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A bstract-We discuss the problem of testing for constant versus 
time varying regression coefficients. Our alternative hypothesis 
allows the coefficients to follow a stationary AR(1) process with 
unknown autoregressive parameter. Standard testing proce- 
dures are inappropriate since this parameter is identified only 
under the alternative. We propose a test statistic which is a 
function of a sequence of Score statistics, and depends only on 
the regressors and the OLS residuals. The distribution of the 
test statistic is discussed, power and size are investigated using 
Monte Carlo methods, and an empirical example investigating 
stability in the gold and silver markets is presented. 

I. Introduction 

The assumptions of the standard linear model are 
unrealistic in many economic applications. Because the 
assumptions may be unrealistic, it is important to sub- 
ject any estimated linear model to various specification 
tests before the model is used for inference or forecast- 
ing purposes. In this note a test for one of the assump- 
tions of the linear model, constant coefficients, is devel- 
oped. 

Many tests of the constancy of regression coefficients 
have been proposed. If the coefficients are suspected of 
discrete changes a Chow (1960) test or the test proposed 
by Quandt (1960) is appropriate. If the coefficients are 
suspected of changing smoothly through time, e.g., are 
generated by some economic process, another class of 
tests can be used. For these tests an ARIMA process is 
used as a proxy for the true generating process. Tests 
for coefficients suspected of following specific ARIMA 
processes have been proposed in the literature. A simple 
white noise process generates the random coefficients 
model, which can be tested using the Lagrange multi- 
plier test of Breusch and Pagan (1979). For coefficients 
suspected of following a random walk, tests have been 
proposed by Brown, Durbin, and Evans (1975), Garbade 
(1977), Pagan and Tanaka (1979), LaMotte and 
McWhorter (1978), and a series of tests have been 
proposed and compared by Harvey and Phillips (1976). 
Cooley and Prescott (1976) introduced a model where 
the coefficients follow an ARIMA (0, 1,1) process, and 
proposed a likelihood ratio test. 

Rosenberg (1973) proposed a model where the coeffi- 
cients follow a stable first-order Markov process, the 
so-called return to normalcy model. This is a particu- 

larly attractive specification, incorporating some of the 
best features of the random walk and the random 
coefficients models. The coefficients vary around a con- 
stant mean, a feature present in the random coefficients 
model, but also possess some inertia, a feature found in 
the random walk model. 

Tests for the Rosenberg model have not been pro- 
posed, and a simple test for one varying coefficient 
based on the OLS residuals is developed in this note. In 
section II the model is presented and the testing prob- 
lem is formulated. Section III discusses a solution to the 
testing problem based on a suggestion by Davies (1977). 
Section IV presents some Monte Carlo results sum- 
marized in an estimated response surface. Section V 
presents an empirical example, and the final section 
contains some concluding remarks. 

Il. The Rosenberg Model 

For a single time varying coefficient the Rosenberg 
model may be written as 

y, = xhy + Z,fA + E, 

(At 
- 

A) 
= 

O(A-i-A + ut 101 <l 

where x, is a k x I vector, z, is a scalar, -y is a k x 1 
vector of unknown constant coefficients, /Bt is a time 
varying coefficient, and ct and ut are independent 
gaussian white noise disturbances with variances r and 
q, respectively.' The parameters of the model can be 
estimated using the nonlinear maximum likelihood pro- 
cedures described in Pagan (1980) and Watson and 
Engle (1983). When the coefficient ,Bt is constant, maxi- 
mum likelihood estimation is greatly simplified. It is, of 
course, just ordinary least squares (OLS). Equation (2) 
implies that B - N[3,q(l - 42<I] so that /3 is con- 
stant if and only if q = 0. The hypotheses of interest are 
therefore: 

H(: q= 0 

HA : q > 0. 

One is tempted to use a standard large sample test, a 
likelihood ratio, a Wald, or a Lagrange multiplier test; 
however, these tests cannot be used in the usual fashion. 
A problem arises because the transition parameter, 4, is 
identified under HA but not under H(. With q = 0 any 
4 E (- 1, 1) yields the same value of the likelihood 
function. This implies that the information matrix will 
be singular under HO, a violation of one of the standard 
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regularity conditions required to derive the usual 
asymptotic distribution (and local equivalence) of the 
tests listed above. To overcome this problem Davies 
(1977) has proposed a testing procedure which is dis- 
cussed and applied to the varying coefficient problem in 
the next section. 

