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An optimal solution for economic production

quantity models with deteriorating items

and time-varying production cost∗

BAI Qingguo1,2,† XU Jianteng2 ZHANG Yuzhong2 XU Xianhao1

Abstract A generalized economic production quantity model with deteriorating
items over a finite planning horizon is considered in this paper. The unit production
cost, the production rate and the demand rate are assumed to be known and continuous
functions of time, and the forgetting effect of setup cost is incorporated into the problem.
Shortages are not allowed in this model. A mixed-integer constraint optimization math-
ematical model in which the objective is to minimize the total cost is established and
the conditions of the optimal solution for this problem are derived. A discrete variable
in the total cost function is relaxed to the continuous variable and this technique is used
to prove the uniqueness and optimality of the optimal solution for a special case. In
addition, the optimal solution of the special case is regarded as the initial condition to
simplify the search process of finding the optimal solution of the generalized problem.
Finally, a numerical example is provided to illustrate the results.
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0 Introduction

The traditional economic production quantity (EPQ) model is widely used by prac-

titioners as a decision-making tool for inventory control. It plays an important role in

determining the production quantity on a single facility so as to meet the deterministic de-

mand over an infinite planning horizon. Currently, Many researchers focus their study on the

generalized EPQ model for deteriorating items. Deterioration is defined as decay, evapora-

tion, obsolescence, and loss of quality marginal value of commodity that result in decreasing

usefulness from its original condition. In reality, a lot of products deteriorate during storage,

like vegetables, milks, and fruits. Misra[1] initially studied the EPQ model for deteriorat-

ing items with both varying and constant rate of deterioration. Pasandideh and Niaki[2]

expanded the EPQ model by assuming that the orders may be delivered discretely in the

form of multiple pallets. They formulated the problem as a non-linear-integer-programming

model and proposed a genetic algorithm to solve it. Teng and Chang[3] studied the optimal

replenishment policies in the EPQ model under two levels of trade credit policies. More

information related to this issue can be found in [4–9].

All of the above-mentioned literatures assumed that the demand rate or deterioration

rate varies with time and did not incorporate the dynamic unit cost or the setup cost into

their models. In fact, in time-based competition today, it is a quite natural phenomenon

that the unit cost or the setup cost of products varies with time. For instance, seasonal vari-

ations may cause the increase or decrease in the unit production cost of certain commodity.

Consequently, the EPQ problem with time-varying cost has been studied by researchers.

Teng et al.[10] extended the EPQ model without deterioration in which the demand rate

and the unit production cost are positive and fluctuating with time. In addition, owing

to the increasing emphasis on time-based competition, the importance of learning and for-

getting effects on production has been widely recognized. Some researchers extended the

EPQ model by incorporating the forgetting effect into setup cost or the production rate.

The forgetting effect is mainly caused by a break between two consecutive production runs

and leads to retrogression in learning. Carlson and Rowe[11] firstly presented the forgetting

curve equation to describe the forgetting or interruption portion of the learning cycle by

improving the learning cure equation. Other extensions can be found in [12–14]. However,

to our best knowledge, few researchers have considered the EPQ model for deteriorating

items with forgetting effect of setup cost and time-varying unit production cost over the

finite planning horizon.

In view of the above arguments, this paper incorporates the forgetting effect of setup

cost and time-varying unit production cost into the EPQ model for deteriorating items

over a finite planning horizon. The production rate and demand rate are time-varying and
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the unit production cost is continuous, differentiable and non-increasing function with time

in this generalized EPQ model. A mixed-integer non-linear cost minimization model is

formulated to determine the optimal production quantity, start time and end time over the

finite planning horizon.

The remainder of this paper is organized as follows. Section 1 defines the notations

used throughout the paper and states the basic assumptions. The generalized EPQ model is

derived in Section 2. Section 3 proves that the optimal production schedule exists uniquely

and the total cost is a convex function of the replenishment times. A simple and efficient

algorithm to find the optimal solution is also developed. In addition, the search process of

the optimal solution is simplified by proving some optimal properties of the special case as a

possible start value in this section. A numerical example is given to illustrate the algorithm

and results in Section 4. Conclusion and future research suggestions are provided in Section

5.

