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Abstract. Modular multiplication of large integers is a performance-
critical arithmetic operation of many public-key cryptosystems such as
RSA, DSA, Diffie-Hellman (DH) and their elliptic curve-based variants
ECDSA and ECDH. The computational cost of modular multiplication
and related operations (e.g. exponentiation) poses a practical challenge
to the widespread deployment of public-key cryptography, especially on
embedded devices equipped with 8-bit processors (smart cards, wireless
sensor nodes, etc.). In this paper, we describe basic software techniques
to improve the performance of Montgomery modular multiplication on
8-bit AVR-based microcontrollers. First, we present a new variant of the
widely-used hybrid method for multiple-precision multiplication that is
10.6% faster than the original hybrid technique of Gura et al. Then, we
discuss different hybrid Montgomery multiplication algorithms, includ-
ing Hybrid Finely Integrated Product Scanning (HFIPS), and introduce
a novel approach for Montgomery multiplication, which we call Hybrid
Separated Product Scanning (HSPS). Finally, we show how to perform
the modular subtraction of Montgomery reduction in a regular fashion
without execution of conditional statements so as to counteract Simple
Power Analysis (SPA) attacks. Our AVR implementation of the HFIPS
and HSPS method outperforms the Montgomery multiplication of the
MIRACL Crypto SDK by 21.6% and 14.3%, respectively, and is twice as
fast as the modular multiplication of the TinyECC library.

Keywords: AVR architecture, multi-precision arithmetic, hybrid multi-
plication, modular reduction, SPA countermeasure.

1 Introduction

Long integer modular arithmetic, in particular modular multiplication, is at the
heart of many practical public-key cryptosystems, including “traditional” ones
that operate in a large ring or group (e.g. RSA [23], DSA [22], Diffie-Hellman
[7]), as well as elliptic curve schemes (e.g. ECDSA [22], ECDH [14]) if they use
a prime field Fp as underlying algebraic structure. The major operation of the
former class of cryptosystems is exponentiation in either Zn or Z∗p, which can be
carried out through modular multiplications and modular squarings [9]. On the
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other hand, elliptic curve schemes perform scalar multiplication in an additive
group, an operation that in turn is composed of additions, multiplications, and
inversions in the underlying field [4]. However, most software implementations
use projective coordinates to represent points on the curve, thereby trading in-
versions for multiplications in Fp to reduce the overall execution time1. In this
case, the performance of the scalar multiplication is primarily determined by the
efficiency of the multiplication in the prime field Fp.

Formally, a modular multiplication A · B mod M involves multiplying two
n-bit operands A and B, yielding a 2n-bit product P = A · B, followed by the
reduction of P modulo M to get a final result in the range of [0,M − 1]. The
latter operation, i.e. the reduction of P with respect to a given modulus M , has
a major impact on the execution time of a modular multiplication. A straight-
forward way to obtain the residue P mod M is to divide P by M and find the
remainder of this division. However, performing integer division in software is
extremely expensive for large operands, which makes this approach unpractical
for cryptographic applications. In 1985, Peter Montgomery [21] introduced an
efficient (and nowadays widely-used) technique to accomplish a modular reduc-
tion without trial division. The basic idea is to replace the modular reduction
P mod M by a computation of the form P · 2−n mod M (where n denotes the
bitlength of M), which is much cheaper than computing the actual residue via
division. In general, when implemented in software, the Montgomery reduction
of a 2n-bit product P with respect to an n-bit modulus M is just slightly more
costly than the multiplication of two n-bit operands [10]. A different technique
to speed up modular reduction was proposed by Paul Barrett in 1986 [3].

The efficient implementation of multiplication, reduction and other compu-
tation-intensive arithmetic operations is particularly challenging for embedded
processors with limited resources. The root of the problem is the length of the
operands (e.g. 160 bits for an elliptic curve cryptosystem, 1024 bits in the case
of RSA), which exceeds the word-size of a small 8 or 16-bit processor by up to
two orders of magnitude. Recent research in the area of long-integer arithmetic
for such processors focused on the 8-bit AVR architecture [1] (e.g. ATmega128
[2]) as target platform. In 2004, Gura et al published a landmark paper [13] on
optimizing modular arithmetic for AVR processors in which they introduce the
idea of hybrid multiplication. By exploiting the large register file to store (parts
of) the operands, the hybrid method allows for a considerable reduction of the
number of load instructions compared to a conventional (i.e. column-wise) im-
plementation of multiple-precision multiplication [6, 13]. Gura et al reported an
execution time of 3106 clock cycles for a (160 × 160)-bit multiplication on the
ATmega128, a result that was subsequently further improved by Uhsadel et al
(2881 cycles [25]), Liu et al (2865 cycles [19]), Zhang et al (2845 cycles [30]), as
well as Scott et al (2651 cycles with “unrolled” loops [24]).

In this paper, we continue the line of research described above and advance
the state-of-the-art in efficient modular arithmetic for 8-bit AVR processors in

1 According to [14, Table 5.3], an inversion in Fp can be over 100 times slower than a
multiplication, which makes a strong case for using projective coordinates.
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three directions. First, we introduce a new variant of the hybrid multiplication
technique that is roughly 10% faster than Gura et al’s original hybrid method
[13]. Our hybrid technique is similar to the one of Zhang et al [30], but benefits
from better register allocation and reduced loop overhead (i.e. improved initial-
ization of pointers and more efficient testing of branch conditions). Thanks to
our sophisticated register allocation, only 30 (out of 32) AVR working registers
are actually occupied during execution of a hybrid multiplication, which allows
for easy integration of Montgomery reduction2. The second contribution of this
paper is a comprehensive performance analysis and comparison of six methods
for software implementation of Montgomery multiplication; five are described in
[17] and the sixth is from [19]. We implemented these six methods in AVR as-
sembly language based on our hybrid technique and evaluated their execution
times using a cycle-accurate simulator. Our results shed some new light on the
relative performance of the different Montgomery multiplication methods since
they contradict the findings of the current literature, e.g. [17]. Finally, as third
contribution, we present a new approach to execute the conditional subtraction
of M (which is required when the Montgomery product is not fully reduced) in
a highly regular fashion. More precisely, we show how perform this subtraction
in a special way so that always exactly the same sequence of AVR instructions
is executed, regardless of the actual value of the Montgomery product, with the
goal of reducing side-channel leakage [20].

