新疆阿克苏地区前寒武纪蓝片岩构造—热演化史*

张志勇¹ 朱文斌^{1**} 舒良树¹ 万景林² 杨伟¹ 苏金宝¹ ZHANG ZhiYong¹, ZHU WenBin^{1**}, SHU LiangShu¹, WAN JingLin², YANG Wei¹ and SU JinBao¹

1. 南京大学地球科学系,内生金属矿床成矿机制研究国家重点实验室,南京 210093

2. 中国地震局地质所,地震动力学国家重点实验室,北京 100029

1. State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China

2. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China

2008-6-25 收稿, 2008-11-12 改回.

Zhang ZY, Zhu WB, Shu LS, Wan JL, Yang W and Su JB. 2008. Thermo-tectonic evolution of Precambrian blueschists in Aksu, Northwest Xinjiang, China. *Acta Petrologica Sinica*, 24(12): 2849-2856

Abstract Aksu Precambrian blueschist is located in Kepin uplift of northwestern margin of Tarim basin. In last twenty years, foreign and Chinese geologists have done lots of researches and got lots of new data on isotopic age. However, studies on dating are mostly aimed at determining the metamorphic age, while researches on thermo-tectonic evolution of blueschists are rare. This paper is devoted to discussing the following questions; 1. Whether the quick process of Aksu blueschists' rebound to earth surface has been recorded by fission track? 2. Whether Aksu blueschist has experienced reburial and re-exhumation after its exhumation? If it has, at what depth and when did it happen? 3. How has thermo-tectonic evolution of Aksu blueschist responded to the different tectonic events that have occurred at Tarim continental margins; of blueschist samples collected in Aksu for apatite fission track dating, six are between 107.5 ~ 62.5 Ma, far less than blueschist face metamorphic age, and confined fission track lengths are between 10.46 ~ 12.12 µm. According to previous researches, regional stratigraphic sequence and results of fission track thermal history modeling, we have basically reconstructed the thermo-tectonic evolution of Aksu blueschist; 1. Aksu blueschist rebounded to surface soon after its formation, and it probably had been under erosion during early Sinian, where there were no sedimentation until later Sinian; 2. Late Sinian strata were continuous. In the whole Paleozoic strata, only mid and upper Silurian, lower and mid carboniferous series were absent. The total thickness of early Sinian and Paleozoic strata were ca. ten thousand meters. Annealing was thorough, so fission track ages were reset; 3. Regional strata largely began to uplift during later Mesozoic, and fission track clock restarted; 4. Deposition began again in Paleocene, Aksu blueschist was heated to partial annealing zone. In Miocene Aksu blueschist was involved in re-exhumation once more, which was assumed to be in response to the result of far-field effects from India-Eurasia collision. Key words Aksu; Blueschist; Fission track; Thermo-tectonic evolution

摘 要 阿克苏前寒武纪蓝片岩产于塔里木盆地西北缘的柯坪隆起区内。近二十年来,中外科学家对其展开了深入研究, 并获得了许多新的同位素年龄资料,但是年龄测定大多偏重于确定蓝片岩的变质年龄,蓝片岩形成后的构造演化方面的研究 尚显不足。为了讨论:1.裂变径迹数据有没有记录到阿克苏蓝片岩形成后快速折返至地表的信息?2.阿克苏蓝片岩剥露以 后是否经历过再次埋藏和剥露,再次埋藏的深度和剥露的时间?3.蓝片岩的构造热演化过程对大陆边缘不同构造事件的响 应;采集阿克苏地区前寒武纪蓝片岩带样品进行磷灰石裂变径迹测试,6个样品的年龄值介于107.5~62.5Ma之间,远小于高 压变质年龄,径迹长度介于10.46~12.12µm。结合前人研究成果、本区地层序列和裂变径迹热史模拟结果,大致重建了蓝片 岩的热史演化:1.蓝片岩形成(872~862Ma)后快速折返至地表,可能在整个早震旦世一直遭受剥蚀,到晚震旦世才重新开始 接受沉积埋藏;2.晚震旦世地层基本保持连续,整个古生代也仅缺失中、上志窗统,中、下石炭统。至古生代末,早震旦世和整

^{*} 国家重点基础研究发展规划项目(2007CB411301),国家自然科学基金项目(40573038)和地震动力学国家重点实验室开放基金项目 (No. LEDO507)合作资助的研究成果.

第一作者简介:张志勇,男,1982年生,博士研究生,构造地质学专业,E-mail: zhang. nju@gmail. com

^{**} 通讯作者:朱文斌,教授,博士生导师,E-mail: zwb@nju. edu. cn

个古生代地层厚度已近万米。蓝片岩完全退火,年龄被重置;3. 中生代晚期区内地层普遍开始隆升,裂变径迹时钟重新开始 计时;4. 古新世开始有沉积作用发生,样品接受埋藏增温至部分退火带,随后可能由于印度-欧亚板块碰撞的远程效应,中新 世地层重新开始隆升剥露。

