文章编号: 0253-2409(2013)11-1343-06

Al, O, 孔结构对纳米 HZSM-5 基催化剂改质 FCC 汽油性能的影响

赵晓波1,王文举1,郭新闻2,王祥生2

(1. 白城师范学院,化学学院,吉林白城 137000;2. 大连理工大学精细化工国家重点实验室,辽宁大连 116012)

摘 要:采用 NH₃-TPD、FT-IR、N₂ 吸附-脱附等手段对两种不同来源的氧化铝样品进行了表征。结果表明,两种 Al₂O₃ 的总 酸量及酸强度没有明显差别,酸类型均以 Lewis 酸为主,其中,Al₂O₃(b)的平均孔径及孔体积较大。在固定床微型反应装置上 考察了以两种 Al₂O₃ 为载体制备的纳米 HZSM-5 基催化剂改质全馏分 FCC 汽油的性能。实验结果表明,以大孔 Al₂O₃ 为载体的 HZSM-5 基催化剂具有较好的降烯烃、芳构化、异构化活性及稳定性。改性纳米 HZSM-5 负载的 LaNiMo 催化剂对 FCC 汽油的 300 h 评价结果表明,烯烃饱和率为 83%,脱硫率为 87%,同时维持了油品的辛烷值。

关键词: Al, O, 载体; 纳米 HZSM-5; 催化裂化汽油; 辛烷值

中图分类号: O643.36 文献标识码: A

Effects of Al₂O₃ pore structure on FCC gasoline upgrading properties of the nanosized HZSM-5 based catalysts

ZHAO Xiao-bo¹, WANG Wen-ju¹, GUO Xin-wen², WANG Xiang-sheng²

(1. College of Chemistry, Baicheng Normal University, Baicheng 137000, China;

2. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China)

Abstract: Two Al_2O_3 supports were characterized by means of NH_3 -TPD, FT-IR and N_2 adsorption-desorption. The characterization results showed that the two Al_2O_3 supports have no significant differences in their total acidity and acidity strength. The acid sites are mainly Lewis ones, but Al_2O_3 (b) has larger average pore diameter and pore volume than $Al_2O_3(a)$. The influence of the pore structures of the Al_2O_3 supports on the full range FCC gasoline upgrading performance of the nanosized HZSM-5 based catalysts was investigated in a fixed-bed reactor. The results indicated that the HZSM-5 catalyst extruded with macroporous Al_2O_3 exhibited superior activity, stability and performance in reducing olefin content of FCC gasoline. The modified nanosized LaNiMo/HZSM-5 catalyst reduced olefin and sulfur concentration in FCC gasoline by about 83% and 87% within 300 h time on stream, respectively, meanwhile the gasoline octane number was preserved.

Key words: alumina support; nanosized HZSM-5; FCC gasoline; octane number

中国已于 2011 年 5 月 12 日开始实施 GB 17930~2011《车用汽油》国家标准,对汽油中的烯 烃含量、硫含量和辛烷值等指标作了严格的规定。 催化裂化(FCC)汽油在中国商品汽油中的调和比 例高达 70% 左右,其烯烃和硫含量高,因此,FCC 汽 油的降烯烃、脱硫成为中国车用清洁汽油生产急需 解决的问题^[1]。许多针对 FCC 汽油的改质技术相 继出现,如 MIP、MGD、FDFCC、RIDOS、RSDS、OTA 以及 TSRFCC 技术等^[2~8]。FCC 汽油的芳烃含量 较低,在脱硫的同时将汽油中的烯烃转化为高辛烷 值的异构烷烃和芳烃可以补偿由于烯烃饱和而引起 的辛烷值损失。研究表明^[9~11],纳米晶粒 HZSM-5 分子筛具有优异的烷基化、异构化、芳构化及抗结焦 失活等性能,用于 FCC 汽油的改质能够在降烯烃、 脱硫的同时,维持油品的辛烷值基本不降低。

