T^{m} = \boldsymbol{F}(\varphi^{c})^{m} \quad (7)$$

$$\frac{(m+1)}{t_c} \boldsymbol{M}(\varphi^c) \Delta T^{m+1} + \boldsymbol{K}(\varphi^c) \Delta T^m = \Delta F_1^m \quad (8)$$

在第一个时间段内, T^0 由给定的初始条件求得,在其他的第N 个时间段内, T^0 可以由上一个时间段按下式求得:

$$T_N|_{s=1} = \sum_{m=0}^{\infty} T_{N-1}^m$$
, $\Delta T_N|_{s=1} = \sum_{m=0}^{\infty} \Delta T_{N-1}^m$ (9)

由上述两个确定性的递推有限元列式(7)~式(8),以 及给定的区间参数和初始条件,可以依次求得每个 时间段内的 $T^0, T^1, T^2, \dots, T^m$ 和 $\Delta T^0, \Delta T^1, \Delta T^2, \dots, \Delta T^m$,从而求得各时间段末的温度。

在任意时刻,节点温度场的上、下界分别为: $\bar{T}_{t} = T_{t}^{c} + \Delta T_{t}$, $\underline{T}_{t} = T_{t}^{c} - \Delta T_{t}$ (10)

2 反演分析模型

反演分析的目的是借助某些已知的温度区间信息和反演技术 $^{[13-14]}$,估算和确定式 $^{[13-14]}$,估算和确定式 $^{[13-14]}$,为的区间信息。本文主要对热物性参数以及边界条件进行识别,将未知量统一记作 $^{\{\varphi\}}$ 。

$$\{\varphi\}^{\mathsf{T}} = \{\{\underline{k}^{u}\}^{\mathsf{T}}, \{\overline{k}^{u}\}^{\mathsf{T}}, \{\underline{q}^{u}\}^{\mathsf{T}}, \{\overline{q}^{u}\}^{\mathsf{T}}, \{\overline{\underline{T}}^{u}\}^{\mathsf{T}}, \{\overline{\underline{T}}^{u}\}^{\mathsf{T}}, \{\underline{h}^{u}\}^{\mathsf{T}}, \{\overline{h}^{u}\}^{\mathsf{T}}\}$$

$$(11)$$

 $\{\varphi\}$ 通过极小化泛函来确定,根据同伦算法的思想,所定义的泛函如下:

$$F(\varphi) = (1-\lambda) \sum_{t} \sum_{s} ((\overline{T}(\varphi) - \overline{T}_{m}) \cdot (\overline{T}(\varphi) - \overline{T}_{m}) + (\underline{T}(\varphi) - \underline{T}_{m}) \cdot (\underline{T}(\varphi) - \underline{T}_{m})) / 2 + \lambda D(\varphi) \quad (12)$$
 式中: T_{m} 代表测点温度; $D(\varphi)$ 代表引入的同伦函数项; $\sum_{t} \sum_{s}$ 表示空间和时间上的累积。

采用敏度类算法极小化泛函,将式(12)两边同时对未知参量 φ_i 微分,可以得到:

$$(1 - \lambda)(\overline{G}^{\mathsf{T}} \overline{R} + G^{\mathsf{T}} \underline{R}) + \lambda D_{\alpha} = 0$$
 (13)

其中: λ 为同伦参数; G 为温度对未知量的敏度; $D_{\alpha} = \partial D / \partial \varphi$, $D(\varphi)$ 代表 Bregman 距离函数。

对于式(13),采用迭代方法求解。当迭代进行至第n步时,将下一步计算结果在第n步计算结果 附近展开为一阶 Taylor 级数,并略去高阶小量,可以得到下列各式:

$$\begin{cases}
\overline{R}(\varphi^{n+1}) = \overline{R}(\varphi^n) + \overline{G}^n \Delta \varphi \\
\underline{R}(\varphi^{n+1}) = \underline{R}(\varphi^n) + \underline{G}^n \Delta \varphi \\
D_{\varphi}(\varphi^{n+1}) = D_{\varphi}(\varphi^n) + G_{D_{\varphi}}^n \Delta \varphi
\end{cases}$$
(14)