关键词 阿克苏;蓝片岩;裂变径迹;构造—热演化 中图法分类号 P588.344; P597.3

1 引言

裂变径迹定年是二十世纪60年代开始兴起的一种同位 素年代学方法,近二十年来,随着磷灰石裂变径迹实验测试 技术的逐步完善,各实验室对磷灰石退火行为研究的深入, 各种退火模型的相继提出,计算机热历史模拟技术的实现, 研究方法已由原来的定性分析发展到定量模拟,使裂变径迹 方法在研究中展示出越来越强的活力(Ketcham et al., 1999, 2000)。在测定火山岩的年龄、研究沉积地层的形成时代、制 约断层的活动时间、计算山体的隆升速率等方面得到广泛应 用并取得大量成果;除此之外,利用该方法,测定碎屑颗粒的 年龄,研究沉积岩的物源,进而恢复可能的山体抬升与剥蚀、 沉积物埋藏历史、盆-山耦合也是国际热点。

现今的磷灰石裂变径迹研究不仅提供了样品的年龄,也 给出了反映热史的围限径迹长度,根据测得的单颗粒年龄和 径迹长度数据,利用计算机结合地质事件进行模拟,可重现该 样品的时间-温度演化轨迹,从而提供构造事件发生的年龄,从 这点来说,磷灰石裂变径迹是一种不可或缺的热年代学方法, 有其独到的发展空间(王瑜,2004;张志诚和王雪松,2004)。

阿克苏蓝片岩产于塔里木盆地西北缘的柯坪隆起区内。 近二十年来,中外科学家对其展开了深入研究,并获得了许 多新的同位素年龄资料(Nakajima et al., 1990; Liou et al., 1996; Chen et al., 2004),但是年龄测定大多偏重于确定蓝 片岩的变质年龄,蓝片岩形成以后构造演化方面的研究尚显 不足。 到阿克苏蓝片岩形成后快速折返至地表的信息? 2. 阿克苏 蓝片岩剥露以后是否经历过再次埋藏和剥露,再次埋藏的深 度和剥露的时间? 以及3. 蓝片岩的构造热演化过程对大陆 边缘不同构造事件的响应。

的实验数据,目的是为了讨论:1. 裂变径迹数据有没有记录

2 地质背景

阿克苏地层单元属于柯坪塔格地层小区,该区位于塔里 木盆地西北缘(图1),东起阿克苏、温宿一带,经印干、柯坪, 西止于阿图什北,南以柯坪塔格南麓为界,北以皮羌—苏巴 什一线以北与阿合奇小区相接。区内地层发育较齐全,唯缺 失太古界,下震旦统,中、上志留统,中、下石炭统及中生代地 层。下元古界为绿色片岩;上震旦统发育完整,上部为碳酸 岩,下部以浅海—滨海相陆源碎屑岩为主,底部含底砾岩(图 2);古生界为碳酸岩及陆源碎屑岩;新生界除阿克苏附近见 有少量第三纪海相夹层外,一般均为陆相红层及松散的碎屑 堆积(新疆维吾尔自治区地层表编写组,1981)。

阿克苏前寒武纪蓝片岩位于新疆阿克苏市西南约 20km 处,在其南端为震旦系上统苏盖特布拉克组和奇格布拉克组 的砂岩不整合覆盖,在震旦系上统底砾岩中有白云母片岩和 穿切了蓝片岩而被震旦系地层覆盖的没有经受高压变质的 基性岩脉,因此阿克苏蓝片岩是迄今为止世界上所发现的最 典型的前寒武纪蓝片岩(图3)。阿克苏蓝片岩为一完整的 蓝片岩—绿片岩系列,主要由强烈片理化的绿泥石—黑硬绿 泥石石墨片岩、黑硬绿泥石—多硅白云母片岩、绿片岩、蓝片 岩及少量石英岩、变铁质岩组成,其峰期变质温度在 300~

本文首次给出了阿克苏地区前寒武纪蓝片岩裂变径迹

图1 塔里木盆地北缘断裂与褶皱的展布特征(据 Yin et al., 1998 略修改)

Fig. 1 Distributions of faults and folds in northern Tarim (modified after Yin et al., 1998)

图 2 阿克苏地区地层柱状图(据 Chen et al., 2004 修改)

Fig. 2 Stratigraphic column of the Aksu area (modified after Chen *et al.*, 2004)

400℃,岩层呈北东-南西方向分布,宽约 20km,长约 40km, 褶皱变形强烈。阿克苏蓝片岩的变质年龄一直是焦点问题, 这不仅关系到阿克苏蓝片岩是不是前寒武纪蓝片岩,更是关 系到现今板块机制是否在前寒武纪就已出现。早期基础地 质研究已确定阿克苏蓝片岩为前寒武纪蓝片岩(熊纪斌和王 务严,1986;董申保,1989;Liou *et al.*,1989;肖序常等, 1990),九十年代发表了 718 ±22Ma、710 ±21Ma 的多硅白云 母 K-Ar 年龄,698 ±26Ma、714 ±24Ma 的 Rb-Sr 等时线年龄和 754Ma 的青铝闪石⁴⁰ Ar/³⁹ Ar 年龄(Nakajima *et al.*,1990;Liou *et al.*,1996),这些年龄跟早期基础地质研究推断的 > 800Ma 稍有差距。相比之下,最近发表的 872 ±2Ma 的青铝闪石 ⁴⁰ Ar/³⁹ Ar 年龄,862 ±1Ma 的蓝闪石⁴⁰ Ar/³⁹ Ar 年龄显然更为 准确(Chen *et al.*,2004)。

