
Another Look at XCB

Debrup Chakraborty1, Vicente Hernandez-Jimenez1, Palash Sarkar2

1 Department of Computer Science, CINVESTAV-IPN,
Av. IPN 2508 San Pedro Zacatenco, Mexico City 07360, Mexico

debrup@cs.cinvestav.mx, vicente.845@gmail.com
2 Applied Statistics Unit
Indian Statistical Institute

203 B.T. Road, Kolkata 700108, India
palash@isical.ac.in

Abstract. XCB is a tweakable enciphering scheme (TES) which was first proposed in 2004. The scheme
was modified in 2007. We call these two versions of XCB as XCBv1 and XCBv2 respectively. XCBv2 was
later proposed as a standard for encryption of sector oriented storage media in IEEE-std 1619.2 2010. There
is no known proof of security for XCBv1 but the authors provided a concrete security bound for XCBv2 and
a “proof” for justifying the bound. In this paper we show that XCBv2 is not secure as a TES by showing an
easy distinguishing attack on it. For XCBv2 to be secure, the message space should contain only messages
whose lengths are multiples of the block length of the block cipher. For such restricted message spaces also,
the bound that the authors claim is not justified. We show this by pointing out some errors in the proof. For
XCBv2 on full block messages, we provide a new security analysis. The resulting bound that can be proved
is much worse than what has been claimed by the authors. Further, we provide the first concrete security
bound for XCBv1, which holds for all message lengths. In terms of known security bounds, both XCBv1 and
XCBv2 are worse compared to existing alternative TES.

1 Introduction

Tweakable enciphering schemes (TES) are a class of block-cipher mode of operation, which are meant to provide
security as that of a tweakable strong pseudorandom permutation (SPRP). Designing efficient TES which provides
the required security in provable terms is a challenging problem. In the last decade there have been some intense
activities in designing such schemes and proving their security [3–8,11,13–16]. TES are also practically interesting,
as they are the most suitable cryptographic schemes for the application of disk encryption (or encryption of any
storage media which are organized as sectors). This practical side of TES has lead to standardization activities
for the application of disk encryption [1]. In this paper we take a close look at a TES called XCB which is a part
of the IEEE Std 1619.2-2010 standard for disk encryption.

McGrew and Fluhrer proposed XCB in [11]. However, they did not give a proof of security for their construc-
tion. Later in [12] they made changes to the original construction proposed in [11] and proved security of the
updated construction. In [12] the authors claim that the changes made to the original construction help in an
easy analysis of it. For ease of reference we shall call the different versions of XCB in [11] and [12] as XCBv1 and
XCBv2 respectively.

In this paper we do a careful analysis of both XCBv1 and XCBv2. As a result of our analysis we conclude that
the security claims about XCBv2 made in [12] are largely erroneous. Primarily, XCBv2 is not at all secure for
messages whose lengths are not the multiples of the block length of the underlying block cipher. We demonstrate
this by a simple distinguishing attack on XCBv2. If we restrict the message space to contain only messages whose
lengths are multiples of the block length of the block cipher then our distinguishing attack does not work. But
in case of such restricted message spaces also, the security bound claimed by the authors is not justified. We
demonstrate this by pointing out an error in the security proof of XCBv2. The error occurs in a result (Theorem

1 in [12]) which is central to the proof of the security theorem stated in [12]. We were not able to construct a
counterexample for the security theorem itself, but surely the proof provided for the security theorem is incorrect.

When the message space is restricted to full block messages, we also provide a new security theorem for XCBv2,
where the security bound that can be proved is significantly greater than that claimed in [12]. Additionally, we
prove security for the original XCB (i.e. XCBv1) as proposed in [11]. Our security theorem for XCBv1 provides
a concrete security bound which was not known before. The proof of XCBv1 and the bound is almost same as
that of XCBv2.

XCBv2 with AES as the underlying block cipher has been accepted by the IEEE as a standard (IEEE-std
1619.2, 2010) for wide block encryption for shared storage media [1]. Being a part of the standard it is expected
that XCBv2 would be soon deployed (or has been already deployed) as an encryption scheme for a wide range of
storage applications. Our results show that XCBv2 has numerous security flaws, thus the users and implementors
should be cautions regarding its use. Moreover our analysis puts in serious doubt the process and outcome of the
IEEE working group on security in storage, the group which proposed this standard.
Notation. In what follows, we shall denote the set of all n bit strings by {0, 1}n. For binary strings X and Y ,
X||Y will denote the concatenation of X and Y ; |X| will denote the length of X in bits; msbr(X) and lsbr(X) will
denote the r most significant and least significant bits of X respectively. By int(X) we would mean the integer
represented by the binary string X, and for a non-negative integer i ≤ 2n− 1, binn(i) will denote the n-bit binary
representation of i. We shall often treat n-bit strings as elements in GF (2n), thus, for X,Y ∈ {0, 1}n, X ⊕Y and
XY will respectively denote addition and multiplication in GF (2n).

2 Differences between XCBv2 and XCBv1

The encryption algorithms of XCBv1 and XCBv2 are described in Fig. 1. In Fig. 1, for a binary string X,
parsen(X) outputs X1, X2, . . . , Xm, where X = X1||X2|| . . . ||Xm and that |Xi| = n bits (i = 1, 2, . . .m − 1),
0 < |Xm| ≤ n.

The hash function H in Fig. 1 is defined as

Hh(X,T) =X1h
m+p+1 ⊕X2h

m+p ⊕ . . .⊕ pad(Xm)hp+2 ⊕ T1hp+1

⊕ T2hp ⊕ . . .⊕ pad (Tp)h
2 ⊕ (binn

2
(|X|)||binn

2
(|T |))h,

(1)

where h is an n-bit hash key and (X1, X2, . . . , Xm) = parsen(X), (T1, T2, . . . , Tp) = parsen(T). The pad function
is defined as pad(Xm) = Xm||0r where r = n− |Xm|. Thus, |pad(Xm)| = n.

Given an n-bit string S, the counter mode Ctr is defined as

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(inc0(S)), . . . , Am ⊕ EK(incm−1(S))).

In case the last block Am is incomplete then Am⊕EK(incm−1(S)) in Ctr is replaced by Am⊕dropr(EK(incm−1(S))),
where r = n − |Am| and dropr(EK(incm−1(S))) is the first (n − r) bits of EK(incm−1(S)). In the definition of
Ctr, for a bit string X ∈ {0, 1}n, inc(X) treats the least significant 32 bits (the rightmost 32 bits) of X as a
non-negative integer, and increments this value modulo 232, i.e.,

inc(X) = msbn−32(X)||bin32(int(lsb32(X)) + 1 mod 232).

For r ≥ 0, we write incr(X) to denote the r times iterative applications of inc on X. We use the convention that
inc0(X) = X.

For both XCBv1 and XCBv2, it is specified (in [11] and [12] respectively) that n ≤ |P | ≤ 239 and 0 ≤ |T | ≤ 239.
The description of XCB in the standard 1619.2 is same as the description of XCBv2 (but it seems that there is
a typo in the description, we discuss more about it in Section 2.1). In the standard the block cipher is fixed as
AES (with either 128-bit key ot 256-bit key), hence n = 128. And it it is specified that tweaks can be of arbitrary
length and message lengths should always be multiples of 8 bits and can be between 128 bits and 232 bits.

Next we point out some of the main differences in the two versions of XCB.

1. Only a single hash key is used. XCBv1 has a different key for each computation of the hash function. In
XCBv2 the computation of the hash function is done using the same key. This change was justified in [12] by
saying that a single hash enables the derivation of some algebraic relations between the two hash functions,
which in turn helps in the security proof. Moreover, a single hash key benefits software implementations by
relieving them of the need to store pre-computed tables for an additional hash key3.

2. Key sizes. Both XCBv1 and XCBv2 are parameterized by the key K which is the key of the underlying
block cipher. For using XCBv1 it has to be the case that the block length of the block cipher and the key
lengths are the same. Notice, that in XCBv1 both Kd and Kc are block cipher outputs and are thus bound
to be of the same length of that of the block length of the block cipher. Thus in XCBv1 one cannot use an
AES with 192 or 256-bit keys. This limitation was first pointed out in [4]. In XCBv2 this restriction has been
removed and it can work for any block cipher whose key length is less than or equal to twice its block length.

3. Inputs to the hash function are rearranged. The order of the inputs to the hash in the two different
constructions differ along with some extra formatting of the inputs. In XCBv1 first and second computations
of the hash function in lines 7 and 9 are the same, except that in line 7 the input to the hash is the tweak
and the plaintext and in line 9 the inputs are the tweak and the ciphertext. In XCBv2 the two computations
of the hash functions (in lines 108 and 110) differ in the following ways:
(a) In line 108, the first input to the hash is the tweak with a block of zeros concatenated in the beginning,

whereas in line 110 the first input is the tweak with a block of zeros concatenated in the end.
(b) The second input in line 108 is the padded plain text concatenated with a block of zeros. And in line

110, the second input is the padded ciphertext concatenated with the length of the tweak plus the block
length, and the length of the ciphertext.