式(14)中各参量分别为:

$$\underline{G} = \frac{\partial \underline{T}}{\partial \varphi} , \quad \overline{G} = \frac{\partial \overline{T}}{\partial \varphi} , \quad D_{\varphi} = \frac{\partial D}{\partial \varphi} , \quad G_{D_{\varphi}} = \frac{\partial D_{\varphi}}{\partial \varphi} \quad (15)$$

将式(14)代入式(13),整理后可得:

$$\begin{cases} [(1-\lambda)(\underline{G}^{nT}\underline{G}^{n} + \overline{G}^{nT}\overline{G}^{n}) + \lambda G_{D_{\varphi}}^{n}]\Delta\varphi^{n} = \\ -[(1-\lambda)(\underline{G}^{nT}\underline{R}^{n} + \overline{G}^{nT}\overline{R}^{n}) + \lambda D_{\varphi}] \end{cases}$$
(16)
$$\varphi^{n+1} = \varphi^{n} + \Delta\varphi$$

式(16)即为迭代求解的递推公式。

采用式(16)进行求解时,需要知道温度场上下界和引入的同伦函数对各未知参量的敏度。温度场上下界对未知参量敏度可由式(9)~式(10)直接求导得到。

所引入的同伦函数为 Bregman 函数,是一种距离的概念,该函数常用的形式有以下 3 种^[8]:

$$\begin{cases} B_1(\varphi) = \varphi \log \varphi \\ B_2(\varphi) = -\log \varphi \end{cases}$$

$$B_3(\varphi) = \varphi^2$$
(17)

对于以上3种函数形式,相应的D函数、雅戈比矩阵和汉森矩阵分别如表1所示。

采用同伦方法进行求解时,同伦参数 λ 应从 1 稳定地下降到 0,具有正则化效应。在本文中,同伦参数采用拟信赖域方法进行调整。

表 1 Bregman 函数及其导数矩阵

Table 1 Bregman function and derivative matrix

Bregman 函数	D-函数	雅戈比矩阵	海塞矩阵
$B_1(\varphi) = \varphi \log \varphi$	$\sum_{1}^{m} \left[\varphi_{i} \log \left(\frac{\varphi_{i}}{\varphi_{i}^{*}} \right) - \varphi_{i} + \varphi_{i}^{*} \right]$	$egin{bmatrix} \log\left(rac{oldsymbol{arphi}_{1}^{n+1}}{oldsymbol{arphi}_{1}^{n}} ight) \ dots \ \log\left(rac{oldsymbol{arphi}_{m}^{n+1}}{oldsymbol{arphi}_{m}} ight) \end{bmatrix}$	$egin{bmatrix} rac{1}{arphi_{1}^{n+1}} & 0 & \dots & 0 \ 0 & \ddots & & dots \ dots & & \ddots & 0 \ 0 & \dots & 0 & rac{1}{arphi_{m}^{n+1}} \end{bmatrix}$
$B_2(\varphi) = -\log \varphi$	$\sum_{1}^{m} \left[\varphi_{i} \log \left(\frac{\varphi_{i}}{\varphi_{i}^{*}} \right) + \frac{\varphi_{i}^{*}}{\varphi_{i}} - 1 \right]$	$\begin{bmatrix} \frac{1}{\varphi_l^n} - \frac{1}{\varphi_l^{n+1}} \\ \vdots \\ \frac{1}{\varphi_m^n} - \frac{1}{\varphi_m^{n+1}} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{(\varphi_1^{n+1})^2} & 0 & \dots & 0 \\ 0 & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{(\varphi_m^{n+1})^2} \end{bmatrix}$
$B_3(\varphi) = \varphi^2$	$\sum_{1}^{m}(\varphi_{i}-\varphi_{i}^{*})^{2}$	$\sum_{1}^{m} (\varphi_i^{n+1} - \varphi_i^n)$	$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$