2 Montgomery Modular Multiplication

Montgomery multiplication (named after Peter Montgomery) was originally in-
troduced in 1985 [21] and has since then become one of the most-widely used
techniques for the efficient implementation of modular multiplication [4]. In the
following, we use M to denote an odd modulus consisting of n bits and A,B to
denote two residues modulo M , i.e. 0 ≤ A,B < M . Rather than computing the
residue of A · B mod M directly, Montgomery’s algorithm returns the so-called
Montgomery product of A and B as result, which is defined as follows.

MonPro(A,B) = A ·B ·R−1 mod M (1)

The factor R in Equation (1) is often referred to as Montgomery radix and can
be any integer that is bigger than M and relatively prime to it, i.e. R needs to
satisfy gcd (N,R) = 1. However, for reasons of implementation efficiency, R is
in general a power of two, e.g. R = 2n. The central idea of Montgomery multi-
plication is to replace the reduction modulo M (which would normally require
a costly division by M) by a division by R and a reduction mod R, which are

2 The integration of Montgomery reduction into hybrid multiplication (using e.g. the
so-called FIOS or FIPS method [17]) can significantly increase the register pressure
since two registers are necessary to accommodate the 16-bit pointer to the modulus
M . We designed our hybrid multiplication to take this into account by leaving two
registers for M , which helps to prevent register spills in the FIPS inner loop.
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Algorithm 1. Calculation of the Montgomery product

Input: An odd n-bit modulus M , Montgomery radix R = 2n, two operands A,B in
the range [0,M − 1], and pre-computed constant M ′ = −M−1 mod R

Output: Montgomery product Z = MonPro(A,B) = A ·B ·R−1 mod M
1: T ← A ·B
2: Q← T ·M ′ mod R
3: Z ← (T + Q ·M)/R
4: if Z ≥M then Z ← Z −M end if
5: return Z

cheap operations when R is a power of two. More precisely, a division by 2n is
merely an n-bit right-shift operation, while a reduction modulo 2n requires the
truncation of all high-order bits above the n-th position. Algorithm 1 specifies
the computation of the Montgomery product in detail. In addition to the three
operands A, B, and M , the algorithm needs M ′ as input, which is the inverse
of −M (or, more precisely, the inverse of R −M) modulo R. However, M ′ can
be pre-computed (using e.g. the Euclidean algorithm as described in [17]) since
it depends only on M and R, i.e. M ′ is fixed for a given M .

Based on Algorithm 1, the Montgomery product A ·B ·R−1 mod M can be
obtained as follows. First, the n-bit operand A is multiplied by n-bit operand
B, giving a 2n-bit product T . Then, in line 2, the quotient Q = − T

M mod R is
calculated, which is simply a multiplication of the low-order n bits of T by the
pre-computed constant M ′ = −M−1 mod R [4]. Note that we actually need to
calculate only the lower half (i.e. the n least significant bits) of T ·M ′ because
our Montgomery radix R is 2n. In line 3, a multiplication and a division by R is
performed; the latter is just an n-bit right-shift since R = 2n. Thus, we have to
calculate only the upper half of the product Q ·M . The n least significant bits
of T + Q ·M are 0, which means the division by R (i.e. the n-bit right-shift) in
line 3 does not destroy any information. The result Z obtained so far may be
not fully reduced (i.e. Z may not be the least non-negative residue modulo M)
so that a “final subtraction” of M becomes necessary (line 4). In summary, the
computational cost of Algorithm 1 amounts to one conventional multiplication
of n-bit operands (line 1) and two “half” multiplications where only either the
lower part (line 2) or the upper part (line 3) of the product is really needed. As
a consequence, computing the Montgomery product is just slightly more costly
than two conventional multiplications.

Software implementations of Algorithm 1 generally store the large integers
A, B, and M in arrays of single-precision words (i.e. arrays of unsigned int in
C and similar programming languages). Assuming a processor with a word-size
of w bits, an n-bit integer X consists of s = dn/we single-precision (i.e. w-bit)
words. Throughout this paper, we will use uppercase letters to represent large
integers, whereas lowercase letters, usually with a numerical index, will denote
individual w-bit words. The most and least significant word of an integer X are
xs−1 and x0, respectively, i.e. we have X = (xs−1, . . . , x1, x0). There exist sev-
eral implementation options and optimization techniques to efficiently perform
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Algorithm 2. Montgomery reduction (operand scanning form)

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), operand P = (p2s−1, . . . , p1, p0)
with P < 2M − 1, and pre-computed constant m′0 = −m−1

0 mod 2w.
Output: Montgomery residue Z = P · 2−n mod M .
1: Z ← 0
2: for i from 0 by 1 to s− 1 do
3: u← 0, t← 0
4: q ← pi ·m′0 mod 2w

5: for j from 0 by 1 to s− 1 do
6: (u, v)← mj · q + pi+j + u
7: pi+j ← v
8: end for
9: (u, v)← pi+s + u + t