III. The Davies Test 

The problem with the usual Wald, likelihood ratio, 
and Lagrange multiplier (LM) testing procedures arises 
because of the unknown and unidentified parameter p. 
Let's assume for a moment that 4 were known so that 
any of the tests could be carried out in the usual way. 
The LM test requires estimation only under the null 
(i.e., OLS) so that it is the easiest of three to perform. 
The test statistic is a function of the exogenous vari- 
ables, the OLS residuals and p. Since the value of p 
doesn't matter under the null, the LM test will have the 
correct size (asymptotically) regardless of the value of 
p. With p unknown, the test can be carried out using 
any arbitrary value of the parameter. The size of the test 
will not be affected by the value of p chosen, but the 
power of the test will be affected. Davies has suggested 
that Roy's Union-Intersection Principle be applied in 
cases such as this so that the null hypothesis should be 
rejected if the LM test statistic is "large" when evaluated 
at any value of p. 

Specifically, let S(p) be the normalized element of 
the score vector corresponding to q evaluated under the 
null and assuming that p = p were known. Then, under 
the usual regularity conditions, S(4)-the (sign cor- 
rected) square root of the LM test statistic-is asymp- 
totically a standard normal random variable, and the 
Davies test statistic is 

D-{ Sup S(c)}. 
-1<0<1 

This test statistic is asymptotically locally equivalent to 
the Wald test statistic and the (sign corrected) square 
root of the likelihood ratio test statistic. Since our 
alternative is one-sided we reject the null when D is 
greater than some critical value, CV. 

Unfortunately, in the model under consideration a 
closed form solution for {Sup-1 < <1 S(O)} is difficult 
to derive so that the test statistic D cannot be formed. 
However, it can be approximated. We can, for example, 
carry out a simple grid search over n different values of 
4. This approximation leads to an approximate Davies 
test statistic defined as 

AD = max{ S(O,); i = 1,2,..., n with 

To find the critical value for the test notice that 

prob(AD> CV) 
= 1 - prob[(S(41) < CV), 

( S( 02) < CV) S .*. S( S( 0n) < CV)] . 
(1) 

Under the usual regularity conditions the asymptotic 
distribution of [S(41), S(42),... , S(01)] is multivariate 
normal so that this probability can, in principle, be 
calculated, and a value of CV equating the probability 
of type 1 error to the desired size of the test can be 
found. In practice, evaluation of the multivariate nor- 
mal distribution function for n > 5 is very difficult (see 
Johnson and Kotz (1972), ch. 35). This suggests that 
approximations or bounds on the probabilities must be 
used. 

A very useful and tight upper bound on the probabil- 
ity given in (1) which requires only the evaluation of the 
univariate and bivariate normal distributions is easy to 
derive. To motivate the bound, suppose that the event 
(AD > CV) occurs. Then it must have been the case 
that one of the following events occurred: 

(AO)S(Pl)> CV 

or 

(A1)S(cp1) < CV< S(p2) 

or 

(A17)5(0n-l) < CV< S(/0n) 

So that the event (AD > CV) is the union of the events 
AO, A,A2, .. ., A,. Since the probability of the union is 
bounded above by the sum of the probabilities we have 

n 

prob(AD > CV) < E prob(A,). 
i=O 

The probabilities of the events A, are readily calculated 
(asymptotically) since they require evaluation only of 
the univariate and bivariate normal distributions.2 

In an earlier expanded version of this paper (Watson 
(1982)), the derivation of S(4) and regularity condi- 
tions which justified the assertions concerning asymp- 
totic distributions made above, were presented. In that 

2 Of course, alternative bounds are available which are even 
easier to calculate. The most obvious is the Bonferroni bound 

P(AD ? CV) < nF(-CV), 

where F is a standard normal distribution function. While 
easier to calculate, the Bonferroni bound is always "looser" 
than the bound suggested above as it merely replaces the values 