纳米 ZSM-5 分子筛为粉状物,在成型时需按一 定比例加入载体氧化铝。将 Al₂O₃ 加入到 ZSM-5 分子筛中有利于催化剂的挤条成型,同时能够增加 分子筛之间的黏接力,从而增加了催化剂的机械强 度。此外,具有一定孔结构和酸性质的 Al₂O₃ 加入 分子筛中,对其催化性能也有一定影响。尹双凤 等^[12]的研究表明,Al₂O₃ 的加入引起 Zn/HZSM-5 催化剂对正已烷的初始芳构化活性和选择性下降, 但提高了稳定性。吉媛媛等^[13]使用含铝黏合剂用 于 ZSM-5 分子筛成型时,使 BJH 累积孔体积明显增 加,提高了裂解石脑油的乙烯+丙烯收率。目前,载 体 Al₂O₃ 孔结构的不同对纳米 HZSM-5 基催化剂用 于改质 FCC 汽油性能的影响报道极少,本实验选择

收稿日期: 2013-04-08; 修回日期: 2013-06-17。

基金项目:中国石油天然气股份有限公司 FCC 汽油改质催化剂及工艺研究项目(20090392);吉林省教育厅"十二五"科学技术研究项目 (吉教科合字[2012]第364号)。

联系作者:赵晓波(1972-),男,吉林白城人,博士,副教授。E-mail: zhaoxb0514@ yahoo.com.cn。

两种来源不同的氧化铝,对其酸性质和孔结构特征进行了表征,考察了其对纳米 HZSM-5 基催化剂用于 FCC 汽油降烯烃、脱硫和维持辛烷值改质性能的影响。

1 实验部分

1.1 试剂与原料

硝酸镧、硫酸镍和七钼酸铵均为分析纯,由天津 市科密欧化学试剂开发中心提供,其他原料为工业 品。FCC汽油的组成为烯烃、芳烃、烷烃,其体积分 数分别为 31.8%、31.9%、36.3%;研究法辛烷值 (RON)为94.0;硫含量为665μg/g。

1.2 催化剂的制备

两种来源不同的 Al_2O_3 前体为薄水铝石,经 550 ℃ 焙烧所得,分别标记为 $Al_2O_3(a)$ 和 $Al_2O_3(b)。纳米晶粒 ZSM-5 分子筛原粉按文献^[14]$ $方法合成(SiO_2/Al_2O_3 物质的量比为 25.5)。将纳$ $米 ZSM-5 原粉分别与一定比例的 <math>Al_2O_3(a)$ 和 $Al_2O_3(b)混合,按文献^[15]方法制备纳米 HZSM-5 分$ 子筛基催化剂,标记为 HZSM-5(a)和 HZSM-5(b)。

将制备的纳米 HZSM-5(b)催化剂放入固定床 反应器的恒温段,以质量空速 0.2 h⁻¹于 500 ℃通入 0.5 mol/L 氨水蒸气处理 3 h,得到水热处理改性的 HZSM-5 基催化剂。分别以硝酸镧、硫酸镍和七钼 酸铵的水溶液为浸渍液,采用等体积浸渍法将水热 处理改性的 HZSM-5 催化剂分别负载 La、Ni、Mo, 得到 LaNiMo/HZSM-5 催化剂。LaNiMo/HZSM-5 催化剂中 La₂O₃、NiO 和 MoO₃ 的质量分数分别为 2.5%、2.0% 和9.7%。

1.3 催化剂的表征

采用德国 Bruker 公司产 SRS-3400 型 X 射线荧 光光谱仪分析催化剂的化学元素组成。催化剂的总 酸量 分 布 采 用 NH。程序升温脱 附法 在 美国 Quantachrome 公司产 CHEMBET-3000 型化学吸附 分析仪上测定。催化剂的酸中心类型及分布采用吡 啶吸附真空红外光谱法,在德国 Bruker 公司生产的 EQUINOX-55 型傅里叶变换红外光谱仪上表征。 催化剂的比表面积和孔结构性质采用美国 Quantachrome 公司生产的 Autosorb-I 型自动吸附比 表面和孔隙度分析仪测定。热失重分析采用瑞士 Mettler Toledo 公司产 TGA/SDTA-851 型差热分析 仪完成。