Note that in case of XCBv2 the second inputs to both the hashes are already padded, and the length parameter
is only added in the second hash (line 110).
According to the authors this change in the formatting and order of the hash inputs helps in their analysis,
but given that the original definition of the hash (in Eq. (1)) already includes a length parameter of the
inputs, it is not clear why the authors propose to input the padded messages thus nullifying the effect of the
lengths in the first hash and again adding the extra length parameter in case of the second hash computation.
We will see later this makes XCBv2 insecure for certain types of messages.

4. Plaintext is formatted differently. XCBv1 uses the first n bits of the plaintext to compute the value CC
while XCBv2 uses the last n bits of the plaintext to compute the value of the same variable. According to the
authors, this change makes the construction amenable to a pipelined implementation.

2.1 Typo in the Standard?

The specification in the standard IEEE 1619.2 considers only 128-bit blocks and specifies the underlying block
cipher as AES with key size of either 128 bits or 256 bits. The specification of XCB as presented in the standard
is shown in Section A of the appendix. Our description of XCBv2 in Fig. 1 not only follows a different notation
but it is otherwise different from the description in the standard.

The encryption scheme specified in the standard document is not length preserving and it would lead to a
2-bit expansion in the ciphertext, i.e., the ciphertext produced by the encryption scheme would be two bits longer
than the plaintext. Also, the decryption algorithm is not the inverse of the encryption algorithm. Which means
that XCB as specified in the standard is not even an encryption scheme.

We believe that these problems occurs due to a typo. Line 6 should be B ← P [0 : m − 129] instead of
B ← P [0 : m− 127]. With this change, the scheme becomes a special case (with n = 128 and the aforementioned
message length restrictions) of the description of XCB in [12] (which is same as the description of XCBv2 in Fig.
1).
3 While arguing about efficiency of XCB the authors stress on a software implementation of the multiplier which uses pre-
computed tables, and in such a software implementation only XCB may have its efficiency comparable with constructions
which only uses block ciphers. It is known that in hardware XCB performs worse than all known efficient TES [10].

Encryption under XCBv1: ETK(P)

0. (P1, . . . , Pm)← parsen(P)

1. h1 ← EK(0n−3||001)
2. h2 ← EK(0n−3||011)
3. Ke ← EK(0n)

4. Kd ← EK(0n−3||100)
5. Kc ← EK(0n−3||010)
6. CC ← EKe(P1)

7. S ← CC ⊕Hh1(P2|| . . . ||Pm−1||Pm, T)
8. (C2, . . . , Cm)← CtrKc,S(P2, . . . , Pm)

9. MM ← S ⊕Hh2(C2|| . . . ||Cm−1||Cm, T)
10. C1 ← E−1

Kd
(MM)

11. return (C1, C2, . . . , Cm)

Encryption under XCBv2: ETK(P)

100. Pm ← lsbn(P)

101.A← msb|P |−n(P)

102. (P1, P2, . . . , Pm−2, Pm−1)← parsen(A)

103. h← EK(0n)

104.Ke ← msb|K|(EK(0n−3||001)||EK(0n−3||010))
105.Kd ← msb|K|(EK(0n−3||011)||EK(0n−3||100))
106.Kc ← msb|K|(EK(0n−3||101)||EK(0n−3||110))
107. CC ← EKe(Pm)

108. S ← CC ⊕Hh(0n||T, P1|| . . . ||Pm−2||pad(Pm−1)||0n)
109. (C1, . . . , Cm−1)← CtrKc,S(P1, . . . , Pm−2, Pm−1)

110.MM ← S ⊕Hh(T ||0n, C1|| . . . ||pad(Cm−1)||(binn
2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−2||Cm−1|)))

111. Cm ← E−1
Kd

(MM)

112. return (C1, C2, . . . , Cm−1, Cm)

Fig. 1. Encryption using XCBv1 and XCBv2.

3 Security of Tweakable Enciphering Schemes

The discussion in this section is based on [8]. An n-bit block cipher is a function E : K×{0, 1}n → {0, 1}n, where
K 6= ∅ is the key space and for any K ∈ K, E(K, .) is a permutation. We write EK() instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles and which outputs either 0 or 1.
Oracles are written as superscripts. The notation AO1,O2 ⇒ 1 denotes the event that the adversary A, interacts
with the oracles O1,O2, and finally outputs the bit 1. In what follows, by the notation X $← S, we will denote
the event of choosing X uniformly at random from the finite set S.

Let Perm(n) denote the set of all permutations on {0, 1}n. We define two security notions of E(., .). The
advantage of an adversary A in breaking the pseudorandomness of E(., .) is defined as

Adv
prp
E (A) =

∣∣∣Pr [K $← K : AEK() ⇒ 1
]
− Pr

[
π

$← Perm(n) : Aπ() ⇒ 1
]∣∣∣ ,

and the advantage of A in breaking the strong pseudorandomness of E is defined as

Adv
±prp
E (A) =

∣∣∣Pr [K $← K : AEK(),E−1
K () ⇒ 1

]
−

Pr
[
π

$← Perm(n) : Aπ(),π
−1() ⇒ 1

]∣∣∣ .
A tweakable enciphering scheme is a function E : K × T ×M → M, where K 6= ∅ and T 6= ∅ are the key

space and the tweak space respectively. The message and the cipher spaces areM. We shall write ETK(.) instead
of E(K,T, .). The inverse of an enciphering scheme is D = E−1 where X = DT

K(Y) if and only if ETK(X) = Y .
Let PermT (M) denote the set of all functions πππ : T ×M→M where πππ(T , .) is a length preserving permutation.

Such a πππ ∈ PermT (M) is called a tweak indexed permutation. For a tweakable enciphering scheme E : K × T ×
M →M, we define the advantage an adversary A has in distinguishing E and its inverse from a random tweak
indexed permutation and its inverse in the following manner.

Adv
±p̃rp
E (A) =

∣∣∣Pr [K $← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ
−1(.,.) ⇒ 1

]∣∣∣ . (2)

Here, πππ $← PermT (M) means that for each ` such that {0, 1}` ⊆M and T ∈ T we choose a tweakable random

permutation πT from Perm(`) independently. We define Adv
±p̃rp
E (q, σ) by maxAAdv

±p̃rp
E (A) where maximum

is taken over all adversaries which makes at most q queries having at most σ many blocks. For a computational
advantage we define Adv

±p̃rp
E (q, σ, t) by maxAAdv

±p̃rp
E (A). In addition to the previous restrictions on A, it can

run in time at most t.

Pointless queries: Let T , P and C represent tweak, plaintext and ciphertext respectively. We assume that an
adversary never repeats a query, i.e., it does not ask the encryption oracle with a particular value of (T, P)

more than once and neither does it ask the decryption oracle with a particular value of (T,C) more than once.
Furthermore, an adversary never queries its deciphering oracle with (T,C) if it got C in response to an encipher
query (T, P) for some P . Similarly, the adversary never queries its enciphering oracle with (T, P) if it got P as
a response to a decipher query of (T,C) for some C. These queries are called pointless as the adversary knows
what it would get as responses for such queries.

The notation E[E] denotes a tweakable enciphering scheme E, where the underlying n-bit block cipher is E.
Both XCBv2 and XCBv1 utilizes three block ciphers with different keys. In the ideal scenario, these three block
ciphers can be considered as three independent random permutations. We shall denote XCBv2 instantiated with
three permutations drawn uniformly at random from Perm(n) and a hash key h drawn uniformly at random
from {0, 1}n as XCBv2[3Perm(n)]. We will do the same for XCBv1, i.e., XCBv1[3Perm(n)] will denote XCBv1
instantiated with three random permutations and the two hash keys h1, h2 drawn uniformly from {0, 1}n.

4 Security Claims in [12]

The security of XCB as claimed in [12] is stated below using our (and standard) notations and terminology4.

Theorem 1. Let A be an arbitrary adversary attacking XCBv2[3Perm(n)] who asks at most q queries each of
length at most l bits (where l ≥ 2n). Then

Adv
±p̃rp
XCBv2[3Perm(n)](A) ≤

q2dl/n+ 2e223

2n
.

The bound stated in the above theorem is based on the following result:

Theorem 2 (H is unlikely to collide with incs(H)). For any T, T ′, P, P ′, D,D′ where either T ′ 6= T or
P ′ 6= P or both inequalities hold, and any index s,

Pr[h
$← K : Hh(T, P)⊕D = incs(Hh(T

′, P ′)⊕D′)] ≤ dl/n+ 2e
2n

whenever the inputs T and P are restricted to so that the sum of their lengths is l or fewer bits.

In the following two sections we show that both these Theorems are wrong by showing counter examples.

5 Distinguishing attack on XCBv2

Here we give a distinguishing attack on XCBv2 which violates Theorem 1.
A distinguishing attack on a TES consists of the construction of an adversary which can distinguishing between

the scheme and a random permutation with high probability. The existence of such adversary implies the insecurity
of the scheme.

The distinguishing attack on XCBv2 that we show here consists of generating the same counter (value of the
variable S in the encryption procedure) for two different messages.

We assume an adversary which makes two encryption queries (T (1), P (1)) and (T (2), P (2)), where T (1) = T (2) =

T ∈ T is an arbitrary tweak and P (1) = 02n+i, P (2) = 03n, for any 1 ≤ i ≤ (n − 1). Note, in the standard it is
required that n = 128 and message lengths should be multiples of 8 bits. One can select any specific i satisfying
this condition. As a response to these queries the adversary gets back C(1) and C(2). If the first n bits of C(1) and
C(2) are equal then the adversary concludes that it’s oracle is that of XCBv2 and otherwise it concludes that it’s
oracle is a random permutation.

Now, we explain why this attack works. For the first query (T (1), P (1)), the internal variable S(1) (see line
107) would be,

S(1) = EKe(0
n)⊕Hh(0

n||T, 0n||pad(0i)||0n)
= EKe(0

n)⊕Hh(0
n||T, 03n).

The first block of ciphertext for this query would be

C
(1)
1 = 0n ⊕ EKc(inc0(S(1))). (3)

For the second query the variable S(2) would be

S(2) = EKe(0
n)⊕Hh(0

n||T, 02n||0n)
= EKe(0

n)⊕Hh(0
n||T, 03n).

4 In [12], the authors use a non-standard terminology. They do not distinguish between a pseudorandom permutation
(PRP) and a strong pseudorandom permutation (SPRP). According to their definitions a PRP is what is generally
understood as a SPRP.

Note that for computing S(2) no padding is required, as the plaintext is a multiple of n. Similarly, we have the
first block of the ciphertext for the second query as

C
(2)
1 = 0n ⊕ EKc(inc0(S(2))). (4)

Now, as S(1) = S(2), hence it would always be the case that C(1)
1 = C

(2)
1 . Thus the advantage of this adversary

(who asks just two queries) is 1− 1
2n which contradicts the bound given in Theorem 1.

We can have a general description of this attack. Let us consider two messages P (1) and P (2) as

P (1) = P1|| . . . ||Pm−1||Pm,
P (2) = P1|| . . . ||Pm−1||0n−p||Pm.

Where |Pm−1| = p < n and |Pi| = n for 1 ≤ i ≤ m and i 6= m − 1. Note, here the length of P (2), is a multiple
of the block length n, which is not the case for P (1). Any two messages of this form will result in the same value
of S, and hence the first (m− 2) blocks of ciphertext produced by this pair of different messages with the same
tweak would be equal.

We can vary the size of Pm−1 and obtain many different messages which will give the same value S. In [1],
where XCBv2 has been standardized, the length in bits of the message is restricted to be a multiple of 8 bits, it
is easy to see that with this restriction also our distinguishing attack works.

5.1 Some Comments About the Attack

1. The attack works because of the way the padding is applied. As the hash function takes as input the zero
padded message, hence the length of the original message has no effect on the value of the first hash.

2. An easy way to bypass this attack is to restrict the message space to contain only messages whose lengths are
multiples of the block length. In such messages, explicit padding would be not required and hence this attack
does not work in case of XCBv2.

3. The attack does not depend on the padding function. If any other deterministic padding function at the block
level is applied (say instead of padding zeros, one pads ones to make an incomplete block full) this attack can
be easily modified to make it work. On the other hand, if a message level padding function is applied, say
the given message is padded with 10∗, this would prevent the attack. This padding ensures injectivity so that
distinct messages will map to distinct padded messages. On the other hand, this 10* padding scheme will
mean that full block messages gets extended by one block. Since for disk encryption applications, messages
will usually consist of full blocks, this increase by an extra block is undesirable. Maybe this is the reason why
the designers did not opt for the 10* padding (and ended up with an insecure scheme).

6 Counterexample to Theorem 2: Collisions in the Increment Function

In the previous Section we showed a distinguishing attack which shows that the main security Theorem (The-
orem 1) of XCBv2 is false. We also mentioned that if we restrict ourselves to only messages whose lengths are
multiples of the block length of the block cipher then our distinguishing attack does not work. Here we show that
even if we restrict ourselves to messages whose length are multiples of the block length, then too the proof of
Theorem 1 as provided in [12] is not correct.

The proof of Theorem 1 as provided in [12] depends on the result stated in Theorem 2. We show that this
result is also false by giving some counterexamples.

The result in Theorem 2 has also been used to argue about the security of an authenticated encryption scheme
GCM. Recently, Iwata, Ohashi and Minematsu [9] pointed out an error in the security bound of GCM, this error
also stems from the falsity of Theorem 2. The counter example that we present here is highly motivated by [9],
but our examples are different.

For the discussion that follows, we shall treat a n-bit string a = (an−1, an−2, . . . , a1, a0) as a polynomial
a(x) = an−1 ⊕ an−2x⊕ · · · ⊕ a1xn−2 ⊕ a0xn−1.

Let us consider D = D′ = T = T ′ = 0128, P = 0384 and P ′ = 0640. Then, according to Theorem 2

ps = Pr[h
$← {0, 1}128 : Hh(T, P) = incs(Hh(T, P

′))] ≤ 8

2128
,

for any index s. We show that p1 ≥ 16/2128, p2 ≥ 16/2128 and p4 ≥ 15/2128, thus invalidating the theorem.
For our choice of P, P ′, T, T ′ and the description of the hash function in Eq. (1) we have Hh(T, P) = L1h and

Hh(T
′, P ′) = L2h, where L1 = x56 + x119 + x120 and L2 = x56 + x118 + x120. We were able to find 16 distinct

values of h which satisfies
L1h⊕ inc(L2h) = 0128. (5)

Also we found 16 distinct values of h satisfying L1h ⊕ inc2(L2h) = 0128, and 15 distinct values of h satisfying
L1h⊕ inc4(L2h) = 0128. These values are listed in Tables 1, 2 and 3. This suggests that p1 ≥ 16/2128, p2 ≥ 16/2128

and p4 ≥ 15/2128.

0xBE7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xBF7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xBB7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xAB7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xEB7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0x297FFFFFFFFFFFFFFFFFFFFFFFFFFFFE
0xA57FFFFFFFFFFFFFFFFFFFFFFFFFFFF8 0xD37FFFFFFFFFFFFFFFFFFFFFFFFFFFE3
0xC97FFFFFFFFFFFFFFFFFFFFFFFFFFF8E 0xA17FFFFFFFFFFFFFFFFFFFFFFFFFFE3A
0xC37FFFFFFFFFFFFFFFFFFFFFFFFFF8EB 0x897FFFFFFFFFFFFFFFFFFFFFFFFFE3AE
0x637FFFFFFFFFFFFFFFFFFFFFFFFF8EBB 0x4F7FFFFFFFFFFFFFFFFFFFFFFFFE3AED
0xFF7FFFFFFFFFFFFFFFFFFFFFFFF8EBB5 0x797FFFFFFFFFFFFFFFFFFFFFFFE3AED6

Table 1. List of solutions for L1h⊕ inc(L2h) = 0128.

0xBEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xBCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xB4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0x94FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0x14FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0x52FFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
0x88FFFFFFFFFFFFFFFFFFFFFFFFFFFFF1 0x64FFFFFFFFFFFFFFFFFFFFFFFFFFFFC7
0x50FFFFFFFFFFFFFFFFFFFFFFFFFFFF1D 0x80FFFFFFFFFFFFFFFFFFFFFFFFFFFC75
0x44FFFFFFFFFFFFFFFFFFFFFFFFFFF1D7 0xD0FFFFFFFFFFFFFFFFFFFFFFFFFFC75D
0xC6FFFFFFFFFFFFFFFFFFFFFFFFFF1D76 0x9EFFFFFFFFFFFFFFFFFFFFFFFFFC75DA
0x3CFFFFFFFFFFFFFFFFFFFFFFFFF1D76B 0xF2FFFFFFFFFFFFFFFFFFFFFFFFC75DAC

Table 2. List of solutions for L1h⊕ inc2(L2h) = 0128.

0xBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xABFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0x29FFFFFFFFFFFFFFFFFFFFFFFFFFFFFE 0xA5FFFFFFFFFFFFFFFFFFFFFFFFFFFFF8
0xD3FFFFFFFFFFFFFFFFFFFFFFFFFFFFE3 0xC9FFFFFFFFFFFFFFFFFFFFFFFFFFFF8E
0xA1FFFFFFFFFFFFFFFFFFFFFFFFFFFE3A 0xC3FFFFFFFFFFFFFFFFFFFFFFFFFFF8EB
0x89FFFFFFFFFFFFFFFFFFFFFFFFFFE3AE 0x63FFFFFFFFFFFFFFFFFFFFFFFFFF8EBB
0x4FFFFFFFFFFFFFFFFFFFFFFFFFFE3AED 0xFFFFFFFFFFFFFFFFFFFFFFFFFFF8EBB5
0x79FFFFFFFFFFFFFFFFFFFFFFFFE3AED6

Table 3. List of solutions for L1h⊕ inc4(L2h) = 0128.

Next, we describe the method we used to find the solutions for Eq. (5). Similar methods can be used to find
solutions for L1h⊕ inc2(L2h) = 0128 and L1h⊕ inc4(L2h) = 0128.

Our method is based on the following simple observation.

Definition 1. For a ∈ {0, 1}n, i.e, a(x) = a127 ⊕ a126x⊕ a125x2 ⊕ · · · ⊕ a1x126 ⊕ a0x127, where each ai ∈ {0, 1}.
Define, lbit(a) = 127− j, where j is the smallest integer such that 0 ≤ j ≤ 127, and aj = 0. If such a j does not
exist (such a j will not exist if all bits of a are 1) or j > 31, then we fix lbit(a) = 96.

Proposition 1. Fix a ∈ {0, 1}n, if lbit(a) = j, then inc(a) = a(x)⊕ xj ⊕ xj+1 ⊕ · · · ⊕ x127.

If we assume that a solution h of Eq. (5) is such that lbit(L2h) = j, then by Proposition 1 we have

h =
xj ⊕ xj+1 ⊕ · · · ⊕ x127

L1 ⊕ L2
. (6)

Using 96 ≤ j ≤ 127, in Eq. (6) we obtain 32 values of h. We substitute these values in eq. (5) to check whether
the value obtained is really a solution. It turned out that sixteen of the 32 values obtained satisfied equation
(5), and these values are reported in Table 1. It is easy to characterize inc2(a) and inc4(a) along the lines of
Proposition 1, and using these characterizations we generate the data for Tables 2 and 3.

7 New Security Bound for XCBv2 on Full Block Messages

In this section we derive the information theoretic security bound for XCBv2 with the message space restricted
to those messages which are multiples of the block length. We denote this version of XCBv2 as XCBv2fb. The
security theorem applies only to XCBv2fb. As shown earlier XCBv2 is insecure.

For deriving this bound we replace the block cipher calls EKc(), EKd(), EKe() by three permutations π1, π2, π3
chosen uniformly at random from Perm(n). We also choose the hash key h uniformly at random from {0, 1}n.
We call this construction as XCBv2fb[3Perm(n)]. The following theorem states the information theoretic security
bound for XCBv2fb[3Perm(n)].

Theorem 3. Consider an arbitrary adversary A which queries only with messages/ciphers whose lengths are
multiples of n, and A asks a total of q queries of query complexity σ, where each query is at most ` blocks long.
Then,

Adv
±p̃rp
XCBv2fb[3Perm(n)](A) ≤

(5 + 222)`qσ

2n
. (7)

7.1 Proof of Theorem 3

For proving (7), we need to consider an adversary’s advantage in distinguishing XCBv2fb[3Perm(n)] from an
oracle which simply returns random bit strings. This advantage is defined in the following manner.

Adv±rndXCBv2fb[3Perm(n)](A) =
∣∣∣Pr [π $← Perm(n) : AEπ,Dπ ⇒ 1

]
−Pr

[
A$(.,.),$(.,.) ⇒ 1

]∣∣∣ (8)

where $(.,M) or $(., C) returns independently distributed random bits of length |M | or |C| respectively. The
basic idea of proving (7) is as follows.

Adv
±p̃rp
XCBv2fb[3Perm(n)](A) =

(
Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ
−1(.,.) ⇒ 1

])
=
(
Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
A$(.,.),$(.,.) ⇒ 1

])
+
(
Pr
[
A$(.,.),$(.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ
−1(.,.) ⇒ 1

])
≤ Adv±rndXCBv2fb[3Perm(n)](A) +

(
q

2

)
1

2n
(9)

where q is the number of queries made by the adversary. For a proof of the last inequality see [8]. Thus, the main
task of the proof now reduces to obtaining an upper bound on Adv±rndXCBv2fb[3Perm(n)](A).

We prove this by the usual technique of sequence of games. The games XCB1, RAND1 are described in Fig.
2 and game RAND2 is described in Fig. 3.

Game XCB1 described in Fig. 2 is just a rewrite of the algorithm of XCBv2fb, but it uses three independent
random permutations π1, π2, π3 instead of the block cipher calls. The permutations are constructed on the fly.
If we denote the encryption scheme and decryption scheme of XCBv2fb[3Perm(n)] by Eπ1,π2,π3 and Dπ1,π2,π3

respectively then, by our choice of notation, we can write

Pr[AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1] = Pr[AXCB1 ⇒ 1]. (10)

Game RAND1 is also described in Fig. 2 with the boxed entries removed. In this game it is not guaranteed
that πi (i = 1, 2, 3) are permutations as though we do the consistency checks but we do not reset the values
of Y (in Ch-πi) and X (in Ch-π−1i). Thus, the games XCB1 and RAND1 are identical apart from what
happens when the bad flag is set. By the fundamental lemma of game-playing, we have

|Pr[AXCB1 ⇒ 1]− Pr[ARAND1 ⇒ 1]| ≤ Pr[ARAND1 sets bad] (11)

Another important thing to note is that in RAND1 the adversary gets random strings in response to both its
encryption and decryption queries. Hence,

Pr[ARAND1 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1] (12)

So using the definition of Adv±rndXCBv2fb[3Perm(n)](A) and Eqs. (11) and (12) we get

Adv±rndXCBv2fb[3Perm(n)](A) = |Pr[A
Eπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1]

−Pr[A$(.,.),$(.,.) ⇒ 1]| (13)

= |Pr[AXCB1 ⇒ 1]

−Pr[ARAND1 ⇒ 1]|
≤ Pr[ARAND1 sets bad] (14)

Subroutine Ch-πi(X) (i = 1, 2, 3)

11. Y
$← {0, 1}n; if Y ∈ Rangei then bad ← true; Y

$← Rangei ; end if;

12. if X ∈ Domaini then bad ← true; Y ← πi(X) ; end if

13. πi(X) ← Y ; Domaini ← Domaini ∪ {X};
Rangei ← Rangei ∪ {Y }; return(Y);

Subroutine Ch-π−1
i

(Y)

14. X
$← {0, 1}n; if X ∈ Domaini then bad ← true; X

$← Domaini ; end if;

15. if Y ∈ Rangei then bad ← true; X ← π
−1
i

(Y) ; end if;

16. πi(X) ← Y ; Domaini ← Domaini ∪ {X};
Rangei ← Rangei ∪ {Y }; return(X);

Initialization:
17. for all X ∈ {0, 1}n πi(X) = undef end for
18. bad = false

19. h
$← {0, 1}n

Respond to the sth query as follows:
Encipher query: Enc(Ts;Ps1 , P

s
2 , . . . P

s
ms

)

101. if Ps
ms

= Ps
′

ms
′ for s′ < s then

102. CCs ← CCs
′

103. else
104. CCs ← Ch-π1(Ps

ms
)

105. end if

106. Ss ← CCs ⊕Hh(0n||Ts, Ps1 || . . . ||P
s
ms−1

||0n)

107. for i = 0 to ms − 2,
108. Zsi ← Ch-π2(inci(Ss))

109. Csi+1 ← Psi+1 ⊕ Z
s
i

110. end for
111. MMs ← Ss ⊕Hh(Ts||0n,Cs1 || . . . ||C

s
ms−1

||(binn
2

(|Ts||0n|)||binn
2

(|Cs1 || . . . ||C
s
ms−1

|)))

112. Cs
ms
← Ch-π−1

3 (MMs)

113. return (Cs1 , C
s
2 , . . . , C

s
ms

)

Decipher query: Dec(Cs1 , C
s
2 , . . . , C

s
ms

, Ts)

101. if Cs
ms

= Cs
′

ms
′ for s′ < s then

102. MMs ← MMs
′

103. else
104. MMs ← Ch-π3(Cs

ms
)

105. end if

106. Ss ← MMs ⊕Hh(Ts||0n,Cs1 || . . . ||C
s
ms−1

||(binn
2

(|Ts||0n|)||binn
2

(|Cs1 || . . . ||C
s
ms−1

|)))

107. for i = 0 to ms − 3,
108. Zsi ← Ch-π2(inci(Ss))

109. Psi+1 ← Csi+1 ⊕ Z
s
i

110. end for
111. CCs ← Ss ⊕Hh(0n||Ts, Ps1 || . . . ||P

s
ms−1

||0n)

112. Ps
ms
← Ch-π−1

1 (CCs)

113. return (Ps1 , P
s
2 , . . . , P

s
ms

)

Fig. 2. Games XCB1 and RAND1: In RAND1 the boxed entries are removed.

Respond to the sth adversary query as follows:

Encipher query Enc(Ts;Ps1 , P
s
2 , . . . , P

s
ms

)
11. tys = Enc

12. Cs1 ||C
s
2 || . . . ||C

s
ms−1

||Cs
ms

$← {0, 1}nm
s

13. return Cs1 ||C
s
2 || . . . ||C

s
ms

Decipher query Dec(Ts;Cs1 , C
s
2 , . . . , C

s
ms

)

21. tys = Dec

22. Ps1 ||P
s
2 || . . . ||P

s
ms−1||P

s
ms

$← {0, 1}nm
s

23. return Ps1 ||P
s
2 || . . . ||P

s
ms

Finalization:

h
$← {0, 1}n

Case tys = Enc:

101. if Ps
ms

= Ps
′

ms
′ for s′ < s then

102. CCs ← CCs
′

103. else

104. CCs
$← {0, 1}n

105. D1 ← D1 ∪ {P
s
ms
}

106. R1 ← R1 ∪ {CC
s}

107. end if
108. Ss ← CCs ⊕Hh(0n||Ts, Ps1 || . . . ||P

s
ms−1

||0n)

109. MMs ← Ss ⊕Hh(Ts||0n,Cs1 || . . . ||C
s
ms−1

||(binn
2

(|Ts||0n|)||binn
2

(|Cs1 || . . . ||C
s
ms−1

|)))

110. D3 ← D3 ∪ {C
s
ms
}

111. R3 ← R3 ∪ {MM
s}

112. for i = 0 to ms − 2,
113. Y si ← Csi+1 ⊕ P

s
i+1

114. D2 ← D2 ∪ {inc
i(Ss)}

115. R2 ← R2 ∪ {Y
s
i }

116. end for

Case tys = Dec:

101. if Cs
ms

= Cs
′

ms
′ for s′ < s then

102. MMs ← MMs
′

103. else

104. MMs
$← {0, 1}n

105. D3 ← D3 ∪ {C
s
ms
}

106. R3 ← R3 ∪ {MM
s}

107. end if
108. Ss ← MMs ⊕Hh(Ts||0n,Cs1 || . . . ||C

s
ms−1

||(binn
2

(|Ts||0n|)||binn
2

(|Cs1 || . . . ||C
s
ms−1

|)))

109. CCs ← Ss ⊕Hh(0n||Ts, Ps1 || . . . ||P
s
ms−1

||0n)

110. D1 ← D1 ∪ {P
s
ms
}

111. R1 ← R1 ∪ {CC
s}

112. for i = 0 to ms − 2,
113. Y si ← Csi+2 ⊕ P

s
i+2

114. D2 ← D2 ∪ {inc
i(Ss)}

115. R2 ← R2 ∪ {Y
s
i }

116. end for

Second phase
bad = false;
if (some value occurs more than once in Di, i = 1, 2, 3) then bad = true end if;
if (some value occurs more than once in Ri, i = 1, 2, 3) then bad = true end if.

Fig. 3. Game RAND2

Game RAND2 is syntactically different from RAND1 by the fact that here the permutations are no more
maintained, and in response to an encryption/decryption query of an adversary, random strings of appropriate
lengths are immediately returned. Later, in the finalization step of the game the internal variables are adjusted
and the appropriate variables are inserted in the multi sets D1,D2,D3 and R1,R2,R3. In the last step of
finalization, it is checked whether there is a collision in the multi sets D1,D2,D3, R1,R2,R3. If a collision
occurs, then the bad flag is set.
Games RAND1 and RAND2 are indistinguishable to the adversary, as in both cases it gets random strings
in response to its queries. Also, the probability with which RAND1 sets bad is same as the probability with
which RAND2 sets bad. Thus we get:

Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad] (15)

Thus from equations (14) and (15) we obtain

Adv±rndXCBv2fb[3Perm(n)](A) ≤ Pr[ARAND2 sets bad] (16)

Now our goal is to bound Pr[ARAND2 sets bad]. We notice that in Game RAND2 the bad flag is set when
there is a collision in either of the sets Di or Ri. So if COLLDi and COLLRi denote the events of a collision
in Di and Ri respectively then we have

Pr[ARAND2 sets bad] ≤
∑

1≤i≤3

(Pr[COLLRi] + Pr[COLLDi]) . (17)

In the next section we compute bounds on Pr[COLLRi] and Pr[COLLDi].

7.2 Collision Analysis

Before we go into the collision analysis we summarize some useful results. Firstly we concentrate on the following
problem which was stated in [9].

Problem 1. For 0 ≤ r ≤ 232 − 1, consider the set

Yr =
{
bin32

(
int(Y) + r mod 232

)
⊕ Y : Y ∈ {0, 1}32

}
.

Let αr denote the cardinality of Yr. Find αr.

In [9], αr was described using two recurrence relations, and numerical values of αr was computed for all 0 ≤ r ≤
232 − 1. It was found that

αmax = max
0≤r≤232−1

{αr} = 3524578 < 222. (18)

Next, we state a result (similar to Lemma 2 in [9]) which would be central to the collision analysis that we
present here. Also this lemma would be used later in the security proof of XCBv1.

Lemma 1. 1. Let X,Y,X ′, Y ′ ∈ {0, 1}∗, such that (X,Y) 6= (X ′, Y ′). Let C,C ′ ∈ {0, 1}n and h
$← {0, 1}n,

S = C⊕Hh(X,Y), and S′ = C ′⊕Hh(X
′, Y ′), where Hh(.) is defined in Eq. (1). Then, for any 0 ≤ r ≤ 232−1,

Pr[incr(S)⊕ S′ = 0] ≤ max{`s, `s′}αr
2n

2. Let X,Y,X ′, Y ′ ∈ {0, 1}∗, C,C ′ ∈ {0, 1}n, h1, h2
$← {0, 1}n, S = C ⊕Hh1

(X,Y), and S′ = C ′⊕Hh2
(X ′, Y ′).

Then, for any 0 ≤ r ≤ 232 − 1,

Pr[incr(S)⊕ S′ = 0] ≤ max{`s, `s′}αr
2n

.

In both cases `s and `s
′
are the degrees of the two polynomials S and S′ respectively. In the first case, the

probability is taken over the random choice of h, and in the second case it is taken over the random choice of
h1, h2.

Proof. The proof follows the same idea as the proof of Lemma 2 in [9]. For 0 ≤ r ≤ 232− 1, define fr : {0, 1}32 →
{0, 1}32 as

fr(Z) = bin32
(
int(Z) + r mod 232

)
.

Let, Yr = {Y1, Y2, . . . , Yαr}, and define

Yj = {Z ∈ {0, 1}32 : fr(Z)⊕ Z = Yj}.

It is easy to see that Y1 ∪ Y2 ∪ · · · ∪ Yαr = {0, 1}32 and for j 6= j′, Yj ∩ Yj′ = ∅.
Also if Z ∈ Yj , then bin32

(
int(Z) + r mod 232

)
= Z ⊕ Yj . For 0 ≤ j ≤ αr define the event Ej as

Ej ≡ (incr(S)⊕ S′ = 0) ∧ (lsb32(S) ∈ Yj).

Hence, we have

Pr[incr(S)⊕ S′ = 0] =

αr∑
j=1

Pr[Ej]. (19)

Further, Pr[Ej] = Pr[incr(S) ⊕ S′ = 0|lsb32(S) ∈ Yj] Pr[lsb32(S) ∈ Yj]. Now, if lsb32(S) ∈ Yj , then incr(S) =

S ⊕ (0n−32||Yj). Hence,

Pr[incr(S)⊕ S′ = 0|lsb32(S) ∈ Yj] = Pr[S ⊕ (0n−32||Yj)⊕ S′ = 0|lsb32(S) ∈ Yj]
= Pr [S ⊕ S′ ⊕Dj = 0|lsb32(S) ∈ Yj] , (20)

where Dj = (0n−32||Yj) is a non-random quantity. So,

Pr[incr(S)⊕ S′ = 0] =

αr∑
j=1

Pr[Ej]

=

αr∑
j=1

Pr [S ⊕ S′ ⊕Dj = 0|lsb32(S) ∈ Yj] Pr[lsb32(S) ∈ Yj] (21)

=

αr∑
j=1

Pr [(S ⊕ S′ ⊕Dj = 0) ∧ (lsb32(S) ∈ Yj)] (22)

≤
αr∑
j=1

Pr [S ⊕ S′ ⊕Dj = 0] . (23)

Now, we consider the two cases of the lemma.

Case 1: h is selected uniformly at random from {0, 1}n, and S = Hh(X,Y) and S′ = Hh(X
′, Y ′). In this case

Pr[S ⊕ S′ ⊕Dj = 0] ≤ max{`s, `s′}
2n

, (24)

as S ⊕ S′ ⊕Dj is a nonzero polynomial in h of degree at most max{`s, `s′}.
Case 2: h1, h2 are selected independently and uniformly at random from {0, 1}n, and S = Hh1

(X,Y) and
S′ = Hh2

(X ′, Y ′). Note, according to the definition of H(.), both S and S′ are non-zero polynomials. Hence,
S ⊕ S′ ⊕Dj is a non-zero multivariate polynomial on (h1, h2) of (total) degree at most max{`s, `s′}. Hence,
by the Schwartz-Zippel lemma

Pr[S ⊕ S′ ⊕Dj = 0] ≤ max{`s, `s′}
2n

. (25)

In both cases, we get Pr[S ⊕ S′ ⊕Dj = 0] ≤ (max{`s, `s′})/2n. So, Eq. (23) becomes

Pr[incr(S)⊕ S′ = 0] =
αrmax{`s, `s′}

2n
.

ut

Remark: In moving from (21) to (22) an inequality is involved. It is not clear whether this inequality is tight,
i.e., whether there is a choice of (X,Y) and (X ′, Y ′) for which the upper bound is attained. Further, it is also
not clear how to analyze the probability in (21) which will show that the upper bound is tight (possibly up to a
small constant) or to prove a significantly lower upper bound. In such a scenario, for concrete security analysis
it is appropriate to proceed with the upper bound that can indeed be proved. We note that the approximation
involved in moving from (21) to (22) is also used in Lemma 2 of [9]. Accordingly, the issue of tightness of the
upper bound discussed above also applies to the upper bound obtained in [9] for GCM.

In the rest of the section we analyze the collision probabilities in the sets Di and Ri. After q queries of the
adversary where the sth query has ms blocks of plaintext or ciphertext and ts blocks of tweak, then the sets Di
and Ri can be written as follows:

D1 = {P sms : 1 ≤ s ≤ q}
D2 =

⋃q
s=1{inc

j(Ss) : 0 ≤ j ≤ ms − 2}
D3 = {Csms : 1 ≤ s ≤ q}

R1 = {CCs : 1 ≤ s ≤ q}
R2 =

⋃q
s=1{Y sj = Csj+1 ⊕ P sj+1 : 0 ≤ j ≤ ms − 2}

R3 = {MMs : 1 ≤ s ≤ q}

Noting the following points will help in the following analysis:

1. For the s-th query tys ∈ {enc, dec} will denote whether the query is an encryption or a decryption query.
2. In each query, the adversary specifies a tweak T s, we consider ts = d|T s|/ne. Thus, for any s, Hh either in

line 108 or 109 of game RAND2 has degree at most ms + ts + 2. We denote σ =
∑
s t
s +

∑
sm

s. We denote
`s,s

′
= max{ts +ms, ts

′
+ms′}+ 2.

3. In game RAND2 the hash key h is selected uniformly at random from {0, 1}n, furthermore h is independent
of all other variables.

4. As a response to each query, A receives either (Cs1 , C
s
2 , . . . , C

s
ms) or (P s1 , P

s
2 , . . . , P

s
ms). These variables are

independent of h, thus the queries made by A are also independent of h.
5. For an encryption query, the response received by A is (Cs1 , C

s
2 , . . . , C

s
ms) and for a decryption query the

response received is (P s1 , P
s
2 , . . . , P

s
ms). Both these responses are uniformly distributed and independent of

other variables.

In the following claims we bound the required collision probabilities.

Claim 4. Pr[COLLD1] ≤
(
q
2

)
/2n

Proof. To compute Pr[P sms = P s
′

ms′
] there are the following two cases to consider.

Case I: tys = tys
′
= enc. In this case Pr[P sms = P s

′

ms′
] = 0, because of the condition in line 101 of RAND2.

Case II: At least one of tys or tys
′
is dec. Without loss of generality, if tys = dec, then P sms is a uniform

random n-bit string, hence Pr[P sms = P s
′

ms′
] = 1/2n.

As, there are q elements in D1, hence Pr[COLLD1] ≤
(
q
2

)
/2n.

ut

Claim 5. Pr[COLLD2] ≤ (`qσ)αmax/2
n

Proof. D2 = D1 ∪D2 ∪ · · · ∪Dq, where

Ds =
{
incj(Ss) : 0 ≤ j ≤ ms − 2

}
, for 0 ≤ s ≤ q

and

Ss =

{
CCs ⊕Hh(0

n||T s, P s1 || · · · ||P sms−1||0n) if tys = enc

MMs ⊕Hh(0
n||T s, Cs1 || · · · ||Csms−1||L) if tys = dec,

where L = (binn
2
(|T s||0n|)||binn

2
(|Cs1 || . . . ||Csms−1|)).

It is easy to see that if x1, x2 ∈ Ds then Pr[x1 = x2] = 0. Thus we only need to bound collisions between
x1, x2, such that x1 ∈ Ds and x2 ∈ Ds′ , for s 6= s′. For s 6= s′ define COLL(Ds, Ds′) as the event that at least one
element of Ds collides with one element of Ds′ . Hence we have

Pr[COLLD2] ≤
∑

1≤s<s′≤q

Pr[COLL(Ds, Ds′)]. (26)

Also it is easy to see that,

incj(Ss)⊕ incj
′
(Ss

′
) =

{
incj−j

′
(Ss)⊕ Ss′ if j ≥ j′

Ss ⊕ incj
′−j(Ss

′
) if j < j′.

Now, we define the following events

Ui ≡ inci(Ss)⊕ Ss
′
= 0, for 0 ≤ i ≤ ms − 2, (27)

Wi ≡ Ss ⊕ inci(Ss
′
) = 0, for 0 ≤ i ≤ ms′ − 2. (28)

Hence,

COLL(Ds, Ds′) =

(
ms−2⋃
i=0

Ui

)⋃ms
′
−2⋃

i=0

Wi

 . (29)

Now we will bound Pr[Ui]. We assume s < s′. For computing Pr[inci(Ss) ⊕ Ss′ = 0], we have the following
cases:

Case I: tys = tys
′
= enc and P sms 6= P s

′

ms′
.

Case II: tys = tys
′
= dec and Csms 6= Cs

′

ms′
.

Case III: The rest.

For Case I, CCs is chosen randomly hence for any i

Pr[inci(Ss)⊕ Ss
′
= 0] =

1

2n
. (30)

Similarly for Case II, MMs is chosen randomly hence the same probability of Eq. (30) holds.
For case III note that both Ss and Ss

′
are polynomials of h of degree at most `s,s

′
= max{ms+ts,ms′+ts

′}+2.
Then using Lemma 1, we have

Pr[inci(Ss)⊕ Ss
′
= 0] ≤ αmax`

s,s′

2n

Thus,

Pr[Ui] ≤
αmax`

s,s′

2n
, for all 0 ≤ i ≤ ms − 2. (31)

By exactly the same argument we can show that

Pr[Wi] ≤
αmax`

s,s′

2n
, for all 0 ≤ i ≤ ms′ − 2. (32)

Thus using Eqs.(29), (31), (32), we have

Pr[COLL(Ds, Ds′)] ≤
αmax(m

s +ms′ − 4)`s,s
′

2n
. (33)

Using equations (33) and (26) we have

Pr[COLLD2] ≤
∑

1≤s<s′≤q

αmax(m
s +ms′ − 4)`s,s

′

2n

≤ `αmax
2n

∑
1≤s<s′≤q

(ms +ms′)

≤ `αmaxqσ

2n
.

ut

Claim 6. Pr[COLLD3] ≤
(
q
2

)
/2n

The proof is similar to that of Claim 4.

Claim 7. Pr[COLLR1] ≤ (q−1)σ
2n + 1

2n

(
q
2

)
Proof. If tys = enc then CCs is selected uniformly at random from {0, 1}n. And if tys = tys

′
= enc and

P sms = P s
′

ms′
, then CCs does not enter R1. Thus if tys = enc or tys

′
= enc, then Pr[CCs = CCs

′
] = 1/2n.

We now need to settle the case when tys = tys
′
= dec.

If tys = dec then

CCs =MMs ⊕Hh(0
n||T s, P s1 || . . . ||P sms−1||0n)

⊕Hh(T
s||0n, Cs1 || . . . ||Csms−1||(binn2 (|T

s||0n|)||binn
2
(|Cs1 || . . . ||Csms−1|))).

We assume (T s1 , T
s
2 , · · · , T sps) = parsen(T

s), and fix the following notations:

lens = binn
2
(|T s||0n|)||binn

2
(|Cs1 || . . . ||Csms−1|),

Mix(T s) = T s1 ||(T s1 ⊕ T s2)||(T s2 ⊕ T s3)|| · · · ||(Tps−1 ⊕ Tps)||Tps ,
PCs = (P s1 ⊕ Cs1)||(P s2 ⊕ Cs2)|| · · · ||(P sms−1 ⊕ Csms−1).

Then, according to the definition of Hh() in Eq. (1),

CCs =MMs ⊕Hh(Mix(T s), PCs||lens).

We need to bound Pr[CCs = CCs
′
] where tys = tys

′
= dec. There are the following cases to consider.

Case 1: lens 6= lens
′
. There are two sub-cases to handle. If the degrees of Hh(Mix(T s), PCs||lens) and

Hh(Mix(T s
′
), PCs

′ ||lens
′
) are different then CCs ⊕ CCs′ is a nonzero polynomial of degree at most `s,s

′
. If

the degrees of the above polynomials are the same then in the polynomial CCs ⊕ CCs′ , a term with the
coefficient (lens ⊕ lens

′
) occurs, which means CCs ⊕ CCs′ is a nonzero polynomial of degree at most `s,s

′
.

Thus, for both cases Pr[CCs = CCs
′
] ≤ `s,s′/2n.

Case 2: lens = lens
′
. Note, that this means ms = ms′ , also |T s| = |T s′ |.

Sub case 2a: ms = ms′ = 1. In this case, two things can happen.
i. Cms = Cms′ : It necessarily follows that T s 6= T s

′
, as otherwise the two queries will become identical.

With T s 6= T s
′
, we have Mix(T s) 6= Mix(T s

′
), thus making CCs ⊕ CCs′ a non-zero polynomial of

degree at most `s,s
′
, hence Pr[CCs = CCs

′
] ≤ `s,s′/2n.

ii. Cms 6= Cms′ : In this case MMs and MMs′ are independent and uniformly distributed, from which it
follows that Cms and Cms′ are also independent and uniformly distributed. Hence, Pr[CCs = CCs

′
] ≤

1/2n.
Sub case 2b: ms = ms′ ≥ 2. Here also we consider two different scenarios:

i. Mix(T s) 6= Mix(T s
′
): In this case, CCs ⊕ CCs′ is a nonzero polynomial of degree at most `s,s

′
, hence

Pr[CCs = CCs
′
] ≤ `s,s′/2n.

ii. Mix(T s) = Mix(T s
′
): Let E0 be the event that PCs = PCs

′
, i.e., P si ⊕ Csi = P s

′

i ⊕ Cs
′

i for all
1 ≤ i ≤ ms − 1. As each Pi is selected uniformly and independently at random from {0, 1}n, thus
irrespective of the choice of Cis, we have Pr[E0] = 1/2(m

s−1), and Pr[CCs = CCs
′ |E0] ≤ `s,s

′
/2n.

Hence,

Pr[CCs = CCs
′
] = Pr[CCs = CCs

′
|E0] Pr[E0] + Pr[CCs = CCs

′
|E0] Pr[E0]

≤ `s,s
′

2n
+

(
1

2n

)ms−1
≤ `s,s

′

2n
+

1

2n
.

Hence we have

Pr[COLLR1] ≤
∑

1≤s<s′≤q

(
`s,s

′

2n
+

1

2n

)

≤ (q − 1)σ

2n
+

1

2n

(
q

2

)
(34)

ut

Claim 8. Pr[COLLR2] ≤
(∑

sm
s−q

2

)
/2n

Proof. The elements in R2 are of the form Csi ⊕ P si , hence irrespective of s being an encryption or a decryption
query each element in R2 is a uniform random element in {0, 1}n, moreover R2 contains

∑q
s=1m

s − q elements.
Hence the claim follows.

ut

Claim 9. Pr[COLLR3] ≤ (q−1)σ
2n + 1

2n

(
q
2

)
.

The proof is similar to that of Claim 7.
Using Claims 4 to 9 and equations (16) and (17), we have

Adv±rndXCBv2fb[3Perm(n)](A) ≤
4

2n

(
q

2

)
+
`qσαmax

2n
+

1

2n

(∑
sm

s − q
2

)
+

2σ(q − 1)

2n

≤ 4σ2

2n
+
αmax`qσ

2n
. (35)

Now, using equations (9), (18) and (35) we have

Adv
±p̃rp
XCBv2fb[3Perm(n)](A) ≤

(5 + 222)`qσ

2n

as desired. ut

8 Security of XCBv1

Till date the security of XCBv1 has been informally argued. We provide a formal security argument for XCBv1
which shows security for arbitrary length messages and provides a concrete security bound. The following theorem
specifies the security for XCBv1.

Theorem 10. Consider an arbitrary adversary A with query complexity σ, each query of A is at most ` blocks
long, and contains a message/cipher at least n bits long. Then,

Adv
±p̃rp
XCBv1[3Perm(n)](A) ≤

(3 + 222)`qσ

2n
. (36)

8.1 Proof of Theorem 10

This proof is almost same as the proof of Theorem 3. As in equation (9), we have

Adv
±p̃rp
XCBv1[3Perm(n)](A) ≤ Adv±rndXCBv1[3Perm(n)](A) +

(
q

2

)
1

2n
. (37)

To bound Adv±rndXCBv1[3Perm(n)](A) we use the same sequence of games as we did for the proof of Theorem 3.
Finally, we arrive at Game RND2, which is shown in Figure 4. And, we have,

Adv±rndXCBv1[3Perm(n)](A) ≤ Pr[ARND2 sets bad]

≤
∑

1≤i≤3

Pr[COLRi] + Pr[COLDi]. (38)

Where COLDi and COLRi denote the events of a collision in Domi and Rngi respectively. The sets Domi and Rngi
are specified in the game RND2 in Figure 4. Now the main task is to bound the collision probabilities in the sets
Domi and Rngi.

After q queries of A, according to the game RND2, the elements in the sets Dom1, Dom2, Dom3 and Rng1,
Rng2, Rng3 would be

Dom1 = {P s1 : 1 ≤ s ≤ q},
Dom2 =

⋃q
s=1{inc

j(Ss) : 0 ≤ j ≤ ms − 2},
Dom3 = {Cs1 : 1 ≤ s ≤ q}.

Rng1 = {CCs : 1 ≤ s ≤ q},
Rng2 =

⋃q
s=1{Y sj : 0 ≤ j ≤ ms − 2},

Rng3 = {MMs : 1 ≤ s ≤ q}.

As before, we consider the s-th query to consist of ms blocks of the message and ts blocks of the tweak. It may
be the case that the last block of message and tweak has less than n bits. Moreover, in the ensuing analysis, the
definition of `s,s

′
is changed to `s,s

′
= max{ms + ts,ms′ + t′}.

We have the following bounds on the collision probabilities.

Claim 11. 1. Pr[COLD1] ≤
(
q
2

)
/2n.

2. Pr[COLD2] ≤ `qσαmax
2n

3. Pr[COLD3] ≤
(
q
2

)
/2n.

4. Pr[COLR1] ≤ (q−1)σ
2n

5. Pr[COLR2] ≤
(∑

sms−q
2

)
1
2n

6. Pr[COLR3] ≤ (q−1)σ
2n

Proof. The proof of (1) and (3) is same as the proof of Claim 4, and proof of (5) is same as that of Claim 8.
Proof of (2): As in the proof of Claim 5, we have Dom2 = D1 ∪D2 ∪ · · · ∪Dq, where

Ds = {incj(Ss) : 0 ≤ j ≤ ms − 2}, for 1 ≤ s ≤ q,

and

Ss =

{
CCs ⊕Hh1

(P s2 ||P s3 || · · · ||P sms , T s) if tys = enc

MMs ⊕Hh2(C
s
2 ||Cs3 || · · · ||Csms , T s) if tys = dec

Let us denote P s2 ||P s3 || · · · ||P sms by Qs and Cs2 ||Cs3 || · · · ||Csms by Rs. Now, we have the following cases:

Respond to the sth adversary query as follows:

Encipher query Enc(Ts;Ps)
10. (Ps1 , P

s
2 , . . . , P

s
ms−1

, Ps
ms

) ← parsen(Ps)

11. tys = Enc

12. Cs1 ||C
s
2 || . . . ||C

s
ms−1

||Ds
ms

$← {0, 1}nm
s

13. Cs
ms
← dropn−rs (Dms)

14. return Cs1 ||C
s
2 || . . . ||C

s
ms

Decipher query Dec(Ts;Cs)

20. (Cs1 , C
s
2 , . . . , C

s
ms−1

, Cs
ms

) ← parsen(Cs)

21. tys = Dec

22. Ps1 ||P
s
2 || . . . ||P

s
ms−1||V

s
ms

$← {0, 1}nm
s

23. Ps
ms
← dropn−rs (Vms)

24. return Ps1 ||P
s
2 || . . . ||P

s
ms

Finalization:

001. h1
$← {0, 1}n

002. h2
$← {0, 1}n

for s = 1 to q,
if tys = Enc then

101. if Ps1 = Ps
′

1 for s′ < s then

102. CCs ← CCs
′

103. else

104. CCs
$← {0, 1}n

105. Dom1 ← Dom1 ∪ {P
s
1 }

106. Rng1 ← Rng1 ∪ {CC
s}

107. end if
108. Ss ← CCs ⊕Hh1 (Ps2 || . . . ||P

s
ms

, Ts)

109. MMs ← Ss ⊕Hh2 (Cs2 || . . . ||C
s
ms

, Ts)

110. Dom3 ← Dom3 ∪ {C
s
1}

111. Rng3 ← Rng3 ∪ {MM
s}

112. for i = 0 to ms − 3,
113. Y si ← Csi+2 ⊕ P

s
i+2

114. Dom2 ← Dom2 ∪ {inc
i(Ss)}

115. Rng2 ← Rng2 ∪ {Y
s
i }

116. end for
117. Y s

ms−2
← pad(Ps

ms
) ⊕Ds

ms

118. Dom2 ← Dom2 ∪ {inc
ms−2(Ss)}

119. Rng2 ← Rng2 ∪ {Y
s
ms−2

}
else if tys = Dec then

201. if Cs1 = Cs
′

1 for s′ < s then

202. MMs ← MMs
′

203. else

204. MMs
$← {0, 1}n

205. Dom3 ← Dom3 ∪ {C
s
1}

206. Rng3 ← Rng3 ∪ {MM
s}

207. end if
208. Ss ← MMs ⊕Hh2 (Cs2 || . . . ||C

s
ms

, Ts)

209. CCs ← Ss ⊕Hh1 (Ps2 || . . . ||P
s
ms

, Ts)

210. Dom1 ← Dom1 ∪ {P
s
1 }

211. Rng1 ← Rng1 ∪ {CC
s}

212. for i = 0 to ms − 3,
213. Y si ← Csi+2 ⊕ P

s
i+2

214. Dom2 ← Dom2 ∪ {inc
i(Ss)}

215. Rng2 ← Rng2 ∪ {Y
s
i }

216. end for
217. Y s

ms−2
← pad(Cs

ms
) ⊕ V s

ms

218. Dom2 ← Dom2 ∪ {inc
ms−2(Ss)}

219. Rng2 ← Rng2 ∪ {Y
s
ms−2

}
end if

end for

Second phase
bad = false;
if (some value occurs more than once in Domi, i = 1, 2, 3) then bad = true end if;
if (some value occurs more than once in Rngi, i = 1, 2, 3) then bad = true end if.

