文章编号:0253-2409(2013)11-1356-05

水热法 Fe-Mn 催化剂制备及其合成气制低碳烯烃催化活性

马利海,张建利,范素兵,赵天生

(宁夏大学省部共建天然气转化国家重点实验室培育基地,宁夏银川 750021)

摘 要:以水热合成法制备了 K 原位改性的 Fe-Mn 催化剂,考察了其 CO 加氢合成低碳烯烃催化活性。采用 SEM、TEM、 XRD、H₂-TPR 和 FT-IR 等手段对催化剂进行了表征。结果表明,制备的催化剂前驱体呈 50~70 nm 的球形颗粒,表面富含羰 基和羟基,物相组成以 Fe₃O₄ 为主,用于反应后有 Fe₅C₂ 和 MnCO₃ 相生成。与共沉淀法制备催化剂相比,在设定的反应条件下,不同 K 含量改性的催化剂均具有较高的活性,以原料配比 Fe:Mn:C₆:K=3:1:5:0.10 的催化剂性能最佳,CO 转化率达 95.02%,总低碳烯烃收率为 62.86 g/m³(H₂+CO),CH₄ 和 CO₂ 选择性分别为 13.88% 和 13.98%。

关键词: Fe-Mn 催化剂; 水热法; CO 加氢; 低碳烯烃

中图分类号: O643 文献标识码: A

Preparation of Fe-Mn catalyst by hydrothermal method and its catalytic activity for the synthesis of light olefins from CO hydrogenation

MA Li-hai, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng

(State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China)

Abstract: A series of potassium modified Fe-Mn catalysts were prepared by hydrothermal method and applied to the catalytic synthesis of light olefins from CO hydrogenation. The catalyst samples were characterized by SEM, TEM, XRD, H₂-TPR and FT-IR techniques. Results showed that the prepared sample particles were spherical with 50 ~ 70 nm size and the carbonyl and hydroxy groups were observed on their surfaces. The bulk composition was mainly Fe₃O₄ before the reaction. Fe₅C₂ and MnCO₃ were formed after the reaction. The prepared samples showed high activity and olefin selectivity under the given reaction conditions. Using the sample S₃(Fe:Mn:C₆: K=3:1:5:0.10), the CO conversion and the olefin productivity reached 95.02% and 62.86 g/m³(H₂+CO), respectively. Compared with the catalyst prepared with co-precipitation method, the S₃ catalyst had lower CH₄ selectivity(13.88%) and CO₂ selectivity(13.98%).

Key words: Fe-Mn catalyst; hydrothermal method; CO hydrogenation; light olefins

低碳烯烃是重要的石化原料,主要来源于石油 裂解过程副产物。随着石油资源的日益减少,非石 油路线制低碳烯烃受到重视。合成气直接制低碳烯 烃(STO)是业界关注的路线之一^[1]。但是由于受 Anderson-Scholz-Flory(A-S-F)产物分布的限制, STO产物中低碳烯烃的选择性较低^[2]。Fe-Mn 催 化剂对 CO 加氢制低碳烯烃反应具有较高的活 性^[3~7],但是产物中 CO₂和 CH₄的选择性较高。研 究者围绕产物分布控制、提高烯烃选择性、抑制 CO₂、CH₄生成开展了持续研究。激光热分解法制 备的碳化铁超细粒子显示了较高的催化活性和较好 的产物分布^[8],丙烯在气相产物中的平均物质的量 分数为 67.3%。碳负载金属催化剂,组分分散于碳 基体中,提高了 Fe 的分散度,可提供限定、择形的环 境、抑制长链碳氢化合物生成,提高低碳烯烃选择 性,如 Fe/CNF(carbon nanofiber)催化剂对 CO 加氢 生成 $C_2^{=} \sim C_4^{=}$ 选择性达到 52%^[9];水热法制备的 Fe_xO_y@C 催化剂,产物组成中 C_{2~4}和 C_{5~12}的选择 性分别达 30%和 40%,用于费托合成反应,产物分 布得到了改善^[10]。