1.4 催化剂的评价

HZSM-5(a)及HZSM-5(b)催化剂的活性评价

在内径为10 mm的不锈钢固定床反应器进行,反应 条件为催化剂用量2g、氢/油体积比600、质量空速 6h⁻¹、H₂压力3.0 MPa、反应温度400℃。LaNiMo/ HZSM-5催化剂在"Xytel"全自动微反装置上进行 活性及稳定性评价,反应条件为催化剂用量10g、 氢/油体积比600、质量空速2h⁻¹、H₂压力3.0 MPa、 反应温度385℃。反应产物冷却后进行气、液分离。 液相产物族组成采用美国 HP 6890型气相色谱仪分 析,PONA 毛细管柱(50.0 m×0.20 mm×0.50 µm), 离子化氢火焰检测器(FID)。采用中国姜堰高科 ZWK-2001型微机硫氯分析仪测定产物的总硫含 量。根据液相产物的族组成计算法研究辛烷值。

2 结果与讨论

2.1 载体氧化铝的表征

两个 Al_2O_3 样品的 NH_3 -TPD 谱图见图 1。由 图 1 可知,两个 Al_2O_3 样品均出现两个脱附峰,代表 两种强度不同的酸中心,低温脱附峰对应 Al_2O_3 的 弱酸中心,高温脱附峰对应 Al_2O_3 的强酸中心。两 个 Al_2O_3 的 NH_3 脱附峰面积和峰温基本一致,表明 两个 Al_2O_3 的总酸量和酸强度没有明显差别。

Figure 1 NH₃-TPD curves of the samples

图 2 为两个 Al₂O₃ 样品在 300 ℃下的吡啶脱附 FT-IR 谱图。由图 2 可知,两个 Al₂O₃ 样品在代表 L 酸中心的 1 452 cm⁻¹附近均有较强吸收,而在代表 B 酸中心的 1 545 cm⁻¹处基本没有吸收,表明两个 Al₂O₃ 样品的酸类型绝大部分为 Lewis 酸。

图 3 为两个 Al_2O_3 样品的 N_2 吸附-脱附曲线。 由图 3 可知,两个 Al_2O_3 样品的吸附脱附曲线均为 典型的 IV 型吸附等温线(根据 IUPAC 定义),并具 有 H4 型滞后回线,属于介孔材料。当相对压力 p/p_0 为 0.4 ~ 1.0 时,样品存在明显的滞后环,这与毛 细凝聚有关。吸附等温线的吸附分支由于发生毛细 凝聚现象而逐渐上升,而脱附分支在较低的相对压 力时突然下降,几乎直立,吸附质突然脱附,从而空 出孔穴,传统地归因于瓶状孔。 $Al_2O_3(a)$ 样品脱附 分支在 p/p_0 为 0.65 时 N₂ 吸附量突然下降,而 $Al_2O_3(b)$ 样品则在较高的相对压力 p/p_0 为 0.70 时 吸附量突然下降,说明 $Al_2O_3(b)$ 的孔径较大^[16]。 当相对压力 p/p_0 为 1.0 时, $Al_2O_3(a)$ 样品的 N₂ 吸 附量 为 237 cm³/g, 而 $Al_2O_3(b)$ 的吸附量为 291 cm³/g,表明 $Al_2O_3(b)$ 样品的孔体积较大。

samples after desorption at 300 $^\circ C$

由 N₂ 脱附等温线根据 BJH 方法得到的 Al₂O₃ 样品的孔径分布见图 4。由图 4 可知,两个 Al₂O₃ 样品的孔径分布基本集中在 2 ~ 8 nm,其中,Al₂O₃ (a)的最可几孔径为 4.9 nm,而 Al₂O₃(b)的最可几 孔径为 6.4 nm。