P [S(O, ) < CV < S(O+,+1)] 

with the larger values 

P[CV < S(,+,1)]. 
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paper it was shown that 

s(p) -SI 
+ 

S2GP) 

S3()) 

where 

T 2- 

2 r 

52+)= E 'tzt Y. (Zif r 
t=2 i=1 

1 T T t-1 

53(O) = E Zt4 + E Zt2 E Z2+2(t-i) ( t{ l t=2i=l 

2Tt=1 

and a caret over a variable indicates the OLS estimate. 
The interpretation of S(O) is straightforward. If the 

alternative is true and the model is estimated by ordinary 
least squares, then we would expect the residuals to 
exhibit both heteroskedasticity and serial correlation. 
The first term in the numerator checks for heteroskedas- 
ticity, while the second term checks for serial correla- 
tion. The denominator is just a normalizing constant. 

Two extreme cases are helpful in interpreting the test 
statistic. First assume the 4 is 0, so that only hetero- 
skedasticity is present. Then S(O) is asymptotically 
equivalent to AFT , where A is the sample correlation 
between z 2 and Z2 . This is a version of the Lagrange 
multiplier test for heteroskedasticity proposed in 
Breusch and Pagan (1979). Second, assume that zt = 1 
for all t. The errors are homoskedastic, but are gen- 
erated by an ARMA (1, 1) process3 if 4 * 0. In this 
case the test is asymptotically equivalent to 

T-1 

T1/2 (1 -_ 2)1/2 E 

i=l 

where Al is the ith autocorrelation coefficient of the 
OLS residuals. 

IV. Monte Carlo Results 

The Monte Carlo experiment was designed with the 
estimation of response surface in mind; see for instance 
Mizon and Hendry (1980). For this reason the number 
of replications are small, since between experiment re- 
sults are used to improve the efficiency of the estimated 
power function. The model used for the experiment 
included an intercept and one time varying parameter. 
The parameters ,B and r were constant throughout the 
experiment with values ,B = 2.0 and r = 1.0. The regres- 
sor zt was generated from an AR(1) process with vari- 
ance 25 and autocorrelation coefficient a. The design 
variables are 4, a, T, and q. We chose a latin square 
design using 4 = (0.0, 0.45,0.90), a = (0.0, 0.4,0.8), and 
T = (30,60, 100). The experiment was run for q = 0.0, 
0.1, 0.4, 0.7, and 1.0. For each experiment with q = 0, 
400 simulations were carried out. We ran 100 simula- 
tions otherwise. To maintain as much control as possi- 
ble between experiments, variables were held fixed where 
possible. So, for instance, the same z series was used for 
all simulations with the same a, and the same e vector 
was used for the ith simulation in all experiments. 

Some of the results are presented in table 1, for q = 0 
(,B constant), and q = 0.1 and 1.0. (Detailed results on 
all experiments are reported in Watson (1980).) The 
column labeled AD presents the results for the ap- 
proximate Davies test searching over 0 from 0.0 to 0.95 
in steps of 0.05. The column labeled S(0) presents the 
results treating S(0) as a standard normal random vari- 
able, i.e., the Breusch and Pagan (1979) heteroskedastic- 
ity test. The next two columns show the results of tests 
using S(.45) and S(.95) as standard normal random 
variables. The final column shows the results using the 
Durbin-Watson (lower) bounds test. 

The results show that the calculated size of the AD 
and S tests are less than the nominal size of the test. 
The size of the AD test is very similar to the size of the 
S(0) and S(.45) tests. The table suggests that the test 
has reasonable power, which increases with T, p, and q. 
The test performs well compared to the S(0) and S(.45) 
tests even when these tests are locally asymptotically 
optimal. (This of course wouldn't be known in practice 
since 00 would be unknown.) Conversely, the S(0) test 
worked well even when the value of p was 0.9, but not 
as well as the AD test.4 

It is straightforward to show that if 

(1 - 4B)a, = (1 - aB)e, 

with e, white noise, and 

(a) O < lal < I11 <1 
(b) a>O, 

then a, can be written as 

a, = (, + 'q, 

T,=cP,-q +V, t 101< 

where v, and (, are independent white noises. The AD test, 
with z, = 1, can then be used to test for this class of ARMA 
(1, 1) disturbances. Godfrey (1978) points out that the standard 
Lagrange multiplier test is inappropriate for testing white noise 
vs. ARMA (1, 1) errors. 