1 Assumptions and notation

The generalized EPQ model considered in this paper is on the basis of the following

assumptions:

1) The forgetting phenomenon for the setup cost in production is characterized by the

forgetting curve equation proposed in [11].

2) shortages are not allowed.

3) lead time is zero and replenishment is instantaneous.

4) The planning horizon is finite and is taken as H time units. The initial and final

inventory levels of the planning horizon are both zero.

5) A constant fraction of the on-hand inventory deteriorates per unit of time and there

is no repair or replacement of the deteriorated inventory.

6) The unit production cost is predetermined at the beginning of each production cycle.

For convenience, the following notations are used throughout this paper:

f(t) the demand rate at time t. Without loss of generality, we assume that f(t) is

continuous in the planning horizon [0, H], and f(t) > 0 over (0, H].

K(t) the production rate at time t, which satisfies K(t) > f(t) for any t. We assume

that K(t) is continuous in the planning horizon [0, H], and K(t) > 0 over (0, H].

I(t) the inventory level at time t.

c(t) the unit production cost at time t. We assume that c(t) is positive and non-

increasing in the planning horizon [0, H].

θ the deterioration rate.

c1 the holding cost per unit product per unit time.

c2 the deterioration cost per unit deteriorated product.

φ the forgetting rate. It indicates increment speed of setup cost.

b the forgetting coefficient, b = − lnφln2 , 0 < b < 1.

n the total number of replenishments over [0, H] (a decision variable).
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Ai the setup cost for the ith production cycle, A1 6 · · · 6 An, i = 1, · · · , n. Following

the forgetting effect curve, Ai can be characterized by Ai = A1i
b for i = 1, · · · , n.

si the start time of the ith production cycle with s1 = 0 and sn+1 = H (a decision

variable).

ti the end time of the ith production cycle. It is also the time when inventory level

reaches the maximum in the ith production cycle (a decision variable).

2 Mathematical model

The objective of the generalized EPQ problem is to determine the number of replenish-

ments n, and the start time {si} and end time {ti} of the production over a finite horizon

[0, H] in order to minimize the total relevant cost. The ith production cycle starts at time

si and ends at time ti, ti > si. Since the production rate is higher than the demand rate,

a portion of products is used to meet the current demand and the rest is accumulated as

inventory. As a result, the inventory level is gradually increasing from si to ti. After the

production stops at ti, the accumulated inventory then gradually decreases due to demand

until it reduces to zero at si+1. Consequently, the inventory level for the generalized EPQ

problem with forgetting effect of setup cost can be shown in Fig. 1.

Fig. 1 Graphical representation of inventory level

Since the inventory is depleted by the combined effect of production, demand and

deterioration, the inventory level at time t during the production run [si, ti] is governed by

the following differential equation

dI(t)

dt
= K(t)− f(t)− θI(t), si 6 t 6 ti, (2.1)

with the boundary condition I(si) = 0. Solving the differential equation (2.1), we have

I(t) =

∫ t

si

[K(u)− f(u)]eθ(u−t)du, si 6 t 6 ti. (2.2)

As a result, we obtain the time-weighted inventory during the production run [si, ti] as

I1i =

∫ ti

si

I(t)dt =
1

θ

∫ ti

si

[K(t)− f(t)][1− eθ(t−ti)]dt. (2.3)

Similarly, the inventory level at time t during [ti, si+1], I(t) can be represented by the

following differential equation
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dI(t)

dt
= −f(t)− θI(t), ti 6 t 6 si+1, (2.4)

with the boundary condition I(si+1) = 0. Solving the differential equation (2.4), we have

I(t) =

∫ si+1

t

eθ(u−t)f(u)du, ti 6 t 6 si+1. (2.5)

Thus, the cumulative inventory during [ti, si+1] is

I2i =

∫ si+1

ti

I(t)dt =
1

θ

∫ si+1

ti

[eθ(t−ti) − 1]f(t)dt. (2.6)