两个 Al₂O₃ 样品的织构特征见表 1。由表 1 可 知,两个 Al₂O₃ 样品的 BET 比表面积、平均孔径、孔 体积等方面存在着差异。相比之下,Al₂O₃(b)的平 均孔径和孔体积较大,而比表面积略小。

图 4 样品 BJH 法脱附孔径分布

Figure 4 BJH desorption pore size distributions of the samples

表 1 样品的孔结构特征 Table 1 Textural properties of the samples

Sample	$Al_2O_3(a)$	$Al_2O_3(b)$
BET surface area $A/(m^2 \cdot g^{-1})$	239	226
Average pore diameter d/nm	6.1	8.0
Pore volume $v/(cm^3 \cdot g^{-1})$	0.37	0.45

2.2 载体对纳米 HZSM-5 改质 FCC 汽油性能的 影响

以纳米 ZSM-5 分子筛及 Al₂O₃(a)和 Al₂O₃(b)的混合物为载体制备的催化剂组成及物性数据见表 2。在两个催化剂中, Al₂O₃的质量分数均为 20%,由于 Al₂O₃(b)的平均孔径和孔体积较大,因而以纳 米 ZSM-5 分子筛和 Al₂O₃(b)为载体的催化剂的平均孔径和孔容也较大。在 HZSM-5 中加入 Al₂O₃的一个重要作用是增加载体的机械强度,由于两个 Al₂O₃ 样品孔结构的不同,可能对催化剂的强度有一定的影响。由表 2 可知, HZSM-5(b)催化剂与 HZSM-5(a)相比,虽然径向压碎强度有所降低,但 仍满足工业对挤压催化剂压碎强度的一般要求(>90 N/cm)。

表 2 催化剂的组成及物性数据

Table 2	Compositions	and	physical	properties	of the	catalyst

Catalyst	HZSM-5(a)	HZSM-5(b)
ZSM-5 w/%	80	80
$Al_2O_3(a) w/\%$	20	-
$Al_2O_3(b) w/\%$	-	20
BET surface area $A/(m^2 \cdot g^{-1})$	366	360
Average pore diameter d/nm	3.5	3.9
Pore volume $v/(cm^3 \cdot g^{-1})$	0.32	0.35
Radial crush strength $/(N \cdot cm^{-1})$	126	118

由于未经过任何改性处理的纳米 HZSM-5 分子

筛的酸性较强,易引起催化剂的积炭失活,同时在汽 油改质评价中采用较高的空速,以便能够在较短的 时间内体现出由于载体孔结构的不同对 HZSM-5 催 化性能的影响。图 5、图 6 和图 7 分别是用 HZSM-5(a)和HZSM-5(b)催化剂改质后的FCC汽 油产物中烯烃、芳烃和异构烷烃含量随反应时间的 变化。由于 HZSM-5(a)及 HZSM-5(b)催化剂均未 经任何改性处理,稳定性差,因此,降烯烃能力、芳构 化及异构活性均下降较快。相比之下,HZSM-5(b) 催化剂在评价的48h内,产物中烯烃含量普遍低于 HZSM-5(a), 而芳烃和异构烷烃含量普遍高于 HZSM-5(a)催化剂,当评价至48h时,HZSM-5(b) 催化剂的降烯烃、芳构化和异构化能力与 HZSM-5 (a)相比分别提高了1.1、0.7和0.5个百分点。由 此可见,以大孔 Al₂O₃ 为载体的 HZSM-5(b) 催化剂 与HZSM-5(a)相比,在FCC汽油改质过程中具有 较好降烯烃、芳构化和异构化的活性及稳定性。