在阿克苏蓝片岩带中没有发现榴辉岩、斜长角闪岩等偏高温的变质岩石,说明蓝片岩不是由这些岩石退变形成的, 而是洋壳俯冲变质形成的(姜文波和张立飞,2001)。一般认 为高压低温变质作用发生于俯冲板块一侧,作为高压低温变 质作用的产物,蓝片岩是洋壳快速俯冲消减的结果,其变质 时代代表着板块强烈活动时期。872~862Ma的闪石⁴⁰Ar/ ³⁹Ar年龄,代表着蓝闪石片岩的形成年龄,即高压变质作用发 生在新元古代早中期,因此阿克苏保存下来的蓝闪石片岩代 表新元古代早期末古洋壳快速俯冲消减的产物,也就是说在 新元古代早中期塔里木板块内或周围存在过俯冲、碰撞作 用。

阿克苏蓝片岩通常被认为是中朝—塔里木板块和哈萨 克斯坦板块间俯冲发生高压变质形成的(肖序常等,1992; Liou et al., 1996)。虽然现在越来越多的证据表明新元古代 板块构造机制和显生宙以来的板块机制相同,但这主要是

图 3 阿克苏前寒武纪蓝片岩分布地质简图(据张立飞 等,1998;Chen et al., 2004 修改)

Fig. 3 Simplified geological sketch map of Aksu Precambrian buleschist (modified after Zhang *et al.*, 1998; Chen *et al.*, 2004)

根据目前所发现的元古代蛇绿岩来确定的, Moores (1993)认 为这是由于在新元古代洋壳厚度开始变薄的缘故。阿克苏 蓝片岩相变质磁铁石英岩中迪尔闪石的发现进一步证明至 少在新元古代, 现今的板块构造体制就出现了, 板块俯冲发 生高压变质, 然后快速折返使得高压相系的变质岩石得以保 存, 所以新元古代可能是地球演化过程中重要的转折阶段 (张立飞等, 1998)。

阿克苏高压变质带在构造程序上是连续的。北部的镁 铁质片岩夹变燧石岩的岩石组合与化学成分均显示出与洋 壳顶部类似(熊纪斌和王务严,1986)。而变沉积岩的岩石组 合既可以形成稳定大陆边缘,也可以形成洋底,但是由于变 质变形破坏了沉积构造,以及露头有限等原因,很难准确恢 复它们形成时的古地理环境。迄今为止,尚未发现有混杂岩 和蛇绿岩与阿克苏高压变质带共生,因而很难重建该区古构 造格局及演化(肖序常等,1992)。

3 裂变径迹实验方法

本次研究的6个裂变径迹样品采集于阿克苏蓝片岩出 露区的最北缘(图3)。野外采用便携式 GPS 逐样定位、标高,样品均采自新鲜露头,单个样品重量>3kg。

裂变径迹测年实验在中国地震局地质研究所地震动力 学国家重点实验室进行。样品经破碎、筛选、磁选及重液挑 选出纯净的磷灰石,将磷灰石颗粒在薄片上用环氧树脂固化 后抛光,用低铀白云母作外探测器进行裂变径迹分析。有关 实验条件为:磷灰石自发裂变径迹蚀刻条件为 5.5N HNO₃, 20℃,20s;白云母诱发裂变径迹蚀刻条件为 40% HF,室温, 20min。Zeta 标定选用国际标准样 Fish Canyon Tuff 磷灰石 (27.8±0.7Ma)及美国国家标准局 SRM 612 铀标准玻璃, Zeta 值为 343.4±24。样品热中子辐照送中国原子能科学研 究院 492#反应堆进行。径迹统计采用 Autoscan 裂变径迹测 试系统,在 Zeiss Axioplan 2 偏光显微镜放大 1000 倍条件下 完成。本文磷灰石裂变径迹的封闭温度采用 110±10℃,部 分退火带温度为 60~110℃ (Green *et al.*, 1985, 1989; Hurford, 1986),年龄误差±1 σ 。

4 裂变径迹实验结果及热史模拟

6个样品的测试结果见表1和图4。一般而言,当P(x²)

>5%,说明样品通过了x²检验,测试年龄采用池年龄(Pooled age); 当 $P(x^2) < 5\%$, 说明样品没有通过 x^2 检验, 测试年龄 采用中心年龄(Central age)。本文所有样品年龄都通过了 x^2 检验,并且单颗粒年龄不分散,说明各样品的单颗粒年龄属 于同一年龄组分,因此均选用池年龄。6个样品的年龄值介 于107.5~62.5Ma 之间,远小于其高压变质年龄(872~ 862Ma),可见蓝片岩的裂变径迹年龄被重置了。晚上震旦世 和整个古生代地层厚度近万米(新疆维吾尔自治区地层表编 写组,1981),根据地温梯度可推算出蓝片岩被完全退火了, 这与测得裂变径迹年龄吻合,磷灰石裂变径迹年龄表明阿克 苏蓝片岩在白垩纪隆升剥露。新生代地层总厚度达6千余 米(新疆维吾尔自治区地层表编写组,1981),据地温梯度推 算,蓝片岩理应再次遭受完全退火,但磷灰石裂变径迹年龄 和径迹长度(10.46~12.12µm)说明样品后期仅遭受部分退 火。因采样点较集中,可以解释为局部的新生代地层未至 6km,当然地层单元内的新生代地层厚度仍需进一步考证。