Noting the continuity of I(t) at time ti, from (2.2) and (2.5) we have∫ ti

si

[K(t)− f(t)]eθ(t−ti)dt =

∫ si+1

ti

eθ(t−ti)f(t)dt, (2.7)

which is followed by ∫ ti

si

K(t)eθ(t−ti)dt =

∫ si+1

si

eθ(t−ti)f(t)dt. (2.8)

From (2.3) and (2.6), the holding cost for the ith cycle is

HCi = c1(I1i + I2i ), i = 1, · · · , n. (2.9)

Using partial integration, we have

HCi = c1

{1

θ

∫ ti

si

[K(t)− f(t)][1− eθ(t−ti)]dt+
1

θ

∫ si+1

ti

[eθ(t−ti) − 1]f(t)dt
}
. (2.10)

Similarly, the deterioration cost in the ith cycle is

DCi = c2θ(I
1
i + I2i )

= c2

{∫ ti

si

[K(t)− f(t)][1− eθ(t−ti)]dt+

∫ si+1

ti

[eθ(t−ti) − 1]f(t)dt
}
. (2.11)

Recall that the unit production cost is predetermined at the beginning of each produc-

tion cycle in assumption 6, we obtain the unit production cost in the ith cycle is c(si) and

the production cost in the ith cycle is

PCi = Kc(si)(ti − si). (2.12)

The total cost in the finite planning horizon can be expressed as

TC(n, {si}, {ti}) =

n∑
i=1

Ai +

n∑
i=1

PCi +

n∑
i=1

(HCi +DCi)

=

n∑
i=1

Ai +

n∑
i=1

c(si)

∫ ti

si

K(t)dt+

n∑
i=1

(c1 + θc2)

θ

·
{∫ ti

si

K(t)[1− eθ(t−ti)]dt+

∫ si+1

si

[eθ(t−ti) − 1]f(t)dt
}
. (2.13)



114 BAI Qingguo, XU Jianteng, ZHANG Yuzhong, XU Xianhao 17ò

Equation (2.13) shows that the total cost depends on a discrete variable n, and con-

tinuous variables si and ti. Then the optimal production schedule of the generalized EPQ

problem with s1 = 0 and sn+1 = H can be solved via the following optimization model

min TC(n, {si}, {ti})

s.t.

∫ ti

si

K(t)eθ(t−ti)dt =

∫ si+1

si

eθ(t−ti)f(t)dt, i = 1, · · · , n, (2.14)

si 6 ti 6 si+1, i = 1, · · · , n. (2.15)

3 The theoretical results and solution procedure

3.1 The theoretical results

Since the total cost TC(n, {si}, {ti}) is a mixed-integer non-linear programming where

the decision variable n is an integer and the decision variables si and ti are continuous real

values. Usually, it is difficult to obtain a closed form solution for a mixed-integer non-linear

programming problem. Thus, we solve the problem using the following two-stage procedure:

(1) for a given value of n, we present an algorithm which can be used to determine the

optimal s∗i , and t∗i ;

(2) obtain the optimal value of n which minimizes the total cost TC(n, {si}, {ti}). For

any given value of n, if we ignore (2.15), the problem is reduced to an equality-constrained

problem in which the Lagrange is

L(n, {si}, {ti}, {λi}) = TC(n, {si}, {ti}) +

n∑
i=1

λi

{∫ ti

si

K(t)eθ(t−ti)dt

−
∫ si+1

si

eθ(t−ti)f(t)dt
}
, (3.1)

where λi, i = 1, · · · , n, is the Lagrangian multiplier.

By taking the first partial derivatives of L(n, {si}, {ti}, {λi}) with respect to si, ti and

λi, and setting the result to zero. After simplification, we obtain the following optimality

conditions

λi = −c(si), (3.2)

c′(si)

∫ ti

si

K(t)dt− c(si)K(si) +
(c1 + θc2)

θ
{[eθ(si−ti) − 1]K(si) + [eθ(si−ti−1)

−eθ(si−ti)]f(si)}+ c(si)e
θ(si−ti)[K(si)− f(si)] + c(si−1)eθ(si−ti−1)f(si) = 0

(3.3)

and ∫ ti

si

K(t)eθ(t−ti)dt =

∫ si+1

si

eθ(t−ti)f(t)dt. (3.4)

From (3.2)–(3.4), we can obtain the following theorem.
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Theorem 3.1 For any given n, the optimal values of {si} and {ti} are uniquely deter-

mined by (3.3) and (3.4).

