文章编号: 1000-7032(2014)03-0332-05

高效率 LD 端面抽运准连续 355 nm 激光器

李玉瑶',王 菲'*,焦正超',车 英',王晓华2

(1. 长春理工大学 光电工程学院, 吉林 长春 130022; 2. 长春理工大学 理学院, 吉林 长春 130022)

摘要:报道了一台激光二极管(LD)端面抽运 Nd: YVO₄晶体腔内倍频和腔外和频相结合的声光调 Q 准连续 355 nm 紫外激光器。采用 LD 端面抽运双侧翼键合 YVO₄ 基质的 Nd: YVO₄晶体,在腔内置入 I 类相位匹配的 LiB₃O₅(LBO)晶体进行倍频实现 1 064 nm 和 532 nm 双波长准连续激光输出,通过消色差透镜将双波长激光 聚焦耦合到 II 类相位匹配的 LBO 晶体中进行和频,并采用双向和频光路,获得了高效率、高光束质量、高重复 频率的准连续 355 nm 紫外激光输出。在抽运功率为 28.6 W、重复频率为 20 kHz 时,355 nm 激光最大输出功 率 4.2 W,脉宽为 20.6 ns,光-光转换效率为 14.7%,激光器光束质量因子 M_x² 和 M_y² 分别为 1.29 和 1.23。

关 键 词: 全固态激光器; 355 nm 紫外激光器; 端面抽运; 声光调 Q; 和频 中图分类号: 0436 **文献标识码:** A **DOI**: 10.3788/fgxb20143503.0332

High Efficient LD End-pumped QCW 355 nm Laser

LI Yu-yao¹, WANG Fei^{1*}, JIAO Zheng-chao¹, CHE Ying¹, WANG Xiao-hua²

College of Opto-Electronics Engineering, Changchun University of Science and Technology, Changchun 130022, China;
 College of Science, Changchun University of Science and Technology, Changchun 130022, China)
 * Corresponding Author, E-mail: feeewang@163.com

Abstract: A laser diode (LD) end pumped acousto-optic Q-switched Nd: YVO₄ solid state 355 nm ultraviolet laser is reported by using intra-cavity double frequency and extra-cavity sum frequency technique. Nd: YVO₄ crystal bonded by YVO₄ in its both sides is end-pumped by LD, and type I phase matched LiB₃O₅ (LBO) as the second harmonic generation crystal is placed in the cavity. 1 064 nm and 532 nm dual wavelength output from the cavity are coupled into the type II phase matched LBO crystal through an achromatic lens. High efficiency, good beam quality and high repetition rate 355 nm ultraviolet laser is obtained by sum frequency mixing back and forth. The 4.2 W 355 nm laser is obtained at the pump power of 28.6 W and the repetition frequency of 20 kHz, with the pulse width as short as 20.6 ns. The optical to optical conversion efficiency is about 14.7%. The beam quality factor M_x^2 and M_y^2 of 355 nm ultraviolet laser are 1.29 and 1.23, respectively.

Key words: diode pumped lasers; 355 nm ultraviolet laser; end-pumped; acousto-optic Q-switched; sum frequency mixing

1 引

全固态激光器具有光束质量好、寿命长、稳定

性好及体积紧凑等诸多优点,在工业、军事等领域 得到了广泛的应用^[1]。全固态紫外激光器更以 波长短、单光子能量高、分辨率高等突出优点而成

言

收稿日期: 2013-08-23;修订日期: 2013-11-04

基金项目:国家自然科学基金(61076039);吉林省科技发展计划(20110328)资助项目

为微细加工的理想光源之一,其在半导体、聚合物、陶瓷及铜质合金等材料的加工方面具有明显的优势和广阔的应用前景^[24]。355 nm 波长是紫外波段最具有代表性的激光波长,其主要是通过非线性光学频率变换的方式来获得^[56]。如何获得高功率、高效率和高光束质量的355 nm 紫外激光是研究的热点^[79]。激光介质采用 Nd: YAG 晶体时,由于和频过程中的偏振失配问题,光-光转换效率较低^[10-11]。采用 Nd: YVO₄晶体作为激光介质解决了上述问题,通过双端面抽运或 MOPA方式,有效地提高了获得355 nm 激光功率,但在改善光-光转换效率方面的作用有限^[12-13]。

本文采用 LD 单端面抽运双侧翼键合 YVO₄ 基质的 Nd: YVO₄晶体,通过腔内倍频获得 1 064 nm 和 532 nm 双波长输出,利用消色差透镜聚焦 和双向和频的方式实现了 355 nm 激光输出。