糖类水热碳化法合成材料,产物粒径大小可控、 均匀,但是用于 CO 加氢研究报道较少。本实验以 葡萄糖为碳源,水热法制备了 K 原位改性的碳和金 属氧化物复合物 Fe-Mn-K 催化剂,对其结构以及 CO 加氢合成低碳烯烃催化性能进行了研究,具有 良好的烯烃选择性和稳定性。

1 实验部分

1.1 催化剂的制备

水热合成:按设定组成配比,分别称取所需量 Fe(NO₃)₃·9H₂O、Mn(NO₃)₂(50%)溶液、葡萄糖

收稿日期: 2013-02-28;修回日期: 2013-04-14。

基金项目:国家重点基础研究发展规划(973 计划, 2012CB723106)。

联系作者: 赵天生, E-mail: zhaots@nxu. edu. cn; 张建利, E-mail: zhangjl@nxu. edu. cn; Fax: 0951-2062323.

和 K_2 CO₃ 原料, 配成浓度为 2 mol/L 溶液, 转入 500 mL带聚四氟乙烯内衬的水热釜中, 于 180 ℃晶 化 4 h, 室温冷却至 80 ℃干燥 4 h、120 ℃干燥 8 h, 20 ~40 目造粒。按组成配比 Fe: Mn: C₆: K = 3:1:5: *n* (*n*=0、0.05、0.10、0.15、0.25), 分别记为 S₁、S₂、S₃、 S₄和 S₅。

共沉淀:按照配比,称取 Fe (NO₃)₃·9H₂O 37.6g,Mn(NO₃)₂溶液(50%)11.1g,量取 NH₃· H₂O (25%,质量分数)溶液 50 mL,分别配制成 200 mL溶液,并流沉淀,控制 pH 值为11,搅拌4h, 静置12h,过滤、洗涤,于120℃干燥12h,450℃焙 烧1.5h;按催化剂组成配比 Fe:Mn:K = 3:1:0.10, 称取一定量 K₂CO₃ 浸渍,20~40 目造粒。记为 S₆。

1.2 催化剂的表征

SEM 表征在 JEOL-JSM-7500F 场发射扫描电 镜上进行,电压 3.0 kV; TEM 表征在 HITACHI H-7650 型透射电镜上进行,采用无水乙醇为溶剂,对 样品进行超声振荡,使其颗粒分散均匀,置于经过处 理的铜光栅上观察,加速电压 80 kV。

IR 表征在 Bruker Tensor-27 型光谱仪上进行, KBr 压片,样品与 KBr 比例=1:100,30 MPa 压片, 400~4000 cm⁻¹扫描。

XRD 测试在 Rikagu D/MAX2200PC X 射线衍 射仪上进行,Cu Kα特征线,光源波长λ=0.154 nm, 管电压 40 kV,管电流 30 mA,Ni 滤光片,5°~85°扫 描,扫描速率 8°/min,步宽 0.02°。

H₂-TPR 在 TP-5080 多用吸附仪上进行。50 mg 催化剂置于石英管中, He (30 mL/min) 气氛下 350 ℃吹扫1h,降至室温,切换至5% H₂-N₂ 气氛 (30 mL/min),以10 ℃/min 的升温速率升至设定温 度,同步记录还原曲线。

1.3 催化剂的评价

采用小型固定床反应器。催化剂首先 H_2/CO 比为 2、500 h⁻¹ 气氛下, 于 0.1 MPa、280 ℃还原 12 h。然后在设定的反应条件 320 ℃、1.5 MPa 下 进行反应 170 h。气相产物组成采用在线色谱(GC-9560-I)分析,分别采用 TDX-01 柱(2 m)和毛细管 $Al_2O_3 柱(50 m)分析 C_1 组分和 C_{1~5} 经;液相产物$ 每 24 h 进行收集,采用离线色谱(GC-9560-II)分析,分别采用 GDX-401 柱(2 m)和毛细管 SE-30 柱(30 m)分析水相和油相产物。

- 2 结果与讨论
- 2.1 形貌表征

图 1 为 S₃ 的 SEM 照片,制备的催化剂颗粒堆 积成团。本实验采用葡萄糖作为催化剂制备原料, 随着炭化步骤的进行,催化剂中的羟基官能团不断 发生脱水并缩聚,形成的胶体碳球表面显负电性,通 过静电作用不断吸附 Fe³⁺、Mn²⁺等原料阳离子,葡 萄糖分子在酸性、金属盐作用下,炭化加剧,产物出 现交联、堆积^[11]。