Proof TC(n, {si}, {ti}) is a continuous and differentiable function minimized over the

compact set [0, H]2n. Hence there exists a global minimum. The optimal value of si cannot

be on the boundary since TC(n, {si}, {ti}) increases when any one of the si is shifted to the

end points 0 or H. Consequently, any optimal solution to the problem must be an interior

point, which implies that there exists at least one solution to (3.3) and (3.4) simultaneously.

Next, we prove the solution of (3.3) and (3.4) is unique. For any given ti−1 and si, we let

F (x) = c′(si)

∫ x

si

K(t)dt− c(si)K(si) +
(c1 + θc2)

θ
{[eθ(si−x) − 1]K(si)

+[eθ(si−ti−1) − eθ(si−x)]f(si)}+ c(si)e
θ(si−x)[K(si)− f(si)] + c(si−1)

×eθ(si−ti−1)f(si). (3.5)

Since c(t) is a positive and non-increasing function in [0, H] and K(t) > f(t), we have

F
′
(x) = c′(si)K(x) + [c1 + θc2 + θc(si)][f(si)−K(si)]e

θ(si−x) < 0. (3.6)

In addition,

F (si) =
(c1 + θc2)

θ
[eθ(si−ti−1) − 1]f(si)− c(si)f(si) + c(si−1)eθ(si−ti−1)f(si)

>
[ (c1 + θc2)

θ
+ c(si)

]
[eθ(si−ti−1) − 1]f(si) > 0 (3.7)

and F (+∞) < 0, therefore, for any given ti−1 and si, there exists a unique t∗i (> si) such

that F (t∗i ) = 0, which implies that solution to (3.3) uniquely exists. Similarly, let

G(x) =

∫ ti

si

K(t)eθ(t−ti)dt−
∫ x

si

eθ(t−ti)f(t)dt. (3.8)

We then obtainG(ti) =
∫ ti
si

eθ(t−ti)[K(t)−f(t)]dt > 0, G(+∞) < 0 andG
′
(x) = −eθ(x−ti)f(x)

< 0. As a result, we know that there exists a unique s∗i+1(> ti) such that G(s∗i+1) = 0. Thus,

the solution to (3.4) uniquely exists.

The result of Theorem 3.1 reduces the 2n-dimensional problem of finding s∗i and t∗i to a

one-dimensional problem. Since s1 = 0, we only need to find t∗1 to generate s∗2 by (3.4), and

then the rest of {s∗i } and {t∗i } uniquely by repeatedly using (3.3) and (3.4). For any chosen

t∗1, if s∗n = H, then t∗1 is chosen correctly. Otherwise, we can easily find the optimal t∗1 by

standard search techniques. For any given value of n, the solution procedure for finding s∗i
and t∗i can be obtained by the algorithm in [5] with L = 0 and U = H/4n or any standard

search method.

We employ the following approximation for the term of the setup cost in the objective

function of the problem (for example, [15, 16]).

n∑
i=1

Ai =

n∑
i=1

A1i
b ≈

∫ n

0

A1i
bdi =

A1

b+ 1
nb+1. (3.9)
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Next, by applying Bellman’s principle of optimality[17], we prove the total cost TC(n,

{si}, {ti}), TC(n) for short, is a convex function of n. Therefore, the search for the optimal

value of n is reduced to find local minimum.

Theorem 3.2 TC(n) is convex in n.

Proof The proof is similar to that of [10], in which deterioration, time-varying pro-

duction rate and forgetting effect of setup cost are not considered. For simplicity, let

TC(n) =

n∑
i=1

Ai + T (n, 0, H), (3.10)

where
n∑
i=1

Ai = A1

b+1n
b+1 and T (n, 0, H) =

n∑
i=1

(PCi + HCi + DCi). It is easy to know that

A1

b+1n
b+1 is an increasing convex function of n. Next, by Bellman’s principle of optimality,

we know that the minimum value of T (n, 0, H) can be calculated by

T ∗(n, 0, H) = min
t∈[0,H]

{T ∗(n− 1, 0, t) + T (1, t,H)}. (3.11)

Let t = H, we have T ∗(n − 1, 0, H) > T ∗(n, 0, H). The strict inequality follows since

minimum in (3.11) occurs at an interior point. Thus T ∗(n, 0, H) is strictly decreasing in n.