2 激光器谐振腔设计

采用两个曲率半径均为 300 mm 的凹面镜构 成 V 型腔结构,激光晶体(等效为透镜)位于等效 谐振腔的中心位置。应用激光器谐振腔设计软件 优化设计腔长为 200 mm。利用稳腔条件法测量 激光晶体的热焦距曲线如图 1 所示。在抽运功率 为 28.6 W 时,激光晶体的热焦距约为 142 mm,在 此状态下计算模拟了腔内不同位置的基频光基模 光斑半径曲线,如图 2 所示。由于激光晶体热透 镜的存在,基频光基模光斑在激光晶体的两侧各 有一个束腰,若将倍频晶体置于激光晶体右侧束 腰上可以获得高的倍频转换效率,通过优化设计 输出镜膜系获得适当比例的 1 064 nm 和 532 nm 双波长激光输出。

在忽略倍频晶体热透镜效应的前提下,激光

图 2 腔内基频光基模光斑半径曲线

晶体和倍频晶体中心的基频光基模光斑尺寸随着 激光晶体热焦距的变化曲线如图3所示。随着激 光晶体热焦距的缩短,激光晶体中心的基频光基 模光斑尺寸ω₀在两个稳区中都逐渐增大,这意味 着增加抽运功率则抽运光与基频光的模式匹配度 在增大,这将有利于提高获得基频光的功率和效 率;但在非稳区向第二稳区过渡区附近,上述表现 恰好相反。在倍频晶体中心位置,基频光基模光 斑尺寸ω_№随着激光晶体热焦距的缩短而逐渐减 小,相应的基频光功率密度增大,从而利于提高倍 频转换效率。

图 3 腔内晶体中心的基频光基模光斑尺寸/热焦距曲线

3 实验装置

实验装置如图 4 所示。抽运源为德国 Limo 公司生产的 808 nm 光纤耦合输出半导体激光器, 光纤芯径 200 μm,光纤数值孔径为 0.22,实际最 大输出功率 28.6 W,采用透镜准直和聚焦的方式 获得抽运光斑尺寸约为 180 μm,通过精密调节使

抽运光与谐振腔中的腔模达到良好的匹配。根据 本文第二部分激光器谐振腔设计, M, 和 M, 均为 曲率半径 300 mm 的凹面反射镜, M₁ 镜对 1 064 nm 波长高反射(R=99.8%); M, 为双波长输出 镜(T₁₀₆₄ = 6.64%, T₅₃₂ = 99.87%),以满足 532 nm 和 1064 nm 两个波长同时输出。当1064 nm 波长 透射率较高时,该波长输出的功率将变高,相应的 532 nm 倍频光功率会下降;若1064 nm 波长透射 率较低,则会导致该波长输出的功率降低,两个波 长光的功率比例偏大,进而影响后续的和频转换 效率。M,镜为平面分色镜,与谐振腔光轴呈 30° 角放置,其对 30°角入射的 1 064 nm 波长光反射 率为99.9%,对808 nm 波长光透射率为99.6%。F 为消色差聚焦透镜,其对1064 nm 和532 nm 两 个波长的焦距均为100 mm,表面镀制对1064 nm 和 532 nm 两个波长的减反射膜(T_{1064.532} ≥ 99.7%),以保证 532 nm 和1064 nm 两个波长激 光能够得到充分利用。若对此两波长的透射率降 低,则和频转换的效率及和频光功率都将降低。 M₄ 为平面分光镜,与光轴呈 45°角放置,其双面 均镀制光学薄膜,对45°角入射的1064 nm 和532 nm 波长减反射(T≥99.9%),对45°角入射的355 nm 波长高反射(R≥99.9%),从而将和频产生的 355 nm 激光从 1 064,532,355 nm 三波长光路中 分离出来,并保证该分光镜对1064 nm 和532 nm 波长具有较低的损耗。M,和 M,均为曲率半径

- 图 4 LD 端面抽运准连续 355 nm 激光器实验装置。(a) 实验光路;(b) 实验系统照片。
- Fig. 4 Experimental setup of LD end-pumped QCW 355 nm laser. (a) Experiment optical system. (b) Photo of experiment system.

图 5 Nd: YVO₄晶体示意图 Fig. 5 Schematic of Nd: YVO₄ crystal

200 mm 的凹面反射镜,其中 M₅ 镜的凹面镀制 1 064,532,355 nm 三波长高反射膜($R_{1064,532,355} \ge$ 99.6%),从而减少该反射镜对为3个波长的透射 损耗,并与消色差聚焦透镜 F 同光轴且二者焦点 重合;M₆ 镜的凹面镀制 1 064 nm 和 532 nm 双波 长高反射膜和 355 nm 波长的减反射膜($R_{1064,532} \ge$ 99.9%, $T_{355} \ge$ 99.6%),从而抑制 1 064 nm 和 532 nm 波长的光混入到 355 nm 波长光路中,M₆ 镜与 M₅ 镜焦点重合。