为进一步了解阿克苏地区蓝片岩带所经历的冷却、埋藏 再升温等过程,使用 AFTSovle 软件(Ketcham et al., 1999, 2000)对样品进行热史模拟,选用 Ketcham et al. (1999, 2000)的多组分退火模型和 Monte Carlo 法,根据测得的单颗 粒年龄和径迹长度数据,利用计算机结合地质事件进行模 拟,重现该样品的时间-温度演化轨迹。Dpar 值选取初始值 1.5μm,初始径迹长度设为 16.3μm,计算模拟 10000 次以得 到最佳拟合曲线。径迹长度测试条数一般要求大于40,以满

图4 阿克苏蓝片岩地区样品磷灰石裂变径迹年龄直方图和放射图

年龄直方图纵坐标为颗粒数,横坐标为年龄(单位 Ma),曲线为拟合中心年龄趋势;放射图左侧坐标为误差范围,右侧坐标为年龄(单位 Ma),图中圆点代表测试颗粒,直观标明测试颗粒数

Fig. 4 Apatite fission track dating results from the samples of Aksu blueschist

Ordinate of age histograms is number of grains, abscissa is age (unit Ma), curve is trend of fitting central ages; left coordinate of radial plots is the standardized error, right coordinate is age (unit Ma), round points mean measured grains, obviously indicating number of measured grains

斥疆阿克苏地区磷灰石裂变径迹数据
新疆
表

1	Acen
	mo.t
-	samp es
	0 + + 0
	0919
	208.4
د	UCISSII.
	Anatite
-	٩
-	<u> </u>

径迹长度标准差 (nm)	2. 044	2. 946	1. 999	2. 063	1. 555	2. 106	ē迹数; $P(x^2) = 自由$
平均径迹长度 (μm±1σ) (Nj)	12. 12 \pm 0. 62 (11)	10.46 ± 0.98 (9)	12.09 ± 0.30 (45)	10.88 ± 0.42 (24)	11. 38 ± 0.29 (29)	11. 50 ± 0.33 (42)	度; N _i = 样品诱发衫
裂变径迹年龄 (Ma±1σ)	62. 5 ±5. 6	107.5 ± 9.7	81.4 ±7.4	74. 8 ±7. 8	69. 0 ±6. 0	90.0 ± 8.2	=样品诱发径迹密
$P(x^2)$ ϕ_0	25.2	43.2	61.4	35.5	8.6	15.2	至迹数;ρ _i
铀含量 (×10 ⁻⁶)	11.6	6.4	8.5	9.8	14.5	8.9	=样品自发
$ ho_{\rm i}(N_{\rm i})$ (× 10 ⁵ cm ⁻²)	9.30 (1423)	5.11 (899)	6.73 (1057)	7.77 (583)	11.5 (1538)	6.96 (974)	发径迹密度; N _s
$ ho_{ m s}(N_{ m s})$ ($ imes 10^5 { m cm}^{-2}$)	3.44 (527)	3.28 (577)	3.28 (515)	3.49 (262)	4. 78 (640)	3.80 (532)	Ľ数;ρ _s = 样品自
$ ho_{ m d}(N_{ m d})$ ($ imes 10^5 { m cm}^{-2}$)	9.880 (2470)	9.837 (2459)	9. 794 (2448)	9.752 (2438)	9.709 (2427)	9.666 (2417)	眭玻璃的诱发径 迥 ↓
Nc	22	23	21	14	17	18	= 铀标准
岩性	石英片岩	云母石英片岩	云母片岩	基性蓝片岩	紫红色石英片岩	云母石英片岩	诱发径迹密度;N _d
采样位置	N41°07'57.2" E079°59'21.5"	N41°08'27.8" E080°00'13.7"	N41°08'27.8" E080°00'13.7"	N41°08'58.2" E080°01'01.6"	N41°08'58.2" E080°01'01.6"	N41 °09'23. 0" E080°01'48. 9"	ρ _d = 铀标准玻璃的 ^{2 輛 ض Ni _ 66³⁰ =}
样品号/高程(m)	A1 1147	A2 1148	A3 1148	A4 1157	A5 1157	A6 1144	Nc = 样品颗粒数; ^{座头(Nc} 1) ¹¹⁺

足热模拟的要求,长度测量条数大于100,则热模拟的可信度 更高(Rahn and Seward, 2000)。样品 A3、A6 的径迹长度测 量数大于40,其热史模拟结果可供参考。

在热史模拟时,要以研究区的地质背景为基础,充分了 解该地区的构造变迁、沉积埋藏和冷却事件年龄,并在此基 础上确定模拟的边界条件。本区热模拟的制约条件:所有 120~200℃的起始约束都给在150Ma,约束温度范围较大, 且高于完全退火带温度;在实测年龄附近给定20~130℃的 约束,主要是为了获得样品通过110℃时的裂变径迹年龄;又 因研究区内缺失中生代地层,表明此期间以隆升剥蚀为主, 而古新世开始有沉积作用发生,故在65.5Ma 给出0~40℃ 的约束,表明此时开始转入埋藏升温阶段;加之观测到围限 径迹的缩短信息,表明样品接受埋藏增温至部分退火带,在 约20Ma 给其40~120℃的约束,计算出的热史曲线自动落 入部分退火带,再次证实了样品遭受退火事件。

热史模拟结果见图 5。Ketcham et al. (2000)的热模拟 图一般分为三个部分:可以接受的热史曲线集,高质量的热 史曲线集和最佳拟合曲线。从图 5 中可以看出两个样品的 K-S 检验 > 0.90,年龄 GOF > 0.91,说明模拟结果是高质量 的。为避免得到晚期快速冷却的假相(Bruijne and Andriessen, 2002; Kohn et al., 2002),在热模拟时将原设定 的初始径迹长度减小,再重新模拟并分析结果(Bruijne and Andriessen, 2002; Kohn et al., 2002,2005;Hu et al., 2006a, b)。考虑到模拟的多解性,笔者曾尝试给出其它的热史模 型,但是模拟出的最佳拟合曲线被限定在约束线的端点,且 K-S 检验和年龄 GOF 均较小,并且重现的热史曲线跟已有地 质资料不符。本文模拟中给定的所有约束温度范围均较大, 从模拟结果看,最佳拟合曲线没有被限定在约束温度的端 点,模拟重现的时间-温度曲线是可信的。

5 讨论与结论

本文利用裂变径迹测试方法对阿克苏地区进行研究,结 合前人研究成果和本区地层序列(图2),大致重建了蓝片岩 的热史演化曲线(图6):

(1)上震旦统地层底部底砾岩中含有下伏高压片岩和基 性岩脉的小砾石,这强有力的指出了下伏高压片岩和基性岩 脉的年龄要比晚震旦世老,从下伏高压片岩的吻合年龄(872 ±2Ma 的青铝闪石⁴⁰ Ar/³⁹ Ar 年龄,862 ±1Ma 的蓝闪石 ⁴⁰ Ar/³⁹ Ar年龄)和基性岩脉 807 ±12Ma 的锆石 U-Pb 年龄,可 推断出上震旦统的底砾岩要比 807Ma 年轻。蓝片岩形成后 应快速折返至地表才能保存其高压低温变质矿物组合,即蓝 片岩隆升至地表后可能在整个早震旦世一直遭受剥蚀,到晚 震旦世才重新开始接受沉积埋藏;

(2)晚震旦世地层基本保持连续,整个古生代也仅缺失 中、上志留统,中、下石炭统,推断在中、上志留世及中、下石 炭世地层可能有过短暂隆升,沉积作用暂时停止,随后又转

图5 阿克苏蓝片岩地区样品 A3、A6 的热史模拟图

浅灰区代表"可以接受的"热史拟合曲线集,深灰区为"高质量的"热史曲线集,黑色曲线代表"最佳"热史拟合曲线,竖直线段代表 某一时间给定的温度约束范围;"K-S检验"表示径迹长度模拟值与实测值之吻合程度,"年龄 GOF"代表径迹年龄模拟值与实测值 之吻合程度,若"年龄 GOF","K-S 检验"都大于5%时,表明模拟结果"可以接受",当它们超过50%时,模拟结果则是高质量的

Fig. 5 Modelled thermal history for the samples of Aksu blueschist

Thick lines show best-fit solutions obtained for these model run, and light-grey and dark-grey colors show general-fit solutions and good-fit solutions obtained for the same model run, respectively. Vertical lines mean temperature restrictions at one time. "K-S test" means inosculated grade of modeled value and measured value for track length. "Age GOF" means inosculated grade of modeled age and measured age. If "K-S test" and "Age GOF" >5%, modeled results are acceptable; if "K-S test" and "Age GOF" >50%, modeled results are of high quality

入沉积埋藏阶段。至古生代末,早震旦世和整个古生代地层 厚度已近万米。蓝片岩完全退火,年龄被重置。

(3)因为研究区内缺失中生代地层,加之我们测得的裂 变径迹年龄(107.5~62.5Ma)也基本落在白垩纪,本文认为 在中生代晚期区内地层普遍开始隆升,裂变径迹时钟重新开 始计时。至于何时沉积结束开始隆升,可能是古生代末,也 可能中生代早期地层仍在接受沉积,而后的隆升把刚刚沉积 的中生代地层剥蚀了。

(4)古新世开始有沉积作用发生,表明开始转入埋藏升 温阶段,加之观测到围限径迹的缩短信息,表明样品接受埋 藏增温至部分退火带,计算出的热史曲线自动落入部分退火 带再次证实了样品遭受退火事件。随后可能由于印度—欧 亚板块碰撞的远程效应,地层重新又隆升剥露于地表。

中生代以来天山地区的普遍发育隆升剥露作用(Hendrix

et al., 1994; Zhou et al., 1995; Sobel and Dumitru, 1997; 王 彦斌等, 2001; 郭召杰等, 2002, 2006;杨树锋等, 2003;柳永 清等, 2004;沈传波等, 2005; Zhu et al., 2005a, b;陈正乐等, 2006;马前等, 2006;朱文斌等, 2006, 2007;张志诚等, 2007)。 研究表明,从青藏高原北缘向北,包括塔里木盆地周缘,天 山,直至阿尔泰山,隆升剥露作用均具有多期性和阶段性。 Hendrix et al. (1992)指出,天山中新生代变形作用与不同 陆块碰撞增生到亚洲板块南部边缘有关,它们是晚三叠世 (230~200Ma)羌塘地块的增生作用;晚休罗世(140~ 125Ma)拉萨地块的增生作用;晚白垩世(80~70Ma) Kohistan-Dras 岛弧的增生作用以及 55Ma 以来印度板块与亚 洲大陆的碰撞作用。阿克苏蓝片岩的磷灰石裂变径迹年龄 与天山及邻区的其他裂变径迹年龄资料基本一致,反映了上 述地体与欧亚大陆碰撞对天山地区的远距离影响。

图 6 新疆阿克苏前寒武纪蓝片岩构造-热演化史 灰色矩形代表置信区间,即其中心的曲线拐点可能落在矩形区 域中的任意处

Fig. 6 Thermo-tectonic evolution of Precambrian Blueschists in Aksu, Xinjiang

Grey rectangle means confidence interval, inflexion of curve may be in any place of the area

致谢 在中国地震局地质所地震动力学国家重点实验室 进行裂变径迹实验的过程中,得到了郑德文,李大明,谷元 珠,刘春茹和刘建辉的无私帮助,两位匿名审稿人对论文初 稿提出了建设性的修改意见,作者等谨致谢忱。

References

- Bruijne HD and Andriessen PAM. 2002. Far field effects of Alpine plate tectonism in the Iberian microplate recorded by fault-related denudation in the Spanish Central System. Tectonophysics, 349: 161-184
- Chen Y, Xu B, Zhan S and Li YG. 2004. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 133: 271 – 281
- Chen ZL, Wan JL, Liu J, Li SX, Zheng EJ, Han XZ, Li XG and Gong HL. 2006. Multi-stage uplift and exhumation of the western Tianshan mountain: Evidence from the apatite fission track dating. Acta Geoscientica Sinica, 27 (2): 97 – 106 (in Chinese with English abstract)
- Compile group of Xinjiang Uygur Autonomous Region stratigraphic table. 1981. Northwest Region Stratigraphic Table, Xinjiang Uygur Autonomous Region Fascicule. Beijing: Geological Publishing House, 320 – 334 (in Chinese)
- Dong SB. 1989. The general features and distributions of the glaucophane schist belts of China. Acta Geologica Sinica, 3: 273 284 (in Chinese with English abstract)
- Green PF, Duddy IR, Gleadow AJW, Tingate PR and Laslett GM. 1985. Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius Plot. Nuclear Tracks, 10(3): 323 – 328
- Green PF, Duddy IR and Laslett GM. 1989. Thermal annealing of fission tracks in apatite 4: Quantitative modeling techniques and extension to geological time scales. Chemical Geology (Isotope Geoscience Section), 79: 155 – 182
- Guo ZJ, Zhang ZC, Liao GH and Fang SH. 2002. Uplifting process of eastern Tianshan mountains: Evidence from fission-track age and its tectonic significance. Xinjiang Geology, 20 (4): 331 334 (in Chinese with English abstract)
- Guo ZJ, Zhang ZC, Wu CD, Fang SH and Zhang R. 2006. The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai mountains. Acta Geologica Sinica, 80(1): 1-15 (in Chinese with English abstract)