图 1 催化剂 S₃ 的 SEM 照片 Figure 1 SEM image of the catalyst S₃

图 2 为样品 S₃ 的 TEM 照片。由图 2 可知,制 备的样品经过分散后,颗粒大小均匀,呈椭球性,粒 径在 50~70 nm,呈碳包覆金属氧化物结构^[12]。

图 2 催化剂 S₃的 TEM 照片 Figure 2 TEM image of the catalyst S₃

2.2 FT-IR 表征

图 3 为不同催化剂的 FT-IR 谱图。由图 3 可以 看出,波数为 3 300、1 027 cm⁻¹对应的吸收峰归属于羟 基,波数为 1 700 cm⁻¹处的吸收峰归属于羰基(C=O) 的振动吸收峰,1 300 cm⁻¹吸收峰对应于共扼烯烃骨 架振动。随着制备催化剂中 K 含量的增加,羟基振 动吸收峰宽化。表明制备的微球样品表面保留了葡 萄糖分子的部分官能团,如羟基等。同时由于水热 制备过程中,葡萄糖分子之间发生脱水、聚合、交联, 经炭化形成富碳多聚糖类产物,形成碳碳单键和 双键^[13]。

2.3 物相表征

反应前制备催化剂的 XRD 谱图见图 4。由图 4 可知,不同 K 含量改性的催化剂,均有 Fe₃O₄ 物相 生成,在 22.4°出现了碳的衍射峰^[12],S₃ 相对其他 催化剂碳衍射峰较弱。

还原以及反应后催化剂的 XRD 谱图见图 5。 由图 5 可知, Fe₃O₄ 相的衍射峰强度增强, 伴有 Fe₅C₂ 晶相生成^[14], Mn 以 FeO-MnO 物相和 MnCO₃相存在。MnCO₃物相的生成,可分散 Fe 活 性中心,抑制碳链增长和烯烃进一步加氢^[15]。

图 5 反应后催化剂的 XRD 谱图 Figure 5 XRD patterns of the catalysts after reaction ▼: Fe₃O₄; ●: FeO-MnO; ◆: MnCO₃; ⊽: Fe₅C₂

2.4 H₂-TPR 表征

图6为不同制备方法制得催化剂的 H₂-TPR 谱图。

Figure 6 H_2 -TPR profiles of the catalysts

由图 6 可知,还原曲线存在显著差别。共沉淀 催化剂(S_6)存在三个还原峰, α - Mn_2O_3 受热力学限 制很难一步还原为 MnO,在 350 ℃出现 Mn_3O_4 还原 峰,在 495 ℃左右出现了 (Fe,Mn)_3O_4 还原为铁酸 盐的耗 H₂ 峰,在 600 ℃左右的还原峰归属于立方 FeMnO₃ 还原为铁酸盐的耗 H₂ 峰^[16];水热合成法 制得的催化剂受碳组分的影响,在 400 ℃ α -Mn₂O₃ 相渗入到 Fe₃O₄ 相形成了 Mn₂O₃-Fe₃O₄ 固溶体,第 一还原峰(400~450 ℃)是 Mn₂O₃ 和 Fe₃O₄ 固溶体 的还原,第二还原峰(520 ℃左右)是 Fe₃O₄ 固溶体 的还原。集二还原峰(520 ℃左右)是 Fe₃O₄ 还原为 FeO 的还原峰,在 645 ℃出现了负峰,与未完全炭化 的有机体在高温下分解有关。S₃ 催化剂在高温区 的还原温度低于 S₆催化剂,表明无机碳的生成使活 性组分分散度增强,降低了还原温度。