4 The poor performance of the S(.95) test stands out in all of 
the tables. Even when the true value of 4 is 0.90, the S(.95) test 
performs poorly. This seems to result from the asymptotic 
nature of the test. The random variable S(.95) is distributed 
standard normal only asymptotically, and clearly not for the 
small sample sizes considered in this study. Based on 200 
simulations with a sample size of 100 and the null hypothesis 
true, the sample mean of S(.95) was - 0.62, while its standard 
error was 0.43. This negative mean and small standard error are 
responsible for the small number of rejections. Increasing the 
sample size to 1000, produced an S(.95) which did appear 
standard normal. 
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While the table shows the estimated power at specific 
points in the parameter space, ideally one would like to 
estimate a function relating the power of the test to the 
parameters of the model. Using the methodology em- 
ployed in Mizon and Hendry (1980) and the data gen- 
erated in the Monte Carlo experiment we have esti- 
mated this power function. The functional form of the 
power function is unknown, but we can choose a form 
that is suggested by the asymptotic behavior of S(40), 
where p0 is the true value of p. In particular we choose 
a functional form that allows the power of the test to 
approach 1 as q -* oo or as T -- oo (if q > 0), and that 
allows 40 to affect the power but not the size of the test. 

There are many functional forms with these proper- 
ties. After some experimentation we found the following 
form satisfactory: 

ln 1 _ = 7T0 ? D + lT21n(q + 1) 

7T3lnT + q4 lnT ? 5DlnT+ e 

where P is the estimated power calculated from the 
Monte Carlo experiment and D is a dummy variable 
taking on the value 1 if q > 0 and zero otherwise. To 
correct for heteroskedasticity all variables were multi- 
plied by [NP(1 _ p)]1/2 where N is number of rep- 
lications. (After this weighting a correctly specified 

model should have an error term with unit variance. 
This can serve as a check on the specification.) 

The estimated results for the test carried out at the 
5% level are presented in table 2. The results appear to 
be quite sensible. The standard error is close to 1, and 
the R2 is high. The power of the test increases with q, 
p, and T (if q > 0) as expected. Letting T -* oo, the 
estimated size of the test is 0.0339, indicating that the 
bound in (4) is satisfied. 

V. An Empirical Example 

The test presented in section III has been successively 
used in a variety of empirical applications. It was used 
and compared to other tests of parameter instability by 
Beck (1983) in a study of Federal Reserve reaction 
functions, and by Bos and Newbold (1984) in their 

TABLE 1.-MONTE CARLO RESULTS 

Parameters Percentage of Rejections of H0a 

T a AD S(O) S(.45) S(.95) D W 

q = 0.0 

30 0.0 0.8 0.8 1.3 0.0 2.3 
60 0.0 2.0 2.5 2.3 0.0 5.3 
30 0.4 1.5 2.3 2.0 0.0 3.3 
60 0.4 3.5 3.0 2.8 0.3 4.3 
30 0.8 1.0 0.8 1.0 0.0 2.0 
60 0.8 1.3 1.5 1.0 0.3 3.3 

Parameters Percentage of Rejections of H0a 

4) T a AD S(O) S(.45) S(.95) DW 

q= 0.1 

.00 30 0.0 50 63 51 0 4 

.00 60 0.4 81 85 75 16 2 

.45 30 0.8 43 41 50 0 25 

.45 60 0.0 93 89 94 20 10 

.90 30 14 83 64 85 37 7 

.90 60 0.8 98 86 97 83 99 

q= 1.0 

.00 30 0.0 76 86 68 1 4 

.00 60 0.4 92 92 91 22 2 

.45 30 0.8 62 53 67 0 45 

.45 60 0.0 99 100 99 27 12 

.90 30 0.4 92 81 94 45 10 

.90 60 0.8 98 90 99 87 99 

aUsing 5% asymptotic critical values for S(O), S(.45), S(.95). 