3 算例

如图 1 所示,考虑圆管横截面区间反演问题,沿横截面厚度方向温度不变,内径为 0.8m,外径为 1.0m,选取截面 1/4,划分 20 个单元进行有限元分析。总分析时域为 2s,时间段长取为 $1\times10^{-3}s$ 。均匀分布在内壁的 10 个测点在每隔 20 个时间段的温度区间值为已知信息。在考虑测量误差对反演的影响时,温度信息由 $T_p = (1+\sigma)\cdot T_e$ 给出, T_p 为含有误差的温度, σ 为相对误差值, T_e 为测点温度的准确区间值,由正演区间分析给出。反演变量初始数值分别是 k 为 $35W/(m \cdot \mathbb{C})$,q 为 $500W/m^2$, \overline{T} 为 $5.0\mathbb{C}$,表 $2\sim$ 表 5 给出了相应的不确定性和确定性结果。

3.1 均质材料的参数区间识别

由外到里为同种材料,导热系数 k = [18.0, 22.0] W/(m・℃),外表面第一类边界为 \overline{T} =[0.9,1.1] ℃,内表面的热流密度为 q = [1800, 2200] W/m²,结构密度和热容系数为 ρc = [900, 1100] W/(m・℃),初始温度为 T_0 = [0.9, 1.1] ℃。

例 1: 导热系数和边界热流密度未知,其他各参量已知,反演结果如表 2。

例 2: 导热系数和第一类边界温度未知,其他各参量已知,反演结果如表 3。

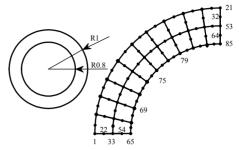


图 1 圆管横截面有限元网格

Fig.1 The finite element mesh of tube cross section

3.2 非均质材料的参数区间识别

由外到里分为两种材料,导热系数为k=[18.0,22.0;27.0,33.0]W/(m·°),外表面第 1 类边界 $\overline{T}=[0.9,1.1]$ °、内表面热流密度分为两个区,大小分别为q=[1800,2200;2700,3300]W/m²,结构密度和热容系数为 $\rho c=[900,1100]$ W/(m·°),初始温度为 $T_0=[0.9,1.1]$ °。

例 3: 导热系数未知,其他各参量已知,反演结果如表 4。

例 4: 导热系数和边界热流密度未知,其他各参量已知,反演结果如表 5。

表 2 导热系数和边界热流密度未知时,均质材料测量误差对反演解的影响

Table 2 The effects of data noise on the inverse solution for homogeneous material when k and q were unknown

变量 -	反演值(σ=0.0)			反演值(σ=0.01)		反演值(σ=0.05)			
	$B_1/B_2/B_3$		B_1	B_2	B_3	B_1	B_2	B_3	
l _r	区间解	[18.00,22.00]	[18.08,22.10]	[18.08,22.10]	[18.08,22.10]	[18.38,22.50]	[18.38,22.50]	[18.38,22.50]	
K	确定解	20.00	20.09	20.09	20.09	20.44	20.44	20.44	
q	区间解	[1800,2200]	[1824,2230]	[1824,2230]	[1824,2230]	[1920,2351]	[1920,2351]	[1920,2351]	
9	确定解	2000	2027	2027	2027	2135	2135	2135	

表 3 导热系数和边界温度未知时,均质材料测量误差对反演解的影响

Table 3 The effects of data noise on the inverse solution for homogeneous material when k and T were unknown

变量 •	反演值(σ=0.0)			反演值(σ=0.01)		反演值(σ=0.05)			
	$B_1/B_2/B_3$		B_1	B_1 B_2		B_1	B_2	B_3	
k	区间解	[18.00,22.00]	[17.72,21.67]	[17.72,21.67]	[17.72,21.67]	[16.63,20.42]	[16.63,20.42]	[16.63,20.42]	
n	确定解	20.00	19.69	19.69	19.69	18.53	18.53	18.53	
$ar{ar{T}}$	区间解	[0.900,1.100]	[0.9512,1.148]	[0.9512,1.148]	[0.9512,1.148]	[1.169,1.352]	[1.169,1.352]	[1.169,1.352]	
1	确定解	1.000	1.050	1.050	1.050	1.260	1.260	1.260	