10: pi+s ← v
11: t← u
12: end for
13: for j from 0 by 1 to s do
14: zj ← pj+s

15: end for
16: if Z ≥M then Z ← Z −M end if

a Montgomery multiplication in software; they can be categorized according to
the order in which the words of the operands (resp. product) are accessed and
whether multiplication and modular reduction are carried out separately or in
an integrated fashion (see e.g. [17] for details). In brief, when using the so-called
operand scanning method, the words of the operands are loaded sequentially, in
ascending order, starting with the least significant word. On the other hand, the
main characteristic of the product scanning technique is that each word of the
result is stored (i.e. written to memory) only once, which happens in ascending
order [6]. Both methods can be used to implement Montgomery multiplication
in either a separated way (i.e. the modular reduction is accomplished after the
multiplication) or an integrated way by alternating multiplication and reduction
steps. In the latter case, we can further distinguish between a coarse and a fine
integration of multiplication and modular reduction. Combinations of all these
techniques allow for a multitude of algorithms for calculating the Montgomery
product, five of which we briefly describe in the following subsections.

2.1 Separated Operand Scanning (SOS)

In Koç et al’s original description of the SOS method, both the multiplication
and the reduction are carried out according to the operand-scanning technique
[17]. The inner loop of the multiplication (and also that of the reduction) per-
forms operations of the form (u, v) ← a · b + c + d, whereby a, b, c, and d are
single-precision integers (i.e. w-bit words) and (u, v) denotes a double-precision
(i.e. 2w-bit) quantity. Each execution of this inner loop on a general-purpose
RISC processor, e.g. the ATmega128, involves a mul and four add (resp. adc)
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instructions3. Assuming s-word operands, the operand-scanning multiplication
of the SOS method executes s2 mul, 4s2 add (or adc), 2s2 + s load, as well as
s2 + s store instructions (see Algorithm 1 in [10] for a detailed analysis). The
original operand-scanning approach for Montgomery reduction as described in
Section 4 of [17] employs a special ADD function to propagate a carry bit up to
the most significant word. Our implementation simply stores this carry in an
extra register t and adds it in the next iteration of the outer loop as shown in
Algorithm 2. In this way, the operand-scanning form of Montgomery reduction
consists of s2 + s mul, 4s2 + 2s add or adc, 2s2 + 2s + 1 load, and s2 + 2s + 1
store instructions, which means the SOS method (excluding final subtraction)
needs to execute 2s2 + s mul, 8s2 + 2s add (resp. adc), 4s2 + 3s + 1 load, and
2s2 + 3s + 1 store instructions altogether.

2.2 Finely Integrated Product Scanning (FIPS)

The FIPS method (Algorithm 1 in [11]), originally introduced in [8], performs
multiplication and reduction steps in an interleaved fashion in the same inner
loop. From an algorithmic point of view, the FIPS method consists of two nested
loops; both inner loops compute parts of the product A ·B and then add parts
of the product Q ·M to it. After the first inner loop, a word of the quotient
Q is calculated using the least significant word of M ′ (i.e. the constant m′0 =
−m−10 mod 2w) and temporarily stored in the array of the final result. The least
significant word of the intermediate sum obtained at the end of the second
inner loop is always zero, which means it can be right-shifted by w bits without
destroying any information. In each iteration of the second outer loop, a word
of the result (i.e. the Montgomery product) is obtained and written to memory.
Note that this result consists of s + 1 words (whereby the MSW is either 0 or
1) since it may be incompletely reduced. Similar to the SOS method, a final
subtraction of M suffices to get a result in the range of [0,M − 1].

In each iteration of one of the inner loops, two multiply-accumulate (MAC)
operations of the form (t, u, v) ← (t, u, v) + a · b are carried out, i.e. two words
are multiplied and the double-precision product is added to a cumulative sum
held in the three registers v, u, and t. Note that Koç et al [11] employ an ADD

function to propagate carries (similar to the SOS method), but we avoid this
by using three registers to hold the cumulative sum. The inner-loop operation
of our FIPS method is identical to that of the product-scanning multiplication
[14] and needs one mul and three add instructions. In total, the FIPS method
requires 2s2+s mul, 6s2 add (or adc), 4s2−s load, and 2s+1 store instructions
altogether (excluding final subtraction) [10].

3 Note that we count the number of add instructions (in the same way as [10]), while
Koç et al [17] assess the number of add operations. Adding a single-precision word
to a double-precision quantity (u, v) counts for one add operation, but requires two
add instructions, one of which is actually an adc (add-with-carry).
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2.3 Coarsely Integrated Operand Scanning (CIOS)

Instead of computing the entire multiplication first and doing the reduction
afterwards (as in Section 2.1), the CIOS method performs multiplication and
reduction in an interleaved fashion, similar to Section 2.2. Algorithm 4 in [10]
describes the CIOS method in detail; it consists of an outer loop that contains
two inner loops. The first inner loop computes parts of the product A · B and
stores the intermediate result in an array in memory. After the first inner loop,
a word of the quotient Q is determined, which is then used in the second inner
loop to obtain a multiple of M to be added to the intermediate result. This
addition zeroes out the least significant word of the intermediate result and,
thereby, contributes to the modular reduction. A w-bit right-shift operation is
“implicitly” performed in the second inner loop through indexing, i.e. by writing
a word with index i to the (i − 1)-th position in the target array. Both inner
loops perform the same operation as the operand-scanning multiplication or the
SOS method, namely a computation of the form (u, v)← a · b+ c+d. The result
consists of s+1 words (whereby the most significant word is either 0 or 1), which
means a final subtraction of M may be required to get a fully reduced result. In
total, the CIOS method requires 2s2 + s mul, 8s2 + 4s add4, 4s2 + 5s load, and
2s2 + 3s store instructions (see [10] for further details).

2.4 Coarsely Integrated Hybrid Scanning (CIHS)

This method, shown in Algorithm 3, is related to both the SOS method and the
CIOS method described before. It is called “hybrid scanning” method because
it mixes operand-scanning and product-scanning for multiplication, while the
reduction operation is performed solely in operand-scanning form. The CIHS
method has two outer loops and three inner loops. The first outer loop (line 2 to
11) computes a part of the product A ·B, whereas the second outer loop accom-
plishes the modular reduction and the rest of the multiplication. Furthermore,
the second outer loop shifts the intermediate result one word (i.e. w bits) to the
right in each iteration. The splitting of the multiplication is possible since, in
the process of Montgomery reduction, the variable t in the i-th iteration of the
second outer loop only relies on z0. The operation executed by the first two inner
loops is the same as that of the SOS and CIOS method, respectively. However,
the third inner loop is slightly simpler as it performs an operation of the form
(u, v)← a · b+ c; each execution of this statement requires one mul and two add

instructions. Putting it all together, the CIHS method (excluding final subtrac-
tion) executes 2s2 + s mul, 9s2 + 5sadd, 11s2/2 + 7s/2 load, and 3s2 + 2s store
instructions.

2.5 Finely Integrated Operand Scanning (FIOS)

The last variant of Montgomery multiplication we sketch in this section is the
Finely Integrated Operand Scanning (FIOS) method given in [12, Algorithm 1].

4 Note that the number of add (resp. adc) instructions for the CIOS method specified
in Table 4 of [10] is wrong; the correct number is 8s2 + 4s for s-word operands.
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Algorithm 3. Montgomery multiplication (Coarsely Integrated Hybrid Scanning)

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), Operands A = (as−1, . . . , a1, a0)
and B = (bs−1, . . . , b1, b0), pre-computed constant m′0 = −m−1

0 mod 2w.
Output: Montgomery residue Z = A ·B · 2−n mod M .
1: Z ← 0
2: for i from 0 by 1 to s− 1 do
3: u← 0
4: for j from 0 by 1 to s− i− 1 do
5: (u, v)← zi+j + aj · bi + u
6: zi+j ← v
7: end for
8: (u, v)← zs + u
9: zs ← v

10: zs+1 ← zs+1 + u
11: end for
12: for i from 0 by 1 to s− 1 do
13: t← z0 ·m′0 mod 2w

14: (u, v)← z0 + t ·m0

15: for j from 1 by 1 to s− 1 do
16: (u, v)← zj + t ·mj + u
17: zj−1 ← v
18: end for
19: (u, v)← zs + u
20: zs−1 ← v
21: zs ← zs+1 + u
22: zs+1 ← 0
23: for j from i + 1 by 1 to s− 1 do
24: (u, v)← zs−1 + bj · as−j+i

25: zs−1 ← v
26: (u, v)← zs + u
27: zs ← v
28: zs+1 ← zs+1 + u
29: end for
30: end for
31: if Z ≥M then Z ← Z −M end if

Compared to the four methods discussed before, the structure of this algorithm
is quite simple as it comprises merely an outer loop with a single inner loop. The
inner loop of the FIOS method as described in [12] executes two operations of the
form (u, v)← a · b+ c+ d, one contributes the multiplication of A by B and the
second the Montgomery reduction of the product. Similar to the CIOS method,
quality of the implementation of this inner-loop operation has a major impact
on the algorithm’s overall execution time. In total, the FIOS method requires to
carry out 2s2 + s mul, 3s2 + 4s load and s2 + s store, 8s2 add instructions.
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Fig. 1. Comparison of inner-loop operation for hybrid multiplication

3 Our Implementation

In this section, we first introduce a novel variant of the hybrid multiplication
method, which saves 10.6% in execution time compared to the original one from
[13]. Then, we combine our hybrid multiplication with Montgomery’s algorithm
to obtain different variants of hybrid Montgomery multiplication. Finally, in
the last subsection we describe an approach to reduce the side-channel leakage
caused by the conditional final subtraction of the modulus.

3.1 Optimized Hybrid Multiplication

A straightforward implementation of the product-scanning method processes a
single word of operand A and operand B at a time, which means in each iteration
of the inner loop(s), a word of each A and B is loaded from memory, multiplied,
and added to a cumulative sum. Gura et al [13] observed that the performance
of the product-scanning method can be significantly improved if several words
of the operands are processed in each iteration. This approach is, in essence, a
special form of loop unrolling and particularly efficient on processors featuring
a large number of registers. Taking the 8-bit AVR platform [1] as example, we
can easily process d = 4 (or even d = 5) bytes of the operands at a time and,
thereby, reduce the number of loop iterations by a factor of d. In each iteration
of the inner loop, four bytes (i.e. 32 bits) of A and B are loaded from memory,
multiplied together to yield an 8-byte (i.e. 64-bit) result, which is added to
a cumulative sum held in nine registers. Gura et al use the operand-scanning
method for the 4-byte-by-4-byte (i.e. (32 × 32-bit)-bit) multiplication in the
inner loop as illustrated on the left of Figure 1. This multiplication technique
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is referred to as “hybrid multiplication” since it combines product scanning in
the outer loop with operand scanning in the inner loop. The main benefit of
hybrid multiplication is a reduced number of load instructions compared to the
straightforward product-scanning method (see [13] for details).

In the recent past, there have been numerous attempts to improve the inner-
loop operation of the hybrid method, taking the peculiarities of the AVR archi-
tecture into account5. For example, Liu et al [19] re-arranged the order of the
byte-multiplications in the inner loop (shown in the middle of Figure 1), which
allowed them to reduce the number of mov (resp. movw) instructions compared to
the original hybrid method. Scott et al [24] employed so-called “carry catcher”
registers to limit the propagation of carries and unrolled the loops to achieve a
further speed-up. Our implementation of the inner loop, illustrated on the right
of Figure 1, is inspired by both Liu et al and Scott et al. Similar to Liu et al,
we schedule the mul instructions in a special order with the goal of reducing
the computational cost of the inner loop. The 16 byte products (for d = 4) are
calculated as shown in Figure 1, whereby the execution time elapses from top
to bottom, i.e. a0 · b2 is the first byte product we generate and a3 · b2 the last.
Our variant of the inner-loop operation borrows the idea of catching carries from
[24], but we do not use separate registers for that purpose.

To simplify the explanation of our inner loop, we divide the 16 byte-products
into four blocks, indicated by dashed boxes in Figure 1. At the beginning, four
bytes of operand B (labelled b0, b1, b2 and b3 in Figure 1) and two bytes of A
(namely a0 and a1) are loaded from memory. We first multiply a0 by b2 and
copy the 16-bit product to two temporary registers, t0 and t1, with help of the
movw instruction. The register t1 holds the upper (i.e. more significant) byte of
the product and t0 the lower byte. Next, we form the product a0 · b0 and add
it along with the content of t0 to the three accumulator registers r0, r1 and
r2. A potential carry from this addition can be safely added into the temporary
register t1 without overflowing it since the upper byte of the product of two 8-bit
quantities is always smaller than 255. Thereafter, we multiply a0 by b1, add the
resulting 16-bit product to r1, r2, and propagate the carry from the last addition
into the temporary register t1. Again, it is not possible to overflow t1, not even
in the most extreme case where the operand bytes a0, b0, b1 and b2 as well as
the involved accumulator bytes r0, r1, and r2 have the largest possible value of
255. After computation of the last byte-product of the first block, namely a1 · b3,
we add t1 and a1 · b3 to the three accumulator registers r3, r4, r5, and propagate
the carry from the last addition up to r8. In summary, the processing of the
first block in Figure 1 requires a four mul, a movw, and a total of 13 add or adc

instructions, respectively.

The next two blocks are processed in essentially the same way as the first
block; the only noteworthy difference is the loading of the remaining operand
bytes of A, namely a2 and a3, which is included in the second and third block,
respectively. Again, we use the temporary registers t1 to catch the carries gen-

5 A “special” feature of AVR is that the mul instruction modifies the carry flag, which
complicates the implementation of multi-precision multiplication.
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Table 1. Comparison of Instruction Counts on the ATmega128

Instruction type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

Classic Comba 1200 400 800 40 81 44 3805

Gura et al. [13] 1360 400 167 40 355 197 3106

Uhsadel et al. [25] 986 400 238 40 355 184 2881

Liu et al. [19] 1194 400 200 40 212 179 2865

Zhang et al. [30] 1092 400 200 20 202 271 2845

This work 1213 400 200 40 100 185 2778

Hutter et al. [15] 1252 400 92 66 41 276 2685

Scott et al. [24] 1263 400 200 40 70 38 2651

erated by the addition of the second and third byte-product of the respective
block. The loading of operand byte a2 is part of the second block and performed
after the multiplication of a0 by b3. Note that the byte a0 is not needed anymore
once a0 · b3 has been calculated, which means we can load a2 into the register
holding a0. The operand byte a3 is loaded after the multiplication of a1 by b2 in
the third block. At that time, the byte a1 is not needed anymore, and so we can
load a3 into the same register, thereby overwriting a1. In summary, the second
and third block execute 12 and 11 add or adc instructions, respectively. The
number of mul and movw instructions are the same as for the first block.

The fourth block, in which the remaining four byte-products are generated
and added to the accumulator registers, differs slightly from the former three.
We first multiply a3 by b1 and move the resulting 16-bit product to the tem-
porary register pair t1, t0. Then, we calculate a1 · b2, add the lower byte to the
accumulator register r3 and the upper byte to the temporary register pair hold-
ing a1 · b3. Note that the last addition does not produce a “carry out,” i.e. this
addition can not overflow the temporary register pair. The third product a0 · b3
is processed in the same way, whereby it is again not possible to overflow the
temporary registers. After the final multiplication of a2 by b3, the temporary
register t0 is added to r4; a possibly resulting carry bit is added with t1 to the
product a2 · b3. The obtained sum is then added to the accumulator registers r5,
r6 and a carry from the last addition is propagated up to r8. In total, the fourth
block requires to perform 13 add (or adc) instructions, similar to the first block.
The complete inner-loop operation for d = 4 consists of a total of 46 add (resp.
adc), 16 mul, eight ld (i.e. load), and four movw instructions. On an ATmega128
processor [2], these instruction counts translate to an execution time of 101 clock
cycles per iteration of the inner loop (including update of the loop-control vari-
able and branch instruction). Another important property of our inner loop is
its economic register usage; it occupies only 30 out of the 32 available registers,
which simplifies the implementation of Montgomery multiplication.

Table 1 summarizes instruction counts and total execution time (in clock
cycles) of our improved hybrid method for a (160 × 160)-bit multiplication on
an ATmega128 processor. Note that the instruction counts in the columns la-
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beled with add, ld, and mov also include adc, ldd, and movw, respectively (i.e.
we do not distinguish between add and adc as they both require one cycle on
AVR processors). Our variant of the hybrid method executes a (160 × 160)-bit
multiplication in 2778 clock cycles on the ATmega128, which is approximately
10.6% faster than the original hybrid method of Gura et al [13]. This saving in
execution time is mainly due to the fact that we perform only 100 mov (resp.
movw) instructions, whereas Gura et al require 355 mov or movw instructions.
Furthermore, our special scheduling of the multiplications in the inner loop re-
duces the number of add (resp. adc) instructions, similar to the implementations
described in [19] and [30]. The hybrid variant of Uhsadel et al [25] takes 2881
cycles, even though their implementation (as well as the one of Gura et al [13])
is based on d = 5 for 160-bit operands instead of d = 4 as in our work. On the
other hand, Scott et al’s implementation [24] is slightly faster than ours, mainly
because they fully unrolled the loops, which allowed them to reduce execution
time at the expense of larger code size. The so-called operand-caching method
of Hutter et al [15] also outperforms our hybrid multiplication technique, but
uses all 32 available registers of the ATmega1286.

3.2 Hybrid Montgomery Multiplication

In this subsection, we describe hybrid variants of the five Montgomery multi-
plication techniques from Section 2 plus of a sixth one, which we call Separated
Product Scanning (SPS). The SPS method separates multiplication and reduc-
tion steps (similar to the SOS method), i.e. the Montgomery reduction is carried
out as a self-contained operation after the multiplication. As its name suggests,
the SPS technique uses the product scanning approach for multiplication (Al-
gorithm 2 in [10]) and then applies the product-scanning form of Montgomery
reduction shown in Algorithm 4. A detailed explanation of this product-scanning
based Montgomery reduction can be found in [10] and [19]. The SPS method
was originally introduced in [19] as a product-scanning variant of the SOS tech-
nique, but we feel that the name “Separated Product Scanning” better reflects
the characteristics of this method. According to [10], a product-scanning multi-
plication of two s-word operands consists of s2 mul, 2s2 load, 2s store, and 3s2

add instructions. Algorithm 4 requires s2 + s mul, 2s2 + 2s load, 2s + 1 store,
and 3s2 + 6s add instructions, which means the SPS method amounts to 2s2 + s
mul, 4s2 + 2s load, 4s + 1 store, and 6s2 + 6s add instructions altogether.

Table 2 summarizes and compares the base instruction counts of all six Mont-
gomery multiplication techniques considered in this paper. The two variants
based on the product-scanning technique (i.e. FIPS and SPS) perform multiply-
accumulate operations of the form (t, u, v)← (t, u, v) + a · b in their inner loops,

6 Note that the fasted implementation of a conventional multiplication (i.e. a multi-
plication without reduction) does not necessarily lead to the fastest implementation
of Montgomery multiplication. Generic algorithms for modular multiplication have
three input operands (namely A, B, and M), which increases the register pressure
compared to an ordinary multiplication. Our variant of the hybrid method occupies
only 30 registers and, thus, allows for easy integration of Montgomery reduction.



New Speed Records for Montgomery Modular Multiplication 13

Algorithm 4. Product-scanning Montgomery reduction [10, Algorithm 5]

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), a product P in the range of
[0, 2M − 2], pre-computed constant m′0 = −m−1

0 mod 2w.
Output: Montgomery residue Z = P · 2−n mod M .
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i− 1 do
4: (t, u, v)← (t, u, v) + zj ·mi−j

5: end for
6: (t, u, v)← (t, u, v) + pi
7: zi ← v ·m′0 mod 2w

8: (t, u, v)← (t, u, v) + zi ·m0

9: v ← u, u← t, t← 0
10: end for
11: for i from s by 1 to 2s− 2 do
12: for j from i− s + 1 by 1 to s− 1 do
13: (t, u, v)← (t, u, v) + zj ·mi−j

14: end for
15: (t, u, v)← (t, u, v) + pi
16: zi−s ← v
17: v ← u, u← t, t← 0
18: end for
19: (t, u, v)← (t, u, v) + p2s−1

20: zs−1 ← v, zs ← u
21: if Z ≥M then Z ← Z −M end if

Table 2. Comparison of base instructions for Multiplication modular multiplications
(excluding final subtraction)

Algorithms mul load store add

FIPS 2s2 + s 4s2 − s 2s + 1 6s2

SPS 2s2 + s 4s2 + 2s 4s + 1 6s2 + 6s

CIOS 2s2 + s 4s2 + 5s 2s2 + 3s 8s2 + 4s

SOS 2s2 + s 4s2 + 3s + 1 2s2 + 3s + 1 8s2 + 2s

CIHS 2s2 + s 11s2/2 + 7s/2 3s2 + 2s 9s2 + 5s

FIOS 2s2 + s 3s2 + 4s s2 + s 8s2

which means three add or adc instructions are required to add a byte-product to
a cumulative sum. Consequently, the FIPS and SPS method execute three add

(resp. adc) per mul instruction. On the other hand, the operand-scanning vari-
ants are characterized by inner-loop operations of the form (u, v)← a · b+ c+ d,
each costing four add (resp. adc) per mul instruction. Another major differ-
ence between the product-scanning variants and their counterparts based on the
operand-scanning technique is the number of st (i.e. store) instructions, spec-
ified in the last column of Table 2. The former execute st instructions solely
in the outer loops, whereas the latter perform stores in the inner loops. Conse-
quently, the number of st instructions required by the FIPS and SPS method
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increases linearly with the number of words s. The operand-scanning variants,
on the other hand, exhibit a quadratic growth of the number of stores. In sum-
mary, our analysis of the base instructions indicate a clear advantage of the two
product-scanning methods, which will be confirmed by implementation results in
the next section. However, our analysis does not agree with that of Koç et al [17],
who identified the FIOS method as the most efficient one on basis of both their
theoretical cost model and implementation results. As explained in Section 2,
this discrepancy can be explained by differences in the underlying cost model;
Koç et al consider the number of basic operations, while we count the number of
basic instructions, which is more accurate. Furthermore, Koç et al use a special
ADD function to propagate carries in some of their Montgomery multiplication
techniques, which we do not need since we hold all carries in registers.

Similar to the “conventional” multiplication (without reduction), also the
six Montgomery multiplication techniques considered in this paper can be made
significantly faster by using the hybrid method to exploit the large register file
of the AVR platform. Processing several bytes of the operands in each inner-
loop iteration allows for a significant performance gain by reducing the number
of load/store instructions and loop overhead. By combining the hybrid tech-
nique with the six variants of Montgomery’s algorithm, we get six hybrid Mont-
gomery multiplication methods, which we call hybrid SOS (HSOS), hybrid FIPS
(HFIPS), hybrid CIOS (HCIOS), hybrid CIHS (HCIHS), hybrid FIOS (HFIOS),
and hybrid SPS (HSPS). Our implementations of these six methods have in
common that, in each iteration of the inner loop, four bytes of the operands are
loaded into registers and the number of loop iterations is accordingly reduced
by a factor of four compared to the corresponding conventional (i.e. non-hybrid)
Montgomery multiplication technique.

The two hybrid product-scanning variants, namely HFIPS and HSPS, execute
operations of the form (t, u, v)← (t, u, v) +a · b in their inner loops, whereby the
two operand words a and b consist of four bytes each. A total of nine registers
are necessary to hold the cumulative sum (t, u, v). Therefore, we can use the
highly-optimized hybrid implementation of the inner loop operation depicted on
the right of Figure 1 and described in detail in Section 3.1. Unlike to HSPS,
the HFIPS method requires to keep four pointers (namely the pointers to the
arrays in which the operands A, B, the result Z, and the modulus M are stored)
in registers during the execution of the inner loop to achieve peak performance.
Our inner-loop implementation from Section 3.1 is perfectly suited for the HFIPS
method since it requires only 30 registers so that the remaining two registers can
be used to hold the pointer to M . The four hybrid Montgomery multiplication
methods based on operand-scanning (i.e. HSOS, HCIOS, HCIHS, and HFIOS)
have a slightly different inner loop executing operations of the form (u, v) ←
a · b + c + d and (u, v)← a · b + c. We implemented these operations to process
four bytes per iteration and optimized them following exactly the same strategies
as discussed in Section 3.1.
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Algorithm 5. Final subtraction of Montgomery multiplication

Input: (s + 1)-word Montgomery product Z = (zs, zs−1, . . . , z1, z0) with zs ∈ {0, 1}
and s-word modulus M = (ms−1, . . . ,m1,m0);

Output: Z = Z mod M ;
1: if Z ≥M then
2: (ε, z0)← z0 −m0

3: for i from 1 by 1 to s− 1 do
4: (ε, zi)← zi −mi − ε
5: end for
6: end if
7: return Z = (zs−1, . . . , z1, z0)

3.3 Regular Execution of Final Subtraction

As specified in Algorithm 1, the calculation of the Montgomery product may
require a final subtraction of the modulus M to get a fully reduced result in the
range of [0,M − 1]. However, this final subtraction is not performed when the
intermediate result after step 3 of Algorithm 1 is already smaller than M . Un-
fortunately, such a conditional execution of a subtraction entails observable dif-
ferences in the power consumption profile, which can be exploited to mount an
SPA attack as described in [28] for RSA and in [27] for an elliptic curve crypto-
system. Algorithm 5 shows a straightforward implementation of the final subtrac-
tion to demonstrate the leakage. The most significant word zs of the unreduced
Montgomery product Z is either 0 or 1. First, Z is compared with M and, de-
pending on the result of this comparison, the words mi of M are subtracted from
the words zi of Z, starting with the least significant word. The notation in Algo-
rithm 5 follows that in [14], i.e. the word-subtractions are carried out with help
of an “subtract with borrow” instruction whereby ε represents the borrow bit.
Walter proposed in [26] a smart approach to eliminate the final subtraction by
simply using a larger Montgomery radix of R = 2n+2 instead of 2n and adapting
the Montgomery multiplication accordingly. However, in our case, this approach
would require to calculate the Montgomery product with longer operands (since
the operand length has to be a multiple of 32), which degrades performance.

Algorithm 6. Final subtraction without conditional statements

Input: (s + 1)-word Montgomery product Z = (zs, zs−1, . . . , z1, z0) with zs ∈ {0, 1}
and s-word modulus M = (ms−1, . . . ,m1,m0);

Output: Z = Z −M if zs = 1, otherwise, Z = Z − 0.
1: mask ← −zs mod 2w {w is the bitlength of a word}
2: (ε, z0)← z0 − (mi & mask)
3: for i from 1 by 1 to s− 1 do
4: (ε, zi)← zi − (mi & mask)− ε
5: end for
6: return Z = (zs−1, . . . , z1, z0)
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Table 3. Execution time (in clock cycles) of six hybrid Montgomery multiplication
techniques for different operand lengths

Algorithm 160 192 224 256 512 768 1024

HFIPS 6080 8539 11420 14723 56339 124964 220596

HSPS 6648 9171 12110 15465 57281 125722 221044

HCIOS 7140 9983 13310 17121 65033 143922 253787

HSOS 7921 10956 14500 18553 69301 152626 268788

HCIHS 8127 11385 15197 19563 74435 164764 290549

HFIOS 8216 11660 15716 20384 79760 178315 316018

To minimize performance degradation, we implemented the final subtraction
in an unconditional way by “zeroing out” the words mi if necessary as shown in
Algorithm 6. Based on the idea of incomplete modular arithmetic from [29], we
do not perform an exact comparison between Z and M , but rather use the value
of the most significant word zs to determine whether Z is too large or not. More
precisely, we use zs to derive a mask that is either and “all 0” word (if zs = 1)
or an “all 1” word (if zs = 1). As shown in line 1 of Algorithm 6, such a mask
can be simply generated by calculating the two’s complement of zs. The mask is
applied to the bytes of M (i.e. each mi is logically ANDed with the mask) before
they are subtracted from the words zi using subtract-with-borrow instructions.
In this way, we either subtract the modulus M from Z (if zs = 1) or we subtract
0 (if zs = 0) so that Z remains the same. The final result may not be the least
non-negative residue, but it is always in the range [0, 2n − 1] and, therefore,
fits into s words. This incomplete reduction does not introduce any problems in
practice since the result can be used as operand for a subsequent Montgomery
multiplication (see [29] for a detailed discussion).

4 Performance Evaluation and Comparison

We implemented the six hybrid Montgomery multiplication algorithms in As-
sembly language and evaluated their execution time for operands ranging from
160 to 1024 bits. Table 3 shows the simulated results for an AVR Atmega128
microcontroller; these figures include the time for the unconditional final sub-
traction. The fastest method, HFIPS, only needs 6080 clock cycles to perform
a 160-bit modular multiplication, which is roughly 1.4x faster than the slowest
algorithm, which is HFIOS. All obtained execution times are visualized on the
left of Figure 2.

Besides the computational complexity of algorithms themselves, there are
also other factors affecting the performance of a concrete implementation. For
example, the overhead for controlling the loop or the cost to find the correct
address of operands also impact the execution time. Our results show that the
interleaved versions of hybrid Montgomery multiplication are sightly faster than
the separated versions, i.e. HFIPS outperforms HSPS, and HCIOS is faster than
HSOS. This is mainly because that the interleaved versions incur less overhead
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Fig. 2. Performance comparison of our six Montgomery algorithms (left) and compar-
ison or our HFIPS method with Miracl and TinyECC (right)

than the separated versions, including the overhead for controlling the loop,
handling the pointers and calculating the start addresses.

The HCIHS and HFIOS method are slower than the other four hybrid Mont-
gomery multiplications techniques shown in Table 3. The poor performance of
the HCIHS method is primarily because of the overhead due to frequent loadings
of operands into registers. On the other hand HFIOS consumes a lot of time for
address calculations to obtain the correct start address of operands. Another
disadvantage of this method is that it has to process six variables, namely aj ,
bi, mj , q, t and zj , in the inner loop. Since the hybrid multiplication of aj · bi
occupies almost all of the 32 working registers, many expensive push and pop

operations have to be carried out to save pointers on the stack. The cost of stack
operations for HFIOS is much higher than cost of the frequent operand loadings
in HCIHS; therefore, it is not surprising that HFIOS is slower than HCIHS.

Table 4. Montgomery Multiplication timings (in clock cycles) of TinyECC, Miracl,
and our implementation of the HSPS and HFIPS method

Implementation 160 192 224 256 512 1024

TinyECC [18] 14929 20060 25765 n/a n/a n/a

Miracl [5] 7753 10653 14033 17761 58806 221329

This work (HSPS) 6648 9171 12110 15465 57281 221044

This work (HFIPS) 6080 8539 11420 14723 56339 220596

Table 4 shows a comparison of our hybrid product-scanning methods, namely
HFIPS and HSPS, with the two well-known crypto libraries TinyECC [18] and
Miracl [5] for operands of 160, 192, 224, and 256 bit. The right side of Figure 2
visualizes the execution of TinyECC, Miracl, and HFIPS, which is our fastest
implementation of Montgomery multiplication. To ensure a fair comparison, we
downloaded the sourcecode of TinyECC and Miracl from the corresponding web-
sites, compiled them with AVR studio, and simulated the execution times in a
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coherent fashion. Both our HFIPS and HSPS implementation are more than
twice as fast as the Montgomery multiplication of TinyECC. On the other hand,
compared to the Montgomery multiplication of the Miracl library, our HFIPS
method saves 21.6%, 19.8%, 18.6%, 17.1% execution time for 160, 192, 224, and
256-bit operands, respectively. Note that the performance gap between HFIPS
and Miracl is becomes smaller when the operand size grows above 256 bits
since Miracl employs the asymptotically faster Karatsuba-Comba-Montgomery
(KCM) method [10] if the operand length exceeds a certain threshold.

5 Conclusions

The contribution of this work is threefold. First, we presented a new approach
to implement hybrid multiplication, saving up to 10.6% in execution time com-
pared to the original method of Gura et al. This performance gain is achieved
by re-ordering the sequence of byte-multiplications in the inner loop along with
an efficient way of catching carries, thereby reducing the overall number of add
and mov (resp. movw) instructions. Another feature of our hybrid technique is its
suitability to implement interleaved variants Montgomery multiplication since
it occupies only 30 registers of an AVR processor. Our second contribution is a
through analysis and comparison of six hybrid variants of Montgomery modular
multiplication. Based on a refined cost model along with some small optimiza-
tions (e.g. elimination of the ADD function for carry propagation), we conclude
that the FIPS and SPS methods achieve the best performance, which contradicts
pervious work of Koç el al, who found the FIOS method to be superior. Detailed
benchmarking on an ATmega128 processor confirms the results of our theoret-
ical evaluation and shows that the hybrid FIPS method needs only 6124 clock
cycles to execute a 160-bit Montgomery multiplication. This result sets a new
speed record for modular multiplication on an 8-bit processor and outperforms
the widely-used Miracl library by more than 20% and improves the execution
time of TinyECC by a factor of almost 2.5. The third contribution of this paper
is a simple yet efficient approach to perform the conditional final subtraction in
an unconditional way by “zeroing out” the words of the modulus M if the inter-
mediate result is already smaller than 2n. This ensures that always exactly the
same sequence of instructions is executed, regardless of the actual value of the
operands, which helps to thwart certain side-channel attacks.
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