两个 HZSM-5 催化剂在反应后的 TG-DTG 曲 线见图 8 和图 9。两个积炭催化剂的 TG 和 DTG 的 曲线形状较为类似,有两个失重区:第1个失重区主 要在 250 ℃之前,失重率约为 3%,为催化剂表面的 吸附水、反应物及产物等所致;第2个失重区在 360 ~650 ℃,为积炭物种的热分解。在 360~650 ℃根 据 TG 曲线计算催化剂的积炭量,HZSM-5(a)催化 剂的积炭量为 14.2%,而 HZSM-5(b)催化剂的积 炭量为 13.2%,HZSM-5(b)与 HZSM-5(a)相比积 炭量减少了 1 个百分点。

HZSM-5 分子筛的酸性较强,容易引起催化剂 积炭失活,因此,积炭量较高。有机物种在分子筛催 化剂上的积炭过程是十分复杂的催化反应过程,积 炭受到分子筛的颗粒粒径、孔结构、酸性质、温度、空 速以及扩散等因素的影响^[17]。就汽油评价结果而 言,HZSM-5(b)催化剂的积炭量相对较低,可能由 于载体 Al₂O₃ 的平均孔径和孔体积较大,提高了反 应物与催化活性中心的可接近性,有利于反应中间

物种和产物的及时扩散,从而有效避免了焦炭前驱 体的形成,因此,提高了催化剂的稳定性。

表3

2.3 以大孔氧化铝为载体的改性 LaNiMo/ HZSM-5 催化性能

改性纳米 LaNiMo/HZSM-5 催化剂对全馏分 FCC 汽油改质 300 h 的评价结果见表 3。由表 3 可 知,在评价的 300 h 内,该催化剂具有较强的降烯烃 性能,同时还保持了较好的稳定性,汽油中烯烃体积 分数改质后降到 6% 以下。同时,催化剂具有较高 的脱硫活性和稳定性,汽油中的硫含量改质降到 100 μg/g 以下。由表 3 还可知,该催化剂具有稳定 的芳构化活性,芳烃体积分数改质后增加到 41% 左 右,在评价的 300 h 内芳烃含量没有显著的下降。

LaNiMo/HZSM-5 催化剂对 FCC 汽油改质前后 组成的变化见表 4。

Time on stream t /h	(Composition φ/q	\mathbf{C}	
This of stream l / li	olefins	aromatics	paraffins	Sumur <i>w/</i> (µg·g)
24	1.9	50.9	47.2	88
48	2.2	46.4	51.4	74
84	3.0	42.4	54.6	78
108	3.4	42.1	54.5	81
156	5.1	41.9	53.0	85
192	5.3	41.7	53.0	84
240	5.4	41.5	53.1	89
300	5.6	41.6	52.8	86
FCC feed	31.8	31.9	36.3	665

Table 3	Evaluation of LaNiMo/HZSM-5 catalyst in FCC gasoline upgrading process

LaNiMo/HZSM.5 催化剂对 FCC 汽油改质的评价

表 4 LaNiMo/HZSM-5 催化剂对 FCC 汽油改质前后的组成

Table 4 Composition of FCC gasoline before and after treatment with LaNiMo/HZSM-5 catalyst

Component	Feed	Product
Olefins $\varphi / \%$	31.8	5.2
Aromatics $\varphi/\%$	31.9	42.0
iso-Paraffins φ /%	25.3	38.0
<i>n</i> -Paraffins $\varphi/\%$	5.1	7.8
Naphthenes $\varphi / \%$	5.9	7.0
Sulfur $w/(\mu g \cdot g^{-1})$	665	82
Desulfurization conversion $x / \%$		87
RON	94.0	94.4
Boiling range t/°C		
10% distills	59	46
50% distills	111	122
90% distills	177	202
Final boiling point	199	220
Existent gum (mg/100 mL)	1.8	0.4
Density 288 K/($g \cdot cm^{-3}$)	0.7586	0.7642
Gasoline yield w/%		93