2.5 CO 加氢性能

表1为不同催化剂 CO 加氢反应的催化活性结 果。其中,S₁(K未修饰)、S₂、S₃、S₄和S₅为水热法 合成催化剂,S₆为共沉淀法合成催化剂。两种方法 制备的催化剂在给定反应条件下均具有较高的活 性,且K改性后显著提高了低碳烯烃选择性,降低 了CH₄选择性,C₅的含量增加。以原料配比为Fe: Mn:C₆:K=3:1:5:0.10 制备的催化剂(S₃),烯烃选 择性较高, O/P 值为 3.06, 总烯烃收率达 62.86 g/[m³(CO+H₂)], CH₄及 CO₂选择性分别 为13.88%和13.98%, 与经相同K含量改性的S₆ 相比, $C_2^{=} \sim C_4^{=}$ 烯烃含量从34.70%提高到37.31%。 表明水热合成制备的催化剂中, 金属氧化物被含碳 物质隔离开, 在高温高压下保持纳米颗粒不过度长 大, 同时碳热反应还原氧化铁, 提高活性相组分^[8], 有利于烯烃的生成。

表 1 制备催化剂的 CO 加氢反应催化活性 Table 1 Catalytic performance comparison of the prepared catalysts

						-	-	-	-	
Sample	CO conversion	Product w/%					Carbon Sel. s/%		Productivity($g/(m_{CO+H_2}^3)$)	
	x/%	CH ₄	$C_2^{=} \sim C_4^{=}$	$C_{2}^{0} \sim C_{4}^{0}$	C_5^+	0/ F	CO ₂	CH ₄	$C_2^{=} \sim C_4^{=}$	C_5^+
S ₁	95.23	34.35	23.68	31.26	10.70	0.76	26.33	23.19	33.76	15.26
S_2	96.23	18.45	34.34	11.87	35.34	2.89	13.76	13.65	58.10	59.80
S_3	95.02	18.76	37.31	12.21	31.71	3.06	13.88	13.98	62.86	53.41
\mathbf{S}_4	96.49	19.14	34.83	12.46	33.57	2.80	12.14	14.71	61.31	59.09
S_5	95.04	17.95	31.73	11.96	38.35	2.65	13.43	13.37	53.29	57.61
S_6	92.44	24.09	34.70	15.97	25.73	2.17	21.93	16.91	55.28	40.19

reaction conditions: $H_2/CO=2$, GHSV=500 h⁻¹, t=320 °C, p=1.5 MPa; O/P: $C_2^= \sim C_4^=/C_2^0 \sim C_4^0$

3 结 论

水热法制备的 Fe-Mn 催化剂,具有较高的 CO 加氢活性,经 K 改性后,产物烯烷比和 $C_2^{=} ~ C_4^{=}$ 烯烃 收率显著提高,CO₂ 和 CH₄ 选择性较低,较共沉淀 催化剂在产物分布方面有显著改善。碳热反应过程 促进了氧化铁还原为 Fe_3O_4 ,反应后 Fe_3O_4 衍射峰强 度增强,伴有 Fe_5C_2 、FeO-MnO和MnCO3物相生成; 同时无机碳的生成使活性组分分散度增强,降低了 还原温度,提高了催化剂的催化活性和稳定性。

参考文献

- [3] RAJE A P, DAVIS B H. Fischer-Tropsch synthesis over iron-based catalysts in a slurry reactor reaction rates, selectivities and implications for improving hydrocarbon productivity[J]. Catal Today, 1997, 36(6): 335-345.
- [4] YANG Y, XIANG H W, ZHANG Y L. A highly active and stable Fe-Mn catalyst for slurry Fischer-Tropsch synthesis [J]. Catal Today, 2005, 106(12): 170-175.
- [5] ZHOU J, CHU W, ZHANG H, XU H, ZHANG T. Effect of Fe content on FeMn catalysts for light alkenes synthesis [J]. Nat Gas Chem Ind, 2008, 2(3): 315-318.
- [6] YANG Y, XIANG H W, XU Y Y, LI Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2004, 266(2): 181-194.
- [7] NING W S, KOIZUMI N, YAMADA M. Improvement of promoters on the Fischer Tropsch activity of mechanically mixed Fe catalysts[J]. Catal Commun, 2007, **8**(3): 275-278.
- [8] 张敬畅,曹维良,单伟力,李梦波. 激光热解法制备铁基超微粒子催化剂及催化性能评价[J].催化学报,1998,19(1):63-66. (ZHANG Jing-chang, CAO Wei-liang, SHAN Wei-li, LI Meng-bo. Preparation and characterization of Fe/ AC catalysts for synthesis of light olefins via carbon monoxide hydrogenation[J]. Chinese Journal of Catalysis, 1998, 19(1):63-66.)
- [9] GALVIS H M T, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A L, JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(2): 835-838.
- [10] 禹国宾.新型催化材料的制备及其在费托合成中的应用[D].复旦大学,2009.
 (Yu Guo-bin. The preparation of a new catalytic material applying for F-T Synthesis[D]. Fudan University, 2009.)
- [11] XU L, DU J, LI P, QIAN Y. In situ synthesis, magnetic property, and formation mechanism of Fe₃O₄ particles encapsulated in ID Bamboo-Shaped carbon microtubes[J]. J Phys Chem B, 2006, 110(5): 3871-3875.
- [12] 付伯承.碳包覆纳米四氧化三铁颗粒的合成与结构研究[D].北京化工大学,2010.