Recursive application of (3.11) yields the following relation:

s∗i (n, 0, H) = s∗i (n− j, 0, s∗n−j(n, 0, H)), i = 1, · · · , n− j − 1, j = 1, · · · , n− 2, (3.12)

where s∗n(n, 0, H) is the start time of the nth production when n production cycles are

executed in [0, H]. To prove T ∗(n, 0, H) is strictly convex in n, we choose H1 and H2 such

that

s∗n(n+ 1, 0, H1) = s∗n+1(n+ 2, 0, H2) = H, (3.13)

and s∗1(n+ 1, 0, H1) = s∗1(n+ 2, 0, H2) = 0. Employing the principle of optimality on (3.13)

again, we have

T ∗(n+ 1, 0, H1) = min
t∈[0,H1]

{T ∗(n, 0, t) + T (1, t,H1)}

= T ∗(n, 0, H) + T (1, H,H1) (3.14)

and

T ∗(n+ 2, 0, H2) = min
t∈[0,H2]

{T ∗(n+ 1, 0, t) + T (1, t,H2)}

= T ∗(n+ 1, 0, H) + T (1, H,H2). (3.15)

Since H is an optimal interior point in both T ∗(n+ 1, 0, H1) and T ∗(n+ 2, 0, H2), we

know that

∂T ∗(n, 0, t)

∂t
+
∂T ∗(1, t,H1)

∂t

∣∣∣
t=H

= 0 (3.16)
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and

∂T ∗(n+ 1, 0, t)

∂t
+
∂T ∗(1, t,H2)

∂t

∣∣∣
t=H

= 0. (3.17)

From equation (3.4), we have
n∑
i=1

∫ ti
si
K(t)eθ(t−ti)dt =

n∑
i=1

∫ si+1

si
eθ(t−ti)f(t)dt and we take the

partial derivatives of above equation with respect to si, then the following equation holds.

K(si)e
θ(si−ti) = eθ(si−ti)f(si)− eθ(si−ti−1)f(si). (3.18)

Utilizing the fact that

T (1, a, b) = c(a)

∫ b

a

K(t)dt+
(c1 + θc2)

θ

{∫ v

a

K(t)[1− eθ(t−v)]dt

+

∫ b

a

[eθ(t−v) − 1]f(t)dt
}
, (3.19)

where v is the production ending time. By equations (3.16) and (3.18), we obtain

∂T ∗(n, 0, t)

∂t

∣∣∣
t=H

= −∂T
∗(1, t,H1)

∂t

∣∣∣
t=H

=
{ (c1 + θc2)

θ
[1− eθ(H−t

∗
n(n,0,H))]− c(H)eθ(H−t

∗
n(n,0,H))

−c(s∗n(n, 0, H))eθ(H−t
∗
n(n,0,H))

}
f(H), (3.20)

where s∗n(n, 0, H) and t∗n(n, 0, H) are the last production starting and ending time when n

production cycles are executed in [0, H]. Similarly, from s∗n+1(n+ 2, 0, H2) = H, we have

∂T ∗(n+ 1, 0, t)

∂t

∣∣∣
t=H

= −∂T
∗(1, t,H2)

∂t

∣∣∣
t=H

=
{ (c1 + θc2)

θ
[1− eθ(H−t

∗
n+1(n+1,0,H))]− c(H)eθ(H−t

∗
n+1(n+1,0,H))

−c(s∗n+1(n+ 1, 0, H))eθ(H−t
∗
n+1(n+1,0,H))

}
f(H), (3.21)

where s∗n+1(n + 1, 0, H) and t∗n+1(n + 1, 0, H) are the last production starting and ending

time when n+ 1 production cycles are executed in [0, H]. For simplicity, let s∗j (j, 0, H) = