
84 AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92

INTRODUCTION

Let us consider the development of a software ap-
plication dedicated to management of large and com-
plex systems as e.g. a food distribution chain. There
exist a number of ways (implementation methods) of
achieving the required functionality of the software
application, see e.g. Aho (1974, 1983), Greene (1981).
The typical implementation methods will be described
later in this paper. There also exist a number of pos-
sible criteria for evaluating a quality of computer ap-
plications and information systems. Suitability of the
certain criteria depends on the nature of the solved
problem (of the application domain). The objective of
this paper is to describe a method, which could help
us to improve the following aspects of applications
created for management of large systems:

– Costs of development of initial functionality of the
application,

– Costs of maintenance and extension of functionality
of the application,

– Runtime efficiency of the developed application

The term costs represents here the total demands of
the application development. It need not have neces-
sarily a direct projection to costs expressed in terms
of money, it is rather some generalized rate of com-
plexity, a rough labour demand, etc. of the examined
part of the system. To convert these generalized costs
to a real economic value, several other aspects (i.e.
price of a labour work, experience of members of the
development team, etc.) should be considered.

The above-mentioned three aspects have a fun-
damental influence on the (business) success of the

Approach to comparing complex software
implementation methods

Přístup k porovnání metod implementace složitého software

I. VRANA1, J. VRÁNA2

1Czech University of Agriculture, Prague, Czech Republic
2Komix a.s. Prague

Abstract: Some of agriculture-food sector information systems are characterised by a high complexity and a large size. There
are often many alternative solutions or technologies (implementation methods) and more then one possible way or approach
to an information system design. Individual alternatives could considerably differ by their properties, e.g. costs of design of
initial functionality, development and operational costs, run-time costs and technical parameters of the resulting informati-
on system (e.g. the access time). Unfortunately, existing metrics for quantification of this task usually do not deliver precise
results but a rough estimate depending on many variable conditions. The paper will outline typical implementation methods
and show approaches to assessment and comparison of certain types of properties of information systems for a computer
support for management of large data systems, which use relational database. Authors presented part of these results also at
the Agrarian Perspectives conference 2004 in the Applied Informatics session (Vrana I., Vrána J. 2004).

Key words: Information system, implementation method, quality assessment

Abstrakt: Informační systémy musí poskytnout uživateli požadovanou funkcionalitu při zpracování určitých datových
struktur. Tohoto cíle lze zpravidla docílit různými alternativními postupy nebo technologiemi (implementačními metoda-
mi). Jednotlivé alternativy se mohou podstatně lišit svými výslednými vlastnostmi, např. náklady na vytvoření požadované
funkcionality, náklady na rozvoj systému, náklady na provoz i technickými vlastnostmi výsledného systému (přístupovými
dobami, apod.). Složitost návrhu a dosažení požadovaných vlastností silně závisí např. na rozsahu systému. Kritická situace
může nastat u rozsáhlých systému, které jsou typické i pro některé aplikace z agropotravinářského komplexu, např. u složité
sítě obchodních řetězců. Příspěvek se bude zabývat metodami porovnávání některých vlastností informačních systémů
používajících relační databázi. Část zde uvedených výsledků již autoři prezentovali na mezinárodní konferenci Agrární
perspektivy 2004 v sekci Aplikovaná informatika (Vrana I., Vrána J. 2004).

Klíčová slova: informační systém, implementační metoda, hodnocení jakosti

AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92 85

created application. The first two aspects represent
direct economic factors of the development process
and the third aspect has a principal influence on
practical usability (or non-usability) of the created
application. We shall not consider the hardware side
of the application, because the objective of this work
was to improve the software of the application.

Let us consider that the developed application uses
a relational database and it has its internal structure
according to the schematic picture in Figure 1.

Application logic implements all algorithms of the
so-called business logic of the application and it is
independent on the way of data storing. At the other
hand, data management implements algorithms for
storing and manipulation of the maintained data. This
splitting of the considered application, particularly
ratio between the size of application logic and the data
management parts, and the sharpness of the boarder
between them, will enable us to better describe the
properties of individual methods of management and
storing data.

RELATIVE ASSESSMENT OF QUALITY
OF COMPUTER APPLICATIONS

We shall outline in this paragraph the basic as-
pects and parameters to be considered in order to

assess the quality of a computer application and
compare its materialisation by different implemen-
tation methods.

Initial development costs – IDC

Initial development costs (costs of initial develop-
ment of application functionality) can be considered as
total costs needed for creation of the initial functional-
ity of the prospective application. Initial costs could
be further split to costs of the individual phases of the
application development lifecycle (see e.g. Flaatten
1991): an analysis of the problem, a development and
design of a solution, an implementation and, at the end,
a testing. The developed application passes individual
phases in various loops, when some activities should
be iteratively repeated within a certain phase, or it
repeats the whole phase or several phases, respectively.
For simplicity, we shall consider a direct model when
all phases were passed only ones without any loops
in development of initial functionality. When com-
paring properties and features of methods for data
storing and data management, the activities within
the above-mentioned development phases could be
further decomposed with respect to partial costs due
to storing and processing of data and partial costs due
to other aspects of the developed application, e.g. a
user interface, communication features, an integration
with other applications, etc. We shall focus only on the
part of activities dealing with storage and processing
of the managed data.

Initial phases of the lifecycle should be implemen-
tation-independent, when the respective analysis is
not burdened by any implementation constraints or
decisions. Costs of analysis of the application domain
depend mainly on the complexity of the application
domain itself and they are almost independent on
the way of a design and an implementation of the
application. Because an implementation method does
not substantially influence the costs of the analysis,
the analysis need not be considered for comparison
of prospective implementation methods.

Costs of the development phase considerably depend
on the complexity of the problem domain itself, but
also on the used implementation technologies. The
costs consist namely from identification and design
of all possible branches of application functionality
and of a design of its logical algorithms.

It is possible to quantitatively distinguish two types
of design works with respect to whether it is needed
to design in detail a number of smaller branches of
functionality (according to the used method) each of
them solving one branch of application functionality

Application

Programme facilities

RDBMS

Data management

Application logic

Figure 1. Schematic picture of an internal structure of the
developed software application

86 AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92

(a concretised action or operation), or whether the
design has a character of creation of more universal
instruments, which will be capable to solve a broader
range of application functionality branches.

In the first case, the design has a character of creation
of rather greater number of more-or-less repeating
simple algorithms and it is possible to achieve almost
the implementation using proper design instruments,
like various CASE tools.

In the second case, we should first create the men-
tioned universal mechanism and then develop its para-
metric description allowing it to achieve the desired
functionality. The development in this case has the
character of creation of a smaller number of more
complex algorithms and then of working out an abstract
parameterisation. The abstractness of the designed
algorithms and their parameterisation is proportional
to their expected generality and universality.

In spite of difficulties with the objective quantifica-
tion of the design phase, the coarsest quantification
is the amount of the spent time. But this measure
does not take into account the character of the task,
the experience of designers, etc. The character of
the task can be taken into account e.g. by means of
so-called coefficient of complexity, which grows with
the increased complexity and by which the rough
quantification should be multiplied. No direct method
exists for obtaining correct values of this coefficient,
but the concrete values are usually determined on
the basis of experience.

Costs of the implementation phase depend on the
used implementation method still more distinctively
than in the design phase. In contrast to the previ-
ous design phase, the costs of the implementation
phase could be quantified e.g. with regard to the
scope (number of lines of a programme code). But as
before in the design phase, also here it is necessary
to take into account the variable complexity of cre-
ated programme code with regard to use of different
implementation methods.

Costs of the testing phase have a similar depen-
dence on the used implementation method as two
preceding phases had. It is possible to quantify costs
of this phase (for the purposes of comparison of dif-
ferent alternatives) e.g. by the number of programme
branches, which should be checked and tested in
individual alternatives. A different complexity of
tested programmes, when using different imple-
mentation methods, could be again expressed by
the coefficient of complexity.

Costs of the whole development of the initial func-
tionality can be obtained as the sum of costs of given
activities during individual phases of the develop-
ment lifecycle.

Maintenance and further development costs
– MDC

Most of applications pass more than one passage
through the main cycle of development of a certain
new compact functionality. The literature, which deals
with development and design of software projects
(e.g. Horowitz 1978, Kingston 1990, Wirth 1976 etc.),
presents many good reasons, why any software product,
which is larger than a school task, cannot be created
during one development cycle. It is necessary to take
this fact into account when realizing any software
work and to count with it since the first phases of a
lifecycle, when strategic decisions concerning used
technologies were adopted. The used implementa-
tion technology can radically influence labour con-
sumption of the following development cycles of this
software work.

Equally as in the previous paragraph, which dealt
with costs of the development of the initial application
functionality, costs can be decomposed to the costs of
individual partial phases (analysis, design, implementa-
tion and testing) also in the case of maintenance and
mainly in the case of extending an overall function-
ality. Analogically with the previous paragraph, we
shall separate the costs associated with storing and
processing of data from costs associated with other
parts of the development process.

Similarly as in the case of development the initial
functionality, also here the phase of analysis depends
above all on the complexity of the problem itself and
is almost independent on the used implementation
method. That is why it can be again neglected.

The design and elaboration of the solution is a very
important phase for comparing costs and labour in-
put of different implementation methods. Costs and
labour input of this phase distinctively depend on the
selected implementation method and on character of
intended changes and on extending of functionality.
Small changes of functionality have a rather additive
character, i.e. adding a new functionality without
changing the existing one. Then the dependence of
costs on selected implementation method need not
be strong. In the case when proposed changes of
functionality might have a stronger influence also on
the existing functionality or they have a multiplica-
tive character (when a small change of functionality
caused a multiple growth of complexity), then costs
and labour input are strongly dependent on the used
implementation method.

Although the quantitative assessment of the design
phase is rather difficult, the relative size of areas
touched by some change with respect to the total
size of the application can serve as one of possible

AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92 87

criteria. The detected extent of changes should be
still corrected by the coefficient of complexity, as
mentioned in previous cases.

Costs and labour input for implementation of chang-
es depend directly on the implementation method. In
a non-appropriately chosen implementation method,
each change of functionality of the whole applica-
tion can cause changes in functionality of the data
management part. But in other cases, majority of
later modifications need not project itself to the data
management part.

Costs and labour input for debugging and testing of
a new functionality are proportional to the size and
character of changes, which happened in the previous
step. Thus, the same rules hold for this phase as for
the phase of implementation.

Total costs of the maintenance and extension of
application functionality are again the sum of costs
of individual phases of the lifecycle. The later phases
have the main contribution to the total costs.

Runtime efficiency

Previous two paragraphs dealt with economic aspects
and measures, which should be taken into account
in considerations concerning a technology used for
creation of the application and also concerning the
question, how these measures depend on the used
implementation methods. The aspect depicted in
this paragraph has also its economic dimension, but
its principal dimension is the usability or non-us-
ability of the created application in real operational
conditions.

When thinking about a runtime efficiency of the cre-
ated application, or of data storing and management,
respectively, it is necessary to examine requirements,
which each method lays on the storing of the expected
volume of input data. On the basis of the way of data
storing used by the particular implementation meth-
od, it is then still necessary to examine the principal
complexity of the most often used operations, which
would be performed on the data (selective selections,
mass selections, comparison, modification, etc.). When
considering the capacity and computational complexity
of the compared methods, it is still necessary to take
into account not only requirements on data storing, on
processing, on the volume and complexity considered in
the beginning of the design, but also the dependence of
the mentioned features on the possible increase of the
volume and complexity of input data. Underestimation of
the runtime efficiency might bring considerable troubles
for the future real use of the developed application and
can also ruin invested resources and means.

Evaluation of aspects

The necessary step in assessment of individual as-
pects is to choose some descriptive formalism that
allows to quantify the problem itself and also to quan-
tify the compared methods. According to the selected
observed aspects, we had to quantify costs of the initial
development of application, costs of its maintenance
and extending and modifying its functionality as one
type of quantitative aspects. The runtime performance
of the developed application should be considered as
another type of quantitative aspect.

The first mentioned type of quantification is based
on the character and the quantity of the program code
necessary to fulfil the required functionality of the
application. The more program code is necessary, the
higher are the costs for its initial development and
further maintenance. On the other hand, the more
complex the program code is, the more qualified (and
probably the more expensive) development staff is
needed. From another point of view, the more general
and universal the program code is, the easier and
cheaper is its adapting to different functionality and
implementing changes, with respect to the program
code designed tightly to the given problem.

The second mentioned type of quantification is based
on the quantity of raw data stored in the database and
mainly on the type of operations used to access and
manage the data. The more data (data rows) have to
be stored in the database, the more time is probably
needed to store and maintain it. On the other hand,
the better and more efficient operations are used to
store and manage the data, the more efficient this
management is.

In order to evaluate the amount and character of
the program code, we first have defined the mapping
between individual required functionalities of the
application logic (application logic branches) and
between the different branches of the program code
that implements the functionality. We also have de-
fined some groups of changes to the application logic
and consequently to the program code that may be
necessary to implement. The groups were:
– Additive changes, i.e. changes that imply only add-

ing some new parts to the existing application logic
or program code or cause only a small scale and
localized change to the existing application logic
and the program code.

– Multiplicative changes, i.e. changes that imply mas-
sive extension or change to a considerable part of
the application.
Having this grouping, then it is possible to estimate

the character of changes in different stages of the ap-
plication lifecycle (initial development, further extend-

88 AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92

ing, maintenance, deploying to another domain, etc.)
for applications developed using individual compared
development methods. An important aspect that acts
against the raw work complexity (the raw requirements
to create or modify given number of program code
branches and lines) is the character of the code. It
should be, therefore, distinguished whether the code
is straightforward and easy to mentally manage (and
thus not requiring any specially qualified development
staff) or contrary, whether it is complex with complex
internal relations difficult to mentally manage and thus
requiring the ability of an abstract thinking.

In order to evaluate the runtime efficiency of the
developed application, it is necessary to estimate the
raw volume of data (number of data rows) that need
to be stored in the database. A formal set description
applied to the data model (even very complicated)
provides a good apparatus for estimation of data that
should be stored and further processed. Making a list
of the most typical and the most frequent operations
with data is the next step in quantifying and estimating
the runtime efficiency of the application. For example,
the list of operations can contain:
– Selection of one value of one attribute
– Selection of all historical values of one attribute
– Selection of actual values of all attributes of one

row
– Selection of all valid combinations of attributes in

one row
– Selection of actual values of all attributes in a pa-

rameter table
– Etc.

The raw volume of data itself usually does not cause
any big problem, because the contemporary relational
databases can handle huge volumes of data. But the
different implementation methods employ different
algorithms for selected operations and this can imply
differences in theruntime efficiency by many orders.

CONSIDERED IMPLEMENTATION METHODS
OF DATA STORING AND MANAGEMENT

For purposes of the basic comparison of proper-
ties of various alternatives of implementing software
application, we shall consider the following three
implementation methods of data storing and man-
agement:
– General object method
– Fixed data structure
– Dynamic relational data storing

The main idea of the general object method is to
achieve maximum accuracy of the stored model with
possibility to store the model of the subject system in

full generality and in the natural form as individual
objects and associations between them. The main
objective of this approach is:
– To store logical model of the subject system in the

full generality
– To enable maximum independence of application

on the concrete application domain and
– To enable maximum flexibility of application with

respect to changes of the application domain
The general object method is universal and capable

to store and process an arbitrary system of objects by
means of a rather simple transformation. The applica-
tion logic significantly dominates over data manage-
ment in the programme facilities (Figure 1). That is
why the part of the application for data management is
relatively simple. There is also a clear boarder between
both parts of the application thanks to the universality
of the transformation. In this case, the boarder has
the shape of universal functions of the type:
– Select values of one attribute of certain object
– Select previous (historical) values of the given at-

tribute of certain object
– Select values of all attributes of certain object
– Select all neighbour objects to the certain object
– Modify value of the selected attribute of the selected

object
– Modify associations between objects
– Recognize history of selected associations
– Etc.

The main advantage of the general object method is
its generality and universality. The application develop-
ment complexity is proportional mainly to the scope
and complexity of the application domain. Complexity
of all development phases rapidly decreases in the later
phases of the application life. It is also relatively easy
to implement the developed application to another
application domain.

A considerable disadvantage of the general object
method is a poor operational efficiency of applica-
tions based on this method. This feature limits the
potential usability of such applications only to the ap-
plication domains of rather small size. The capability
of abstract thinking of all project-team members and
non-existence of suitable development tools for crea-
tion, management and debugging of a logical model
of the application domain are another disadvantages
of this method. But these disadvantages are usually
less important with respect to the poor operational
efficiency of the created applications.

The general object method is suitable only for man-
agement of application domains of small size but with
a possibly variable data structure.

The main idea of the fixed data structure method
is to achieve maximum operational efficiency of the

AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92 89

created application. Storing and management of the
logical model of the subject system with use of the
fixed data structure consists in building a primary
transactional information system in a “classical” way.
This way and approach of building primary informa-
tion systems is sufficiently described in numerous
references dealing with building information systems
and designing database structures. Therefore, we
shall mention only the most important characteris-
tics and will introduce relationships with approaches
used in other compared methods of data storing and
management.

In the case of the fixed data structure, the data part
of the subject system is described by a normalized E-R
model (consisting of entities and their relationships).
Entities are then stored as tables in the host relational
database. The subject system is functionally described
by a set of algorithms, which process the individual
entities and their relationships. Implementation of the
developed application (information system) in another
application domain is not usually supposed.

The main objective of this method is:
– To utilize all possibilities of the host database en-

gine
– To enable maximum operational efficiency of ap-

plications based on this method using relational
processing of stored data.
The data management part occupies a considerable

part in programme facilities and the boarder between
the application logic and data management is not
sharp (Figure 1). The fixed data structure method
has a great specificity with respect to the given ap-
plication domain. This causes a lower flexibility but
higher operational efficiency. The structure of the
host database for application based on the fixed data
structure reflects the subject application domain,
it has the character of mutually interconnected ap-
plication-specific tables and usually it is impossible
to generalize it. But thanks to this arrangement, it is
possible to optimise individually the branches of data
management and to achieve maximum performance
and efficiency. With use of the potential of relational
technology, the following types of requirements can
be effectively solved:
– Select all attributes of the given entity
– Select all historical combinations of attribute values

of the given entity
– Select all attribute values of the given entities set

or all entities
– Select all neighbour entities to the given entity
– Compare attribute values for the given entities
– Find history of the selected relationships
– Modify values of selected attributes of the given

entity

– Modify relationships between the entities
– Etc.

The main advantage of the fixed data structure
method is achieving maximum operational efficiency
of developed application by means of utilisation of
properties of the host relational database engine and
by means of the individual optimisation of each opera-
tion. It dedicates this method for applications, which
have huge data amounts in their database.

Another advantage is a relatively easy development
of the initial functionality of the application. Although
a raw laboriousness is proportional to the scope of
the application domain, it is possible to use the ex-
isting development tools and also the experience of
designers who are used to development of “classical”
information systems and this development does not
require any abstract work.

The principal disadvantage of the fixed data structure
method is its rigidity towards changes of structure of
the application domain. Even though the development
of an initial functionality is relatively easy, there is a
high difficulty of later adjustments, which still tend
to increase with growing number of branches of ap-
plication logic. This disadvantage is vital for the future
life of the developed application.

The fixed data structure method is suitable only
for application domains, which have a relatively little
diverse structure, which moreover practically does
not change. But an application domain can be very
large as to the data volume.

The general object method and the fixed data struc-
ture method represent two extreme alternatives of
the implementation method. Numerous compromise
alternatives exist between these two extremes, each
of them can approach one or the other extreme and
can resolve some of their main weaknesses and try
to preserve their advantages to some extent. The dy-
namic relational data storing method (Vrána 2003) is
such a compromise alternative, which tries to achieve
maximum flexibility (with respect to changes of the
application domain) whilst keeping a high operational
efficiency taking advantage of the maximum utilisa-
tion of properties of the host relational database en-
gine. Analogically as in the case of the general object
method, the logical model describes the data structure
of the application domain. This logical model is trans-
formed to a similar form to the logical model of the
application domain used by the fixed data structure
method, i.e. to the system of entities and relations.
The transformed logical model is stored in a general
form of metadata in a special separated part of the host
database and becomes a substantial element of the ap-
plication behaviour. It is its meta-description or meta-

90 AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92

programme. Based on the stored meta-description, a
relational structure of specific tables and associations
is dynamically generated in the host database. This
structure practically corresponds to the structure of
specific tables and associations firmly created by the
fixed data structure method. The dynamically created
specific relational structure is further queried by SQL
queries, which are dynamically composed from the
given request and the meta-description. Processing of
the SQL query can fully utilize properties of the host
relational database engine.

In this way, the dynamic relational data storing
method combines advantages of both extreme ap-
proaches in such a sense that in every moment data
is stored in the fixed “native” relational data structure
in which they can be effectively processed but it is
always possible to change the data structure and thus
the behaviour of all application simply by changing
the meta-description without any intervention to
the programme code. Therefore, the main objective
of this method is:
– To store the logical model of the subject system in

full generality
– To enable maximum independence of applications

on the concrete application domain
– To enable maximum flexibility against changes of

the application domain;

and simultaneously:
– To store data of managed system utilizing all possi-

bilities of relational technology of the host database
engine

– To enable maximum operational efficiency of ap-
plications utilizing relational processing of the
stored data.
Application based on the dynamic relational data

storing has a structure, which is similar to applications
based on the general object method. Also application
logic dominates over data management in programme
facilities and the boarder between these two parts is
sharp (Figure 1). Interface between them is created
by general functions of the type:
– Select values of certain attributes of all objects,

which satisfy the given criteria
– Select all objects, which are neighbours to objects

satisfying given criteria by associations with the
given properties

– Modify values of selected attributes of the specified
objects

– Modify associations between objects
– Determine history of selected associations
– Etc.

General operations of the SQL language provide
the mentioned basic functions to the superstructure

application logic, i.e. an arbitrary entity filtering,
entity projection, entity joining, modification of val-
ues, etc.

The dynamic relational data storing combines the
main advantages of both extreme methods and elimi-
nates their disadvantages. Its generality enables to
create applications, which are very general and inde-
pendent on the concrete application domain, which also
have very little requirements on further maintenance
and extension. These features predetermine utilisa-
tion of the dynamic relational data storing method in
application domains, which rapidly and often change
their structure. Once developed applications are still
capable of a relatively easy implementation in other
application domain.

By principle, relational data storing and processing
moreover gives to these applications excellent proper-
ties from the point of view of operational efficiency
and predetermines this method for utilisation in the
data and structure very extensive large application
domains.

The main disadvantage of the dynamic relational
data storing is an excessive abstractness of algorithms
of applications and necessity to develop and maintain
metadata. Both these disadvantages manifest them-
selves in increased requirements on the qualification
and skills of the development team.

The dynamic relational data storing is a method,
which is very suitable for building an application
dedicated to manage a large and quickly changing
application domain. Once developed application can
be with little costs implemented in much a smaller or
less dynamic application domain.

COMPARISON OF DESCRIBED
IMPLEMENTATION METHODS

Let us briefly summarise and compare the basic
properties of the described three methods for data
storing and management. For simplicity, we shall
denote them as GOA, FDS and DRD, which stand for
the General Object Method, the Fixed Data Structure
Method and the Dynamic Relational Data Storing
Method. Concrete properties of individual meth-
ods depend on character of an application domain.
Therefore, for the purpose of this comparison, let
us consider a management of large and complex
technological network of a mobile phone operator
as a uniform application domain for all considered
methods. Besides aspects of data complexity, i.e.
number of records in the host database needed to
store a subject data system and a ratio of number of
data records with respect to metadata records, we

AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92 91

shall also consider the aspects of operational effi-
ciency and overall performance. We are particularly
interested in time, during which the system based
on a certain method is able to process a certain type
of a query.

For comparison of the discussed implementation
methods we shall use the following criteria, which
are split into three groups:
– Aspects related to application development

– Initial development costs (IDC)
– Maintenance and further development costs

(MDC)
– Aspect, which express static complexity of the ap-

plication
– Metadata overhead (MDO)

– Aspects, which reflect dynamic complexity of ap-
plication (runtime efficiency)
– Complexity of selection of one value of one at-

tribute (SASV)
– Complexity of selection of all historical values

of one attribute (SAMV)
– Complexity of selection of actual values of all

attributes of one row (MASV)
– Complexity of selection of all valid combinations

of attribute values in one row (VCA)
– Complexity of selection of actual values of all

attributes of the given parameter table (AVA)

This list contains still further aspects in addition
to the basic ones described in the charter Relative
assessment of quality of computer applications. The
overall overview of properties of individual methods
in their mutual relationships is depicted in the radar
diagram in Figure 2.

The semantic of individual axes of the graph in
Figure 2 (or individual assessment aspects) is such that
the smaller the value is (closer to the centre) the better
is the given implementation method in this aspect.
Since individual aspects are not equally important,
the bold axes indicate the most important aspects.

It clearly follows from the graph, that the GOA
method has the best properties in IDC and MDC
aspects, which express the development complexity
of applications (i.e. complexity of the initial function-
ality development and of maintenance). In all aspects
SASV, MASV, SAMV, VCA and AVA, which express
the runtime efficiency (particularly in cases of the
most frequently used operations) the GOA method
exhibits fatal imperfections, which practically exclude
it from any real use.

In contrast to the GOA method, the second com-
pared FDS method exhibits excellent properties mainly
in runtime efficiency. For the FDS method, the vast
majority of operations could be performed in an easy
and efficient way. But this high operational efficiency
is paid for by a high development complexity IDC and
particularly a high complexity of maintenance and of
further evolvement MDC. The FDS method is also
practically disqualified due to these shortcomings.

It is clearly seen from the graph that the DRD method
is just slightly worse than the FDS method in runtime
efficiency and at the same time, the DRD method is
better by orders than the GOA method in these as-
pects. In aspects of development complexity, the DRD
method is just slightly worse than the GOA method
(which is the best in these aspects), but the DRD is
far better than the FDS method. The DRD method
asymptotically keeps excellent properties from both

MDO SAMV
VCA

MDC

IDC

SASV
MASV

AVA

GOA
FDS
DRD

Figure 2. Radar diagram graphically describes
properties of individual implementation
methods

92 AGRIC. ECON. – CZECH, 51, 2005 (2): 84–92

compared extreme methods and also eliminates their
very poor properties, which practically disqualify
these extreme methods from real utilisation in the
considered type of critical applications.

CONCLUSION

The described method of assessment is suitable for
evaluation of basic qualitative properties of several
alternatives of solution to the software applications.
The good solution can be distinguished from the poor
solution in this way. Some parameters could be only
a qualified estimate. Similarly to other methods, this
method does not provide an exact quantitative expres-
sion of properties of individual alternatives. Therefore,
it does not suit for a fine recognition of the quality of
similar solutions. But the accuracy of our assessment
method and also properties of the DRD method itself
and related theoretical results of the comparison were
proven in commercially successful large applications
including data warehouse for the statistics of pension
assurance in the Czech Republic and the application
supporting configuration management of the mobile
phone network of the Czech greatest mobile operator
Eurotel (Vrána 2002). The same approach can be used
in many other application domains, e.g. in:
– Management of large and complex technological

networks
– Management of a distributed controlling system
– Management of large trading and food supply

chains
– Modelling and management of distributional and

pipelining networks
– Modelling and management of trading and logistic

networks

– Modelling, management and exploring dependen-
cies in economic and other processes

– Etc.

REFERENCES

Aho V. (1974): The design and analysis of computer
algorithms. Addison-Wesley.

Aho V. (1983): Data structures and algorithms. Ad-
dison-Wesley.

Flaatten P.O. (1991): Foundation of Bussiness Systems.
Andersen Consulting, The Dryden Press; ISBN
0-03-076481-5.

Greene D.H. (1981): Mathematics for the analysis of
algorithms. Boston, Birkhauser.

Horowitz E. (1978): Fundamentals of computer algo-
rithms. Potomac, Md, Computer Science Press.

Kingston J.H. (1990): Algorithms and data structures:
Design, correctness, analysis. Sydney, Addison-
Wesley.

Vrána J. (2002): Methods of employing metadata for
managing large systems. DATESO’02 –Proceed-
ings of Workshop on Databases. Ostrava: 44–56;
ISBN 80-248-0080-2.

Vrána J. (2003): Dynamic relational data storing
method for management of large data systems.
[Doctoral dissertation.] Czech University of Tech-
nology, Prague.

Vrana I., Vrána J. (2004): Metody porovnávání vlast-
ností informačních systémů (Methods of com-
parison of properties of information systems).
Agrarian perspectives, CUA Prague.

Wirth N. (1976): Algorithms + data structures = pro-
grams. Englewood Cliffs, N.J., Prentice-Hall.

Arrived on 3rd January 2005

Contact address:

Prof. Ing. Ivan Vrana, DrSc., Česká zemědělská univerzita v Praze, Kamýcká 129 00, 16521 Praha 6-Suchdol,
Česká republika
tel.: +420 605 474 137, e-mail: vrana@pef.czu.cz
Dr. Ing. Jan Vrána, Komix a.s., Holubova 1, 150 00 Praha, Česká republika
tel.: +420 604 366 463, e-mail: vrana@komix.cz