表 4 导热系数未知时,非均质材料测量误差对反演解的影响

Table 4 The effects of data noise on the inverse solution for heterogeneous materials when k was unknown

	反演值(σ =0.0) B ₁ /B ₂ /B ₃		-	口汐店(0.01)		F)24 (F) 0.05)			
变量			反演值(σ=0.01)			反演值(σ=0.05)			
			B_1	B_2	B_3	B_1	B_2	B_3	
k_1	区间解	[18.00,22.00]	[17.48,21.47]	[17.48,21.47]	[17.48,21.47]	[15.48,19.42]	[15.48,19.42]	[15.48,19.42]	
~1	确定解	20.00	19.47	19.47	19.47	17.45	17.45	17.45	
k_2	区间解	[27.00,33.00]	[26.58,32.51]	[26.58,32.51]	[26.58,32.51]	[25.01,30.63]	[25.01,30.63]	[25.01,30.63]	
N2	确定解	30.00	29.55	29.55	29.55	27.82	27.82	27.82	

able 5 T						量误差对反演解 s materials wher		nknown	
反演值(σ=0.0)			反演值(σ =0.01)			- 反演值(σ =0.05)			
$B_1/B_2/B_3$		B_1	B_2		B_3	B_1	B_2	B_3	
区间解	[18.00,22.00]	[18.08,20.08]	[18.08,20.08]	[18.0	08,20.08]	[18.38,22.38]	[18.38,22.38]	[18.38,22.38]	
角定解	20.00	20.07	20.07	2	20.07	20.38	20.38	20.38	
区间解	[27.00,33.00]	[27.10,33.13]	[27.10,33.13]	[27.]	10,33.13]	[27.49,33.62]	[27.49,33.62]	[27.49,33.62]	
角定解	30.00	30.11	30.11	3	30.11	30.56	30.56	30.56	
区间解	[1800,2200]	[1824,2229]	[1824,2229]	[1824,2229]		[1919,2347]	[1919,2347]	[1919,2347]	
角定解	2000	2000 2027 202		2027		2133	2133	2133	
区间解	[2700,3300]	[2735,3343]	[2735,3343]	[273	35,3343]	[2874,3515]	[2874,3515]	[2874,3515]	
角定解	3000	3039	3039	3039		3194	3194	3194	
计算结果表明: 1) 本文所采用的区间参数反演求解模式,可以对瞬态热传导反问题中导热系数和边界条件相关区间参数进行有效的单一和组合识别,并且具有较高的精度和较好的抗噪能力。 2) 信息误差对结果区间有一定影响,对不同的反演变量有所不同,其中对导热系数和边界温度的						eering, 2011, 850 nia N, Musco's with uncertain er Methods in ring, 2011, 200(2 王磊, 邱志平. 应分析[J]. 应 090.	(11): 1460—147 lino G. Interval-but-bounded a in Applied 21/22): 1945—1 基于最小参数 用数学和力号	val analysis of xial stiffness [J]. Mechanics and 962. 区间集的不确定	
角玄角 ダ ト い は ラ 言 こ	定解解	定解 2000 问解 [2700,3300] 定解 3000 结果表明: 文所采用的区间参 传导反问题中导热 进行有效的单一和: 和较好的抗噪能力。 息误差对结果区间 有所不同,其中对	定解 2000 2027 问解 [2700,3300] [2735,3343] 定解 3000 3039 结果表明: 文所采用的区间参数反演求解析 传导反问题中导热系数和边界 进行有效的单一和组合识别,并 和较好的抗噪能力。 息误差对结果区间有一定影响, 有所不同,其中对导热系数和达	定解 2000 2027 2027 [问解 [2700,3300] [2735,3343] [2735,335] [2735,3	定解 2000 2027 2027 [7] [7] [7] [7] [7] [7] [7] [7] [7] [7	定解 2000 2027 2027 2027 2027 2027 [回解 [2700,3300] [2735,3343] [2735,334] [定解20002027202720272133间解[2700,3300][2735,3343][2735,3343][2735,3343][2874,3515]定解30003039303930393194结果表明:文所采用的区间参数反演求解模式,可以 传导反问题中导热系数和边界条件相关 进行有效的单一和组合识别,并且具有较和较好的抗噪能力。[3] Impollonia N, Musco structures with uncertain Computer Methods Engineering, 2011, 200(2000)自误差对结果区间有一定影响,对不同的有所不同,其中对导热系数和边界温度的[4] 王晓军,王磊,邱志平,结构响应分析[J].应有所不同,其中对导热系数和边界温度的1078-1090.	定解20002027202721332133间解[2700,3300][2735,3343][2735,3343][2874,3515][2874,3515]定解30003039303931943194结果表明:文所采用的区间参数反演求解模式,可以传导反问题中导热系数和边界条件相关 进行有效的单一和组合识别,并且具有较和较好的抗噪能力。perspective [J]. Internal Journal for Nu in Engineering, 2011, 85(11): 1460—147国设差对结果区间有一定影响,对不同的有所不同,其中对导热系数和边界温度的[3]Impollonia N, Muscolino G. Intervatructures with uncertain-but-bounded a Computer Methods in Applied Engineering, 2011, 200(21/22): 1945—1主晓军,王磊,邱志平.基于最小参数结构响应分析[J].应用数学和力等结构响应分析[J].应用数学和力等1078—1090.	

- 3) 由计算结果可知, 当不含信息误差时, 三种 形式的函数均能收敛到真实的区间解。在同等限度 误差水平下,基于不同的形式的Bregman 距离函数, 区间计算结果相差不明显, 只是迭代步数稍有 差别。
- 4) 从计算结果来看,确定性分析计算结果均在 不确定性分析所得的区间范围内,接近于区间分析 的中值, 进一步验证了所建区间分析模型的正确性 和有效性。

结论

本文针对具有区间参数的瞬态热传导问题,引 入 Bregman 距离函数,将同伦技术应用于求解参数 区间的反演识别问题, 可对导热系数以及边界条件 的相关参数区间进行有效的单一和组合识别。数值 算例验证了所提求解模式在求解具有区间参数的 瞬态热传导反问题时的可行性, 并且具有较高的精 度、较好的稳定性和抗不适定性。该方法可进一步 完善, 应用于其他具有区间参数的反问题求解。

参考文献:

- [1] Shidfar A. A weighted algorithm based on the homotopy analysis method: Application to inverse heat conduction problems [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(10): 2908-2915.
- Yan Liang, Yang Fenglian, Fu Chuli. A new numerical method for the inverse source problem from a Byesian

- of 1. ıd
- È):
 - analysis based on smallest interval set of parameters for structures with uncertainty [J]. Applied Mathematics and Mechanics, 2012, 33(9): 1078-1090. (in Chinese)
- [5] 梁震涛, 陈建军. 不确定结构动力区间分析方法研究 [J]. 应用力学学报, 2008, 25(1): 46-50. Liang Zhentao, Chen Jianjun. Dynamic interval analysis for uncertain structures [J]. Chinese Journal of Applied Mechanics, 2008, 25(1): 46-50. (in Chinese)
- 李金平, 陈建军, 刘国梁. 具有区间参数的瞬态温度场 数值分析[J]. 电子科技大学学报, 2009, 38(3): 463-
 - Li Jinping, Chen jianjun, Liu Guoliang. Numerical analysis of transient temperature field with interval parameters [J]. Journal of University of Electronic Science and Technology of China, 2009, 38(3): 463-466. (in Chinese)
- [7] 薛齐文, 张军, 魏伟. 基于同伦技术的偶应力反问题求 解[J]. 计算力学学报, 2011, 28(2): 243-247. Xue Qiwen, Zhang jun, Wei Wei. Solving inverse couple
 - stress problem via homotopy method [J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 243-247. (in Chinese)
- 薛齐文, 杨海天. 二阶非定常热传导反问题的多宗量 辨识[J]. 计算力学学报, 2007, 24(4): 425-429. Haitian. Identification Xue Oiwen, Yang multi-variables of inverse two-order transient heat conduction problems [J]. Chinese Journal
 - Computational Mechanics, 2007, 24(4): 425-429. (in Chinese)
- [9] Lewis R W. The finite element method in heat transfer analysis [M]. UK: John Wiley & Sons, 1996: 11-29.

(参考文献[10]-[14]转第 248 页)

- Ji Xiaoyu, Xu Bin, Yu Xiangdong, et al. Finite element analysis of nonlinear buckling for thin shell [J]. Acta Mechanica Solida Sinica, 2003, 24(S. Issue): 214-217. (in Chinese)
- [19] 赵桂平, 赵锺斗. 基于改进弧长法的层压复合壳后屈 曲反应分析[J]. 工程力学, 2003, 20(1): 106-111. Zhao Guiping, Zhao Chongdou. Postbuckling analysis of laminated composite shell based on an improved arc-length method [J]. Engineering Mechanics, 2003, 20(1): 106-111. (in Chinese)
- [20] 吴永礼. 计算固体力学方法[M]. 北京: 科学出版社, 2003.

- Wu Yongli. Computational solid mechanics method [M]. Beijing: Science Press, 2003. (in Chinese)
- [21] 凌道盛, 徐兴. 非线性有限元及程序[M]. 杭州: 浙江 大学出版社, 2004. Lin Daosheng, Xu Xing. Nonlinear finite element
 - method and program [M]. Hangzhou: Zhejiang University Press, 2004. (in Chinese)
- [22] 黄克智, 夏之熙. 板壳理论[M]. 北京: 清华大学出版 社, 1987.
 - Huang Kezhi, Xia Zhixi. Theory of plates and shells [M]. Beijing: Tsinghua University Press, 1987. (in Chinese)

(上接第241页)

- [10] 陈塑寰、裴春艳. 不确定二阶振动控制系统动力响应 的区间方法[J]. 吉林大学学报(工学版), 2008, 38(1): 94 - 98.
 - Chen Suhuan, Pei Chunyan. Dynamic response of second-order uncertain vibration control systems with interval method [J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(1): 94-98. (in Chinese)
- [11] 邱志平, 马利红, 王晓军, 不确定非线性结构动力响应 的区间分析方法[J]. 力学学报, 2006, 38(5): 645-651. Qiu Zhiping, Ma Lihong, Wang Xiaojun. Interval analysis for dynamic response of nonlinear structures with uncertainties [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 645-651. (in Chinese)
- [12] Yang Haitian. A precise algorithm in the time domain to

- Solve the problem of heat transfer [J]. Numerical Heat Transfer, Part B, 1999, 35(2): 243-249.
- [13] 薛齐文, 杜秀云, 马莉英. 双曲传热反问题研究[J]. 工 程力学, 2011, 28(2): 234-238.
 - Xue Qiwen, Du Xiuyun, Ma Liying. Research on the inverse hyperbolic heat conduction problems [J]. Engineering Mechanics, 2011, 28(2): 234 - 238. (in Chinese)
- [14] 郭红玲, 杨海天, 赵潇. 蚁群算法求解弹性本构参数区 间反问题[J]. 工程力学, 2012, 29(1): 7-12, 19.
 - Guo Hongling, Yang Haitian, Zhao Xiao. Solving an inverse problem of intervals of elastic constitutive parameters via ant colony algorithm [J]. Engineering Mechanics, 2012, 29(1): 7-12, 19. (in Chinese)