- Hendrix MS, Graham SA, Carroll AR, Sobel ER, Mcknight CL, Schulein BJ and Wang ZX. 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basin, Northwest China. Geological Society of America Bulletin, 104: 53 – 79
- Hendrix MS, Dumitru TA and Graham SA. 1994. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan : An early effect of the India-Asia collision. Geology, 22: 487 – 490
- Hu SB, Raza A, Min KK, Kohn BP, Ketcham RA, Reiners PW, Wang JY and Gleadow AJW. 2006a. Late Mesozoic and Cenozoic tectonothermal evolution along a transect from the North China Craton through the Qinling orogen into the Yangtze Craton, Central China. Tectonics, 25: TC6009, doi: 10.1029/2006TC001985
- Hu SB, Kohn B, Raza A, Wang JY and Gleadow AJW. 2006b. Cretaceous and Cenozoic denudation and cooling of the ultrahighpressure rocks in Qinling-Dabie orogen, Central China: More fission track thermochronology data from Tongbai-Dabie region. Tectonophysics, 420: 409 – 429
- Hurford AJ. 1986. Cooling and uplift patterns in the Lepontine Alps, south central Switzerland, and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92: 413 - 427
- Jiang WB and Zhang LF. 2001. The *PTt* path calculation of blueschists on the compositional zonings of sodic amphiboles: An example from Aksu Precambrian blueschists of Xinjiang. Acta Petrologica Sinica, 17(3): 469 – 475 (in Chinese with English abstract)
- Ketcham RA, Donelick RA and Carlson WD. 1999. Variability of apatite fission track annealing Kinetics I: Extrapolation to geological time scales. American Mineralogist, 84: 1235 – 1255
- Ketcham RA, Donelick RA and Donelick MB. 2000. AFTSolve: A program for multi-kinetics modeling of apatite fission-track data. Geological Materials Research, 2(1): 1-32
- Kohn BP, Gleadow AJW, Brown RW, Gallagher K, O Sullivan PB and Foster DA. 2002. Shaping the Australian crust over the last 300 million years: Insights from fission track thermotectonic and denudation studies of key terranes. Australian Journal of Earth Sciences, 49: 697 – 717
- Kohn BP, Gleadow AJW, Brown RW, Gallagher K, Lorencak M and Noble WP. 2005. Visualising Thermotectonic and Denudation Histories Using Apatite Fission Track Thermochronology. In: Reiners PW and Ehlers TA (eds.). Low Temperature Thermochronology: Techniques, Interpretations, and Applications. Reviews in Mineralogy and Geochemistry, 58: 527 – 565
- Liou JG, Graham SA, Maruyama S, Wang X, Xiao X, Carroll AR, Chu J, Feng Y, Hendrix MS, Liang YH, Mcknight CL, Tang Y, Wang ZX, Zhao M and Zhu B. 1989. Proterozoic blueschist belt in western China: Best-documented Precambrian blueschists in the world. Geology, 17: 1127 - 1131
- Liou JG, Graham SA, Maruyama S and Zhang RY. 1996. Characteristics and tectonic significance of the Late Proterozoic Aksu blueschists and diabasic dikes, Northwest Xinjiang, China. International Geological Review, 38: 228 – 244
- Liu YQ, Wang ZX, Jin XC, Li T and Li Y. 2004. Evolution, chronology and depositional effect of uplifting in the eastern sector of the Tianshan mountains. Acta Geologica Sinica, 78(3): 319-331 (in Chinese with English abstract)
- Ma Q, Shu LS and Zhu WB. 2006. Mesozoic-Cenozoic burial, uplift and exhumation: A profile along the Urumqi-Korla highway in the Tianshan mountains. Xinjiang Geology, 24 (2): 99 - 104 (in Chinese with English abstract)
- Moores EM. 1993. Neoproterozoic oceanic crustal thinning, emergence of continents, and origin of the Phanerozoic ecosystem: A model. Geology, 21: 5-8
- Nakajima T, Maruyama S, Uchiumi S, Liou JG, Wang X, Xiao X and Graham SA. 1990. Evidence for late Proterozoic subduction from 700-Myr-old blueschists in China. Nature, 346: 263 – 265
- Rahn M and Seward D. 2000. How many tracks do we need. On Track,

10:12-15

- Shen CB, Mei LF, Liu L, Tang JG and Zhou F. 2005. Characteristics of fission track age of Bogedashan in Xinjiang and its structural significance. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 27(2): 273 - 277 (in Chinese with English abstract)
- Sobel ER and Dumitru TA. 1997. Thrusting and exhumation around the margines of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research, 102: 5043 – 5063
- Wang Y. 2004. Some thoughts on tectono-thermochronology. Earth Science Frontiers, 11 (4): 435 – 443 (in Chinese with English abstract)
- Wang YB, Wang Y, Liu X, Fu DR, Wang J and Wang SC. 2001. Apatite fission-track records of Mesozoic and Cenozoic episodic reactivation of the Tianshan and west Kunlun mountains. Regional Geology China, 20(1): 94 – 99 (in Chinese with English abstract)
- Xiao XC, Graham SA, Carroll AR, Zhu JZ, Feng YM, Hendrix MS, Liang YH, Liu ZG, Maruyama, Mcknight CL, Tang YQ, Wang XM, Wang ZX, Zhao M and Zhu BQ. 1990. Proterozoic blueschist belt in Western China: Best documented Precambrian blueschists in the world. Xinjiang Geology, 8 (1): 12 – 21 (in Chinese with English abstract)
- Xiao XC, Tang YQ, Feng YM, Zhu BQ, Li JY and Zhao M. 1992. Tectonic evolution of the Northern Xinjiang and its adjacent regions. Beijing: Geological Publishing House, 48 - 52
- Xiong JB and Wang WY. 1986. Preliminary research on Aksu Group of the Presinian. Xinjiang Geology, 4(4): 33 - 46 (in Chinese with English abstract)
- Yang SF, Chen HL, Cheng XG, Xiao AC, Zhou YZ, Lu HF, Jia CZ and Wei GQ. 2003. Cenozoic uplifting and unroofing of southern Tien Shan, China. Journal of Nanjing University (Natural Sciences), 39 (1): 1-8 (in Chinese with English abstract)
- Yin A, Nie S, Craig P and Harrison TM. 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17: 1-27
- Zhang LF, Jiang WB, Wei CJ and Dong SB. 1998. Discovery of dolerite from the Aksu Precambrian blueschist terrane and its geological significance. Science in China (Series D), 28(6): 540 – 545(in Chinese)
- Zhang ZC and Wang XS. 2004. The issues of application for the fission track dating and its geological significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 40(6): 898 – 905 (in Chinese with English abstract)
- Zhang ZC, Guo ZJ, Wu CD and Fang SH. 2007. Thermal history of the Jurassic Strata in the Northern Tianshan and its geological significance, revealed by apatite fission-track and vitrinitereflectance analysis. Acta Petrologica Sinica, 23(7): 1683 – 1695 (in Chinese with English abstract)
- Zhou D, Dumitru TA, Graham SA and Hendrix MS. 1995. Apatite fission-track record of Mesozoic and Cenozoic episodic reactivation of the Chinese Tian Shan. Geological Society of America Bulletin, Abstract Programs, 27: 456
- Zhu WB, Wan JL, Shu LS, Sun Y and Wang F. 2005a. Mesozoic-Cenozoic thermal history of Turpan-Hami Basin: Apatite fission track constrains. Progress in Natural Science, 15(4): 331-336
- Zhu WB, Shu LS, Sun Y, Wang F and Zhao ZY. 2005b. Mesozoic-Cenozoic exhumation history of North Tianshan, Northwest China: Constrains from fission track analysis. Geochimica et Cosmochimica Acta (Supplement): A310
- Zhu WB, Shu LS, Wan JL, Sun Y, Wang F and Zhao ZY. 2006. Fission-track for the exhumation history of Bogda-Harlik mountains, Xinjiang since the Cretaceous. Acta Geologica Sinica, 80(1): 16 – 22 (in Chinese with English abstract)
- Zhu WB, Zhang ZY, Shu LS, Wan JL, Lu HF, Wan SL, Yang W and Su JB. 2007. Uplift and exhumation history of the Precambrian basement, Northern Tarim: Evidence from apatite fission track data. Acta Petrologica Sinica, 23 (7): 1671 – 1682 (in Chinese with English abstract)