所用的声光调制器为英国古奇公司(Gooch & Housego)生产的风冷型声光Q开关,置于激光晶体的左侧束腰位置。激光晶体选用双侧翼键合 YVO₄ 基质的 Nd: YVO₄晶体,尺寸为2 mm×(3 + 2+3) mm×15 mm,如图5 所示。其中 Nd: YVO₄ 晶体位于中间部位, a 轴切割,掺杂摩尔分数为 0.3%,尺寸为2 mm×2 mm×15 mm,前后端面均 镀制 808 nm 和1 064 nm 的增透膜(T_{808} = 99.2%, T_{1064} = 99.97%)。激光晶体的上下侧面蒸镀一层 厚度为 0.5~0.8 mm 金属铟,并将其装夹在铜热 沉中。由于 YVO₄ 基质和金属铟的热导率高于 Nd: YVO₄的热导率,因此 YVO₄ 基质和金属铟的 作用类似于热沉。该结构有效地提高了热沉与 Nd: YVO₄晶体间的联接紧密性,利于改善 Nd: YVO₄晶体间的联接紧密性,利于改善 Nd: YVO₄晶体的热特性,提高输出激光的光束质量。

为了提高和频转换时的偏振匹配度, 倍频晶体、和频晶体分别选用 I 类和 II 类相位匹配的 LBO 晶体, 尺寸均为3 mm ×3 mm ×16 mm, 在其 4 个侧面包裹一层铟箔, 然后将其装夹到铜热沉 中。倍频晶体 LBO₁(I: θ =90°, φ =10.8°) 左端 面镀有对 1 064 nm 波长增透(T=99.9%)和 532 nm 波长高反射(R=99.6%)的光学薄膜, 右端面 镀有对 1 064 nm 和 532 nm 双波长的增透膜(T> 99.5%)。根据图 2 计算模拟结果和图 4 所示实 验装置, 倍频晶体 LBO₁ 中心与输出镜 M₃ 间距离 为 50 mm。和频晶体 LBO₂(II: θ =43.3°, φ = 90°) 双端面镀有对 1 064, 532, 355 nm 三波长增 透膜(T≥99.5%),和频晶体的中心位于消色差 聚焦透镜和凹面反射镜 M₅的共同焦点上。声光 Q 开关、激光晶体和 LBO 晶体均采用半导体制冷 片进行制冷,精确控制 LBO₁和 LBO₂ 晶体的工作 温度。

4 结果与讨论

在重复频率为20 kHz时,通过分光测量获得 LD 端面抽运 1 064 nm 和 532 nm 双波长激光器 的输出功率曲线,如图6所示。随着抽运功率的 增大,1064 nm 和532 nm 两个波长输出功率均呈 现增长的趋势。1064 nm 波长激光功率曲线在抽 运功率为20.6 W时出现拐点。根据激光器谐振 腔稳定性条件可知,这是由于激光器运转开始进 入非稳定工作区域所致,相应的激光输出功率将 随着抽运功率的增大而降低。当抽运功率进一步 加大时,激光晶体的热焦距相应变短,从而使得激 光器谐振腔又满足了稳定性条件,即开始进入第 二稳定工作区。此后,激光功率又将随着抽运功 率的增大而迅速增长,因此激光输出功率曲线中 存在一个谷值,对应抽运功率为21.5 W。当抽运 功率增大到 28.6 W 时,1 064 nm 波长激光输出 功率达到 6.14 W。在激光器运转在非稳定区域 时,532 nm 激光功率无明显的下降趋势,但该阶 段激光功率变化平缓,抽运功率为28.6 W时的 输出功率为 5.02 W。

图 6 1 064 nm 和 532 nm 激光的功率曲线 Fig. 6 The curves of 1 064 nm and 532 nm laser power

图 7 给出了单次和频(无反射镜 M₅ 和 M₆ 时)与往返和频(含有反射镜 M₅ 和 M₆ 时)获得的 355 nm 激光功率曲线。随着抽运功率的增大, 355 nm 激光功率在逐渐增大。激光器工作在非 稳区附近时,基频光和倍频光的光束质量变差,功 率下降,导致和频转换效率降低,355 nm 激光功 率曲线出现明显的功率拐点。进入第二稳区后, 355 nm 激光功率增加迅速。在其他条件相同的 状态下,1064 nm 和532 nm 双波长激光往返两次 穿过和频晶体 LBO₂,并且 M₆镜的存在使得这两 个波长激光得到了更充分利用,往返和频获得的 355 nm 激光功率明显高于单次和频情况。在抽 运功率 28.6 W 时,355 nm 激光最大输出功率达 到 4.2 W,总的光-光转换效率达到 14.7%。在实 验室环境温度 25 ℃条件下,利用激光功率计实时 监测激光功率 2 h,功率不稳定度为 2.2%。