 ^[1] 董丽,杨学萍. 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 4(10): 1201-1206.
 (DONG Li, YANG Xue-ping. New advances in direct production of light olefins from syngas[J]. Petrochemical Technology, 2012, 4(10): 1201-1206.)

^[2] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity [J]. ChemCatChem, 2010, 2(9): 1030-1058.

(FU Bo-cheng. Preparation and structure of carbon-encapsulated Fe_3O_4 nanoparticles [D]. Beijing University of Chemical Technology, 2010.)

- [13] SUN X M, LIU J F, LI Y D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chem Eur J, 2006, 12(7): 2039-2047.
- BUKUR D B, LANG X S, DING Y J. Pretreatment effect studies with a precipitated iron Fischer-Tropsch catalyst in a slurry reactor [J].
 Appl Catal A: Gen, 1999, 186(1/2): 255-275.
- [15] 李先国,王琴,钟炳,彭少逸,马玉刚,吴东. 铁基超细粒子催化剂的 F-T 反应性能研究 I. Fe-Mn 催化剂的反应性能、活性相结构及锰的作用[J]. 燃料化学学报, 1993, 21(4): 344-349.
 (LI Xian-guo, WANG Qin, ZHONG Bing, PENG Shao-yi, MA Yu-gang, WU Dong. Studies on the F-T performance of iron based ultrafing catalysts I: Performance of Fe-Mn catalyst, active phases and role of Mn[J]. Journal of Fuel Chemistry and Technology, 1993, 21(4): 344-349.
- [16] LEITH I R, HOWDEN M G. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide [J]. Appl Catal, 1988, 27(2): 75-92.

《燃料化学学报》征稿简则

《燃料化学学报》是由中国科学院主管、中国化学会和中国科学院山西煤炭化学研究所主办。刊载国内外燃料 化学基础研究及其相关领域的最新研究成果和进展,涵盖煤炭、石油、油页岩、天然气、生物质,以及与此相关的环 境保护和应用催化等方面的内容。

栏目设置

研究论文 报道学术价值显著、实验数据完整的研究成果,全文一般不超过6000字;

研究快报 迅速报道学术价值显著的最新进展,全文一般不超过4000字;

研究简报 报道研究工作中的部分或阶段性的研究成果,全文一般不超过4000字;

综合评述 一般为预约稿(不超过8000字)。

投 稿

1. 本刊热忱欢迎国内外学者投稿,中英文稿件均可,请登陆本刊网站(http://rlhxxb.sxicc.ac.cn)注册投稿;

2. 来稿请邮寄单位推荐信,说明文稿无泄密和一稿多投等内容。

稿件及出版

(1) 审理结果一般在3个月内通知作者,对不宜采用的稿件会尽快通知。不刊用的稿件恕不退还;

(2) 刊出的稿件通知作者交论文发表费和审稿费。期刊印出后酌致稿酬,并赠期刊2份和分装本10份;

(3) 从 2000 年起本刊已入编中国学术期刊光盘版、网络版,均不再另外通知和另付稿酬。凡不愿加入者,请 投稿时说明。

联系方式:

通讯地址:山西省太原市桃园南路 27 号《燃料化学学报》编辑部 邮编:030001 联系电话:0351-2025214 4066044 传真:0351-2025214 E-mail: rlhx@ sxicc. ac. cn