附中文参考文献

- 陈正乐,万景林,刘健,李胜祥,韩效忠,李细根,宫红良.2006. 西天 山山脉多期次隆升—剥露的裂变径迹证据.地球学报,27(2): 97-106
- 董申保.1989. 中国蓝闪石片岩带的一般特征及分布.地质学报,3: 273-284
- 郭召杰,张志诚,廖国辉,方世虎.2002. 天山东段隆升过程的裂变径 迹证据及构造意义. 新疆地质,20(4):331-334
- 郭召杰,张志诚,吴朝东,方世虎.张锐.2006. 新生代天山隆升过程 及其与准噶尔、阿尔泰山比较研究.地质学报,80(1):1-15
- 姜文波,张立飞.2001.利用钠质角闪石成分环带计算蓝片岩的 PTt 轨迹----以新疆阿克苏前寒武纪蓝片岩为例.岩石学报,17 (3):469-475
- 柳永清,王宗秀,金小赤,李涛,李寅.2004. 天山东段晚中生代—新 生代隆升沉积响应、年代学与演化研究.地质学报,78(3):319 -331
- 马前,舒良树,朱文斌.2006. 天山乌-库公路剖面中、新生代埋藏、隆 升及剥露史研究. 新疆地质,24(2):99-104
- 沈传波,梅廉夫,刘麟,汤济广,周峰.2005. 新疆博格达山裂变径迹 年龄特征及其构造意义. 石油天然气学报(江汉石油学院院 报),27(2):273-277
- 王彦斌,王永,刘训,傅德荣,王军,王世成.2001. 天山、西昆仑山中、 新生代幕式活动的磷灰石裂变径迹记录. 中国区域地质,20 (1):94-99
- 王瑜.2004. 构造-热年代学——发展与思考.地学前缘,11(4):435 -443
- 肖序常,格雷厄姆 SA,卡罗尔 AR,朱锦志,冯益民,亨德里克斯 MS, 梁云海,刘忠光,九山茂德,麦克奈特 ML,汤耀庆,王小民,王作 勋,赵民,朱宝庆.1990. 中国西部元古代蓝片岩带——世界上 保存最好的前寒武纪蓝片岩.新疆地质,8(1):12-21
- 肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵民.1992. 新疆北部及其 邻区大地构造.北京:地质出版社,48-52
- 新疆维吾尔自治区地层表编写组.1981.西北地区区域地层表,新疆 维吾尔自治区分册.北京:地质出版社,320-334
- 熊纪斌,王务严.1986. 前震旦系阿克苏群的初步研究.新疆地质,4 (4):33-46
- 杨树锋,陈汉林,程晓敢,肖安成,周宇章,卢华复,贾承造,魏国齐. 2003. 南天山新生代隆升和去顶作用过程.南京大学学报(自 然科学),39(1):1-8
- 张立飞,姜文波,魏春景,董申保.1998. 新疆阿克苏前寒武纪蓝片岩 地体中迪尔闪石的发现及其地质意义.中国科学(D辑),28 (6):540-545
- 张志诚,王雪松.2004.裂变径迹定年资料应用中的问题及其地质意 义.北京大学学报(自然科学版),40(6):898-905
- 张志诚,郭召杰,吴朝东,方世虎.2007. 天山北缘侏罗系地层热历史 演化及其地质意义:磷灰石裂变径迹和镜质体反射率证据.岩 石学报,23(7):1683-1695
- 朱文斌,舒良树,万景林,孙岩,王锋,赵忠岩.2006. 新疆博格达-哈 尔里克山中新生代剥露历史的裂变径迹证据. 地质学报,80 (1):16-22
- 朱文斌,张志勇,舒良树,万景林,卢华复,王胜利,杨伟,苏金宝. 2007. 塔里木北缘前寒武基底隆升剥露史:来自磷灰石裂变径迹 的证据. 岩石学报,23(7):1671-1682