由表4可知,FCC 汽油改质前后组成发生了显 著变化,汽油中烯烃体积分数由原料的 31.8% 下降 到 5.2%,脱除率为 83%,芳烃含量由 31.9% 增加 到 42.0%,异构烷烃由 25.3% 增加到 38.0%,环烷 烃由 5.9% 增加到 7.0%,硫含量由 665 μg/g 降到 82 μg/g,脱硫率为 87%,同时胶质含量改质后有所 下降。汽油的密度和终馏点有所增加,这主要是由 于原料中部分低碳数的烯烃转化为碳数较高的芳 烃。改质过程中汽油的液收维持在 93% 左右。

FCC 汽油在改质后辛烷值没有下降,这主要是 由于在辛烷值较高的烯烃含量下降 26.6% 的同时, 芳烃含量增加 10.1%,异构烷烃增加 12.7%,环烷 烃增加 1.1%,这些也都是高辛烷值汽油组分,因 此,补偿了由于烯烃的饱和而引起的辛烷值下降。 由以上讨论可以看出,汽油改质过程中绝大部分烯 烃通过芳构化、异构化、烷基化和氢转移等反应转化 为芳烃、异构烷烃和环烷烃。 对两种 Al₂O₃ 样品进行了表征,结果表明,两种 Al₂O₃ 的总酸量和酸强度没有明显差别,酸类型均 以 Lewis 酸为主,其中,Al₂O₃(b)样品的孔径和孔体 积较大,而比表面积略小。

研究了由于载体 Al₂O₃ 孔结构的不同对 HZSM-5催化改质汽油性能的影响。结果表明,以 大孔 Al₂O₃ 为载体制备的 HZSM-5 催化剂具有较好的降烯烃、芳构化及异构化的活性和稳定性。

FCC 汽油 300 h 评价结果表明,以大孔 Al₂O₃ 为载体制备的改性纳米 LaNiMo/HZSM-5 催化剂具 有稳定的降烯烃、脱硫以及芳构化活性,汽油改质后 烯烃饱和率为 83%,脱硫率为 87%,同时维持了油 品的辛烷值。

参考文献

- [1] 杨光福,王刚,高金森,徐春明. FCC 汽油低温改质过程的烯烃转化及催化剂积炭[J]. 燃料化学学报,2007,35(5):572-577.
 (YANG Guang-fu, WANG Gang, GAO Jin-sen, XU Chun-ming. Coke formation and olefins conversion in FCC naphtha olefin reformulation at low reaction temperature[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 572-577.)
- [2] 许友好,张久顺,龙军. 生产清洁汽油组分的催化裂化新工 MIP[J]. 石油炼制与化工,2001,32(8):1-5.
 (XU You-hao, HANG Jiu-shun, LONG Jun. A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J]. Petroleum
- Processing and Petrochemicals, 2001, 32(8): 1-5.)
 [3] 钟孝湘,张执刚,黎仕克,康飚. 催化裂化多产液化气和柴油工艺技术的开发与应用[J]. 石油炼制与化工, 2001, 32(11): 1-5.
 (ZHONG Xiao-xiang, ZHANG Zhi-gang, LI Shi-ke, KANG Biao. Development and application of MGD technology for producing more LPG and LCO[J]. Petroleum Processing and Petrochemicals, 2001, 32(11): 1-5.)
- [4] 孟凡东,王龙延,郝希仁. 降低催化裂化汽油烯烃技术—FDFCC 工艺[J]. 石油炼制与化工,2004,35(8):6-10.
 (MENG Fan-dong, WANG Long-yan, HAO Xi-ren. Technology for reducing olefin in cracked naphtha-FDFCC process[J]. Petroleum Processing and Petrochemicals, 2004, 35(8):6-10.)
- [5] 李大东,石亚华,杨清雨. 生产低硫低烯烃汽油的 RIDOS 技术[J]. 中国工程科学, 2004, 6(4): 1-8.
 (LI Da-dong, SHI Ya-hua, YANG Qing-yu. Low sulfur low olefin gasoline production by RIDOS technology [J]. Engineering Science, 2004, 6(4): 1-8.)
- [6] 李明丰,夏国富,褚阳,胡云剑.催化裂化汽油选择性加氢脱硫催化剂 RSDS-1 的开发[J].石油炼制与化工,2003,34(7):1-4.
 (LI Ming-feng, XIA Guo-fu, CHU Yang, HU Yun-jian. Preparation of selective hydrodesulfurization catalyst RSDS-1 for FCC naphtha[J].
 Petroleum Processing and Petrochemicals, 2003, 34(7):1-4.)
- [7] 杨朝合,山红红,张建芳.两段提升管催化裂化系列技术[J].炼油技术与工程,2005,35(3):28-33.
 (YANG Chao-he, SHAN Hong-hong, ZHANG Jian-fang. Two-stage riser FCC technologies[J]. Petroleum Refinery Engineering, 2005, 35 (3):28-33.)
- [8] ZHANG P Q, WANG X S, GUO X W, GUO H C, ZHAO L P, HU Y K. Characterization of modified nanoscale ZSM-5 zeolite and its application in the olefins reduction in FCC gasoline[J]. Catal Lett, 2004, **92**(1/2): 63-68.
- [9] 胡永康,赵乐平,李扬,周勇,郭洪臣,王祥生.纳米 ZSM-5 沸石在 OTA 汽油降烯烃技术中的应用[J].中国有色金属学报,2004,14 (1):317-322.

(HU Yong-kang, ZHAO Le-ping, LI Yang, ZHOU Yong, GUO Hong-chen, WANG Xiang-sheng. Development of OTA technology for olefin removal of full range FCC gasoline [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 317-322.)

- [10] ZHANG P Q, GUO X W, GUO H C, WANG XI S. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline[J]. J Mol Catal A: Chem, 2007, 261(2): 139-146.
- [11] ZHANG P Q, GUO X W, WANG XI S. Characterization of modified nanoscale ZSM-5 catalyst and its application in FCC gasoline upgrading process[J]. Energy Fuels, 2006, 20(4): 1388-1391.
- [12] 尹双凤,陈懿,林洁,于中伟. Zn/HZSM-5 轻烃芳构化催化剂中 Zn 与分子筛协同作用的研究[J]. 天然气化工, 2001, 26(2): 6-9.
 (YIN Shuang-feng, CHEN Yi, LIN Jie, YU Zhong-wei. Study on synergistic action between Zn component and HZSM-5 in the Zn/HZSM-5 catalyst for aromatization of light paraffins[J]. Natural Gas Chemical Industry, 2001, 26(2): 6-9.)
- [13] 吉媛媛, 满毅, 王焕茹, 杨菁. 黏合剂对其 ZSM-5 分子筛成型物裂解石脑油的影响[J]. 燃料化学学报, 2012, 40(6): 727-731.
 (JI Yuan-yuan, MAN Yi, WANG Huan-ru, YANG Ji. Influence of adhesive on the performance of extruded ZSM-5 catalysts in naphtha cracking[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 727-731.)
- [14] 王学勤,王祥生,郭新闻. 超细颗粒五元环型沸石的制备方法:中国,1260126[P]. 2006-06-21.
 (WANG Xue-qin, WANG Xiang-sheng, GUO Xin-wen. A method on the preparation of superfine particle zeolites with a five-membered ring: CN, 1260126[P]. 2006-06-21.)
- [15] ZHAO X B, GUO X W, WANG X S. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst[J]. Fuel Process Technol, 2007, 88(3): 237-241.
- [16] VARGAS A, MONTOYA J A, MALDONADO C, HERNANDEZ-PEREZ I, ACOSTA D R, MORALES J. Textural properties of Al_2O_3 -TiO₂ mixed oxides synthesized by the aqueous sol method[J]. Micropor Mesopor Mater, 2004, **74**(1/3): 1-10.
- [17] 秦朗,王亚明. 分子筛催化剂的积炭失活原因探讨[J]. 化工时刊, 2004, 18(11): 8-9.
 (QIN Lang, WANG Ya-ming. Discussion on the causes of coking deactivation of zeolite[J]. Chemical Industry Times, 2004, 18(11): 8-9.)