Fig. 4. Game RND2 for XCBv1.

Case 1: tys = tys
′
= enc

Sub case 1a: (Qs, T s) = (Qs
′
, T s

′
). In this case P s1 6= P s

′

1 , which means that CCs and CCs
′
are uniformly

and independently distributed in {0, 1}n, which implies Pr[inci(Ss)⊕ Ss′] ≤ 1/2n.
Sub case 1b: (Qs, T s) 6= (Qs

′
, T s

′
). By Lemma 1, we have Pr[inci(Ss)⊕ Ss′] ≤ αmax`s,s

′
/2n

Case 2: tys = tys
′
= dec. It has the same subcases as in the previous case, and the bounds on the probability

on the subcases are same as in the cases 1a and 1b.
Case 3: tys = enc and tys

′
= dec. By Lemma 1 we have Pr[inci(Ss)⊕ Ss′] ≤ αmax`s,s

′
/2n

Following the same arguments as in the proof of Claim 5, we get

Pr[COLD2] ≤
∑

1≤s<s′≤q

αmax(m
s +ms′ − 4)`s,s

′

2n

≤ `qσαmax
2n

(39)

Proof of (4) If tys = enc, then CCs is selected uniformly at random from {0, 1}n, and if tys = tys
′
= enc and

P s1 = P s
′

1 , then CCs does not enter Rng1. Thus if tys or tys
′
is enc, then Pr[CCs = CCs

′
] = 1/2n. Next we settle

the case tys = tys
′
= dec.

If tys = dec, then
CCs =MMs ⊕Hh2(R

s, T s)⊕Hh1(Q
s, T s),

where Qs = P s2 ||P s3 || · · · ||P sms and Rs = Cs2 ||Cs3 || · · · ||Csms . We have the following cases to settle.

1. (Rs, T s) = (Rs
′
, T s

′
). In this case MMs and MMs′ are selected uniformly and independently from {0, 1}n,

hence Pr[CCs = CCs
′
] ≤ 1/2n.

2. (Rs, T s) 6= (Rs
′
, T s

′
). In this case we have

CCs ⊕ CCs
′
=MMs ⊕MMs′ ⊕

[
Hh2

(Rs, T s)⊕Hh2
(Rs

′
, T s

′
)
]
⊕
[
Hh1

(Qs, T s)⊕Hh1
(Qs

′
, T s

′
)
]
.

Let

µs,s
′
=MMs ⊕MMs′ ,

Hs,s′

2 = Hh2(R
s, T s)⊕Hh2(R

s′ , T s
′
),

Hs,s′

1 = Hh1
(Qs, T s)⊕Hh1

(Rs
′
, T s

′
).

Note that Hs,s′

1 ⊕ Hs,s′

2 is a non zero bivariate polynomial on h1, h2 with (total) degree `s,s
′
. Hence by

Schwartz-Zippel Theorem

Pr[CCs ⊕ CCs
′
= 0] ≤ `s,s

′

2n

Hence we have

Pr[COLR1] ≤
∑

1≤s<s′≤q

`s,s
′

2n

≤ (q − 1)σ

2n
.

Proof of (5): From the game RND2, we have for 1 ≤ s ≤ q, Y sj = Csj+2 ⊕ P sj+2, where 0 ≤ j ≤ ms − 3, and

Y sms−2 =

{
pad(P sms)⊕D

s
ms if s = enc

pad(Csms)⊕ V
s
ms if s = dec.

Hence, there are
∑
sms−q uniformly and independently generated n-bit strings in Rng2. Hence the claim follows.

Proof of (6) is same as proof of (4). ut
Now, using Claim 11 and Eqs. (37) and (38) we obtain the claimed bound.

9 The Bound with Practical Parameter Values

In this section, we compare the bounds that we derived with the bounds for other TES considering practical values
of the parameters. We assume 232 bytes of ciphertext/plaintext is available to the adversary in a hard disk of
sector size 4096 bytes. We assume an underlying block cipher with a block length of 16 bytes. Thus, each message
is of length 4096 bytes, i.e., 28 blocks. The total cipher/plaintext available to the adversary is 232/24 = 228 blocks.
And the total cipher/plaintext comprises of 228/28 = 220 messages, which means 220 queries and tweaks. Thus,
the total query complexity of the adversary is 228 + 220. These parameter values are summarized in Table 4.

The claimed bounds and their numerical values based on the parameters stated above are summarized in
Table 5. Unlike the other TES, the security bounds of both XCBv1 and XCBv2fb depends on the maximum
allowed message length. The bounds stated in Theorems 3 and 10 assumes that the maximum message length
is 232 blocks as mentioned by the designers. The 222 term in the bound comes from the maximum value of αr
where 1 ≤ r ≤ 232. If the allowed length of messages is smaller, then both XCBv1 and XCBv2fb would have
better bounds. If all messages are at most 28 blocks long, then 222 can be replaced by a = max0≤r≤28 αr. By
computation, we found that a = 211. This can also be seen in Table 6 of [9], where a table of values of αr for
different r is reported. The modified bounds and its numerical values for XCBv1 and XCBv2fb based on the
selected parameters is shown in Table 5.

Block length n 128 We assume AES

Max query length ` 4×210

24
+ 1 = 28 + 1 Assuming 4096-byte messages

Numb. of Queries q 228

28
= 220 Assuming 232 bytes of cipher/plaintext is available to the

adversary. Each message/cipher is 4096 bytes.
Query Complexity σ 232

24
+ 228

28
= 228.006 Blks. of cipher/plaintext + tweak

Table 4. The values of the parameters

Modes Source Claimed bound Numerical Value

CMC [7] 7σ2

2n
2−69.18

EME [8] 7σ2

2n
2−69.18

HCTR [2] 4.5σ2

2n
2−69.81

TET [6] 3σ2

2φ(2n−1)
2−69.40

HEH, [15] 20σ2

2n
2−67.66

HMCH
XCB [12] 8q2(`+2)2

2n
2−68.96

(claimed)

XCBv2fb This paper
(

(5+222)`qσ
2n

, (5+211)`qσ
2n

)
(2−49.98, 2−60.98)

XCBv1 This paper
(

(3+222)`qσ
2n

, (3+211)`qσ
2n

)
(2−49.98, 2−60.98)

Table 5. Comparison of the bounds: q, σ, ` are the number of queries, query complexity, and number of blocks in the
longest query respectively. Here φ is the Euler’s totient. The two bounds for the two versions of XCB from this paper
correspond to maximum message lengths of 232 and 28 blocks. The numerical values are computed using the parameters
in Table 4.

10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

11. D. A. McGrew and S. R. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint Archive,
Report 2004/278, 2004.

12. D. A. McGrew and S. R. Fluhrer. The security of the extended codebook (XCB) mode of operation. In Carlisle
Adams, Ali Miri, and Michael Wiener, editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes in
Computer Science, pages 311–327. Springer Berlin Heidelberg, 2007.

13. D. A. McGrew and J. Viega. Arbitrary block length mode, 2004. http://grouper.ieee.org/groups/1619/email/
pdf00005.pdf.

14. P. Sarkar. Improving upon the TET mode of operation. In ICISC, volume 4817 of Lecture Notes in Computer Science,
pages 180–192. Springer, 2007.

15. P. Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash functions. Information Theory,
IEEE Transactions on, 55(10):4749–4760, 2009.

16. P. Wang, D. Feng, and W. Wu. HCTR: A variable-input-length enciphering mode. In CISC, pages 175–188, 2005.

A XCB in IEEE 1619.2

Here we describe XCB verbatim as described in IEEE-std 1619.2, 2010.

1. H ← AES-Enc(K, 0128)
2. Ke ← msbk(AES-Enc(K, 0125|0012)|AES-Enc(K, 0125|0102))
3. Kd ← msbk(AES-Enc(K, 0125|0112)|AES-Enc(K, 0125|1002))
4. Kc ← msbk(AES-Enc(K, 0125|1012)|AES-Enc(K, 0125|1102))
5. A← P [m− 128 : m− 1]

6. B ← P [0 : m− 127]

7. C ← AES-Enc(Ke, A)

8. D ← C ⊕ h1(H,Z,B)

9. E ← B ⊕ c(Kc, D,#B)

10. F ← D ⊕ h2(H,Z,E)

11. G← AES-Dec(Kd, F)

12. CT ← E|G

In the above the length of the plaintext P is m bits. Note that the length of B is m − 126 bits and this is also
the length of E. The length of G is 128 bits and so the length of CT is m− 126 + 128 = m+ 2 bits. So, applying
the encryption function increases the length by 2 bits.