在抽运功率为28.6 W、重复频率为20 kHz

图 8 355 nm 激光的脉冲波形

时,利用数字示波器测量 355 nm 激光的脉冲波形 如图 8 所示,脉冲宽度为 20.6 ns。利用美国 SPIRICON 公司的 M2-200 光斑分析仪对 355 nm 激光光束质量进行测量,结果如图 9 所示。355 nm 激光器光束质量因子 $M_x^2 \ M_y^2$ 分别为 1.29 和 1.23。图 9 的左上角为 355 nm 激光的光斑三维 分布。

5 结 论

采用德国 Limo 公司生产的 808 nm 光纤耦合 半导体激光器抽运双侧翼键合 YVO₄ 基质的 Nd:

YVO₄晶体,用英国古奇公司生产的风冷型声光 Q 开关调 Q,在腔内置入 I 类相位匹配的 LBO 晶体 倍频获得 1 064 nm 和 532 nm 双波长激光输出, 在腔外用消色差聚焦透镜将 1 064 nm 和 532 nm 双波长激光耦合到 II 类相位匹配的 LBO 晶体上, 同时用反射镜反射进行往返和频,有效地提高了 和频转换效率。在抽运功率为 28.6 W、重复频率 为 20 kHz 时,355 nm 激光最大输出功率为 4.2 W,脉冲宽度为 20.6 ns,单脉冲能量为 210 μ J,总 光-光转换效率为 14.7%,光束质量因子 M_x^2 、 M_y^2 分别为 1.29 和 1.23。

参考文献:

- [1] Wang J L, Yin F C, Song Z X, et al. An all-solid-state laser with high stability output power [J]. Chin. J. Lumin. (发光学报), 2011, 32(8):830-833 (in Chinese).
- [2] Romolia L, Fischerb F, Klingb R. A study on UV laser drilling of PEEK reinforced with carbon fibers [J]. Opt. Laser Eng., 2012, 50(3):449-457.
- [3] Tian Z R, Liu Y F, Jin Y, et al. Fabrication of polymer distributed feedback laser by direct interference ablation [J]. Chin. J. Lumin. (发光学报), 2012, 33(2):197-200 (in Chinese).
- [4] Yang H, Huang S, Duan J, et al. Contrastive study on laser ablation of single-crystal silicon by 1 030 nm femtosecond laser and 355 nm nanosecond laser [J]. Chin. J. Lasers (中国激光), 2013, 40(1):01030031-1-6 (in Chinese).
- [5] Ding X, Wang R, Zhang H, et al. Generation of 3.5 W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser [J]. Opt. Exp., 2008, 16(7):4582-4587.
- [6] Li B, Yao J Q, Ding X, et al. High efficiency extra-cavity frequency conversion UV laser [J]. High Power Laser and Particle Beams (强激光与粒子束), 2011, 23(2):290-292 (in Chinese).
- [7] Ya X, Liu Q, Gong M, et al. High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation
 [J]. Appl. Phys. B, 2009, 95(2):323-328.
- [8] Hong H, Huang L, Liu Q, et al. Compact high-power, TEM₀₀ acousto-optics Q-switched Nd: YVO₄ oscillator pumped at 888 nm [J]. Appl. Opt., 2012, 51(3):323-327.
- [9] Jung C, Shin W, Yu B A, et al. Enhanced 355-nm generation using a simple method to compensate for walk-off loss [J]. Opt. Exp., 2012, 20(2):941-948.
- [10] Li B, Yao J, Ding X, et al. High efficiency generation of 355 nm radiation by extra-cavity frequency conversion [J]. Opt. Commun., 2010, 283(18):3497-3499.
- [11] Zhang B T, Huang H T, Yang J F, et al. Generation of 7.8 W at 355 nm from an efficient and compact intracavity frequency-tripled Nd: YAG laser [J]. Opt. Commun., 2010, 283(11):2369-2372.
- [12] Lu T T, Li X L, Zang H G, et al. Watt level high repetition rate ultraviolet laser with La₃Ga₅SiO₁₄ electro optic Q switch [J]. Chin. J. Lasers (中国激光), 2011, 38(4):04020051-1-5 (in Chinese).
- [13] Yan X, Liu Q, Chen H, et al. 35.1 W all-solid-state 355 nm ultraviolet laser [J]. Laser Phys. Lett. , 2010, 7(8):563-568.

李玉瑶(1982 -),女,吉林松原人, 博士研究生,主要从事现代光学技 术、激光测试技术方面的研究。 E-mail: liyuyao1983@163.com

王菲(1977-),男,安徽宿州人,讲师, 2005年于北京工业大学获得硕士学 位,主要从事全固态激光技术、激光测 试技术方面的研究。

E-mail: feeewang@163.com