TABLE 2.-ESTIMATED RESPONSE SURFACE 

Coefficient Estimate Standard Error 

7r0 -3.35 .140 
71r - 6.98 .779 
7lt2 1.64 .269 
7T3 7.93 .789 
7T4 - 5.76 .693 
7T5 3.04 .203 

S.E. = 1.021 R2= 0.982 
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investigation of stability of the CAPM model for 464 
stocks. In this section we use the test to check for 
stability in an efficient market model for gold and silver 
prices. We'll let R, denote the one period holding yield 
on these metals and ER, denote the expectation of this 
yield formed at the beginning of the period. A popular 
specification sets ER, = ,u ? ,Br,, where it is a time 
invariant risk premium and ri is the risk free rate of 
return which is assumed to be known by market par- 
ticipants at the beginning of the period. Efficiency in the 
asset market implies that the excess return, R, - ERt, 
is uncorrelated with information known at the be- 
ginning of the period, so that 

Rt = i + Ar, + et 

where et is a serially uncorrelated error term which is 
uncorrelated with current and lagged values of r,, and 
the coefficient ,B is equal to one for all time periods. 

We have estimated this model using weekly data on 
gold and silver prices over the period 1975-1979. The 
risk free rate of return is the return on 90-day Treasury 
bills with 1 week remaining until maturity.5 All data 
were taken from the Wall Street Journal. The results are 
shown in table 3. The week-to-week returns on these 
assets are quite volatile leading to very poor fits, so that 
tests of the hypothesis ,B = 1 have very low power, and 
the hypothesis is not rejected for either metal. The table 
also presents the results of the Davies test for time 
varying ,B's. In spite of the large amount of noise in the 
model the hypothesis is decisively rejected for gold. We 
re-estimated the model for gold allowing for time vari- 
ation in the parameter. The results are shown at the 
bottom of the table. The estimates suggest the time 
variation is present. Notice, however, that 4 is not 
significantly different from zero, suggesting that the 
direction of the change in fl, is not predictable. 

VI. Conclusions 

The results of the last two sections indicate that the 
AD test is quite useful for detecting coefficient instabil- 
ity. The test statistic is relatively easy to construct, and 
conservative critical values can be quickly computed. 
The heteroskedasticity test of Breusch and Pagan also 
performed quite well in the Monte Carlo simulations. 
The simulations suggest that the AD test is preferred to 
the BP test when the sample size is moderate and the 
value of the transition parameter is reasonably large. 
We would also expect the AD test to outperform the 
BP test when the variance of the regressor, zt, is small. 
This would reduce the heteroskedasticity in the OLS 
residuals and lower the power of the BP test. Serial 
correlation would, however, still be present, and this 
behavior could be indicated by the AD test. 

TABLE 3.-EMPIRICAL RESULTS FOR THE MODELa 
Rt = IL + Pr, + 't 

IL Al DW ADb pd 

Silver 0.6 0.75 144.1 2.29 0.83 -.65 .75 
(51.5) (9.3) 

Gold -22.5 4.34 123.0 1.83 3.66 .20 .001 
(44.0) (7.9) 

Maximum Likelihood Allowing 
(t -)= <(J2-1 -3) + u 

ut 

Gold - 7.4 2.91 .18 85.3 15.5 
(5.23) (9.8) (.16) (23.2) (4.6) 

Note: Standard errors are in parentheses. 
aRates of return R, and rt are annual rate in percentage points. 
bA D was calculated for 4 E [-.95, .95] in steps of 0.05. 
c4 is argmax AD( ). 
d p is the upper bound on the prob value for AD. 
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BIAS FROM NONSYNCHRONOUS TRADING IN TESTS OF THE 
LEVHARI-LEVY HYPOTHESIS 

Robert A. Wood and Thomas H. Mclnish* 

It is well established that beta estimates are biased 
due to nonsynchronous trading (Dimson, 1979, 1981; 
Fowler and Rorke, 1981; Fowler, Rorke and Jog, 1980, 
1981; Scholes and Williams, 1977, and Roll, 1981). Yet, 
researchers often fail to consider the effect of nonsyn- 
chronous trading on tests of hypotheses concerning the 
behavior of beta. This paper examines specific hypothe- 
ses about the behavior of beta developed by Levhari 
and Levy (1977) (described fully below). Evidence is 
presented which shows that results of tests based on all 
of the data (including data contaminated by nonsyn- 
chronous trading) may produce conclusions which differ 
from those which prevail when only the data not severely 
contaminated by nonsynchronous trading are used. This 
evidence clearly indicates the potential importance of 
considering nonsynchronous trading in tests of hypothe- 
ses concerning beta.' 

The paper by Levhari and Levy has two parts. The 
first mathematically derives a systematic relationship 
between beta and the investment horizon. The second 

part examines the extent to which the empirical evi- 
dence conforms with the predictions of the mathemati- 
cal model. Rejection of the mathematical model on 
empirical grounds may result from failure of the as- 
sumptions of the model (such as independence of re- 
turns over time) to hold or from measurement errors in 
the data due to factors such as nonsynchronous trading. 
This paper examines whether nonsynchronous trading 
has obfuscated previous tests of the relationship be- 
tween beta and the investors' horizon postulated by 
Levhari and Levy. 

This paper is divided into four parts. The next section 
provides a discussion of previous research related to this 
topic. The second section describes the methodology 
and the third presents the results. The final section 
provides a summary and conclusions. 

Background 

Levhari and Levy (1977) suggest that for "risky" 
securities (true fi > 1), the longer the differencing inter- 
val the higher the estimated beta. On the other hand, for 
less risky securities (true f8 < 1), the longer the dif- 
ferencing interval the lower the estimated beta. For 
differencing intervals of one month and more, Levhari 
and Levy (1977,1981) and Smith (1978) offer empirical 

Received for publication September 2, 1982. Revision 
accepted for publication October 6, 1983. 

*Pennsylvania State University and The University of Texas 
at Arlington, respectively. 

1 The authors wish to thank Richard Roll for suggesting this 
line of research. 


	Article Contents
	p. 341
	p. 342
	p. 343
	p. 344
	p. 345
	p. 346

	Issue Table of Contents
	The Review of Economics and Statistics, Vol. 67, No. 2 (May, 1985), pp. 179-351
	Front Matter
	The Relativity of Utility: Evidence from Panel Data [pp.  179 - 187]
	Ability and Power over Production in the Distribution of Earnings [pp.  188 - 194]
	Housing Purchases and Transitory Income: A Study with Panel Data [pp.  195 - 204]
	A Nested Logit Model of Energy Conservation Activity by Owners of Existing Single Family Dwellings [pp.  205 - 211]
	Health and Nutrient Consumption Across and Within Farm Households [pp.  212 - 223]
	Managerial Discretion and Expense Preference Behavior [pp.  224 - 231]
	An Empirical Test for Tax Evasion [pp.  232 - 238]
	Strategy and Market Structure in Western Coal Taxation [pp.  239 - 249]
	Truck Technology and Efficient Market Structure [pp.  250 - 258]
	Mergers and Market Share [pp.  259 - 267]
	Industrial Composition, Interindustry Effects, and the U.S. Productivity Slowdown [pp.  268 - 277]
	Sectoral Employment Variability and Unexpected Inflation [pp.  278 - 283]
	Real Interest Rates, Anticipated Inflation, and Unanticipated Money: A Multi-Country Study [pp.  284 - 296]
	Real Exchange Rate Risk, Expectations, and the Level of Direct Investment [pp.  297 - 308]
	Notes
	The Effects of Inflation Surprises and Uncertainty on Real Wages [pp.  309 - 314]
	The Relative Effects of Demand and Supply on Output Growth and Price Change [pp.  314 - 318]
	Changes in Productivity and Composition of Output in Building Construction, 1972-1982 [pp.  318 - 322]
	Political and Industrial Change in a Model of Trade Union Militancy and Real Wage Growth [pp.  322 - 327]
	Market Exchange or Vertical Integration: An Empirical Analysis [pp.  327 - 331]
	Switching, Aggregation, and the Demand for Borrowed Reserves [pp.  331 - 335]
	Real Money Balances in the Production Function of a Developing Country [pp.  336 - 340]
	Testing for Regression Coefficient Stability with a Stationary AR(1) Alternative [pp.  341 - 346]
	Bias From Nonsynchronous Trading in Tests of the Levhari-Levy Hypothesis [pp.  346 - 351]

	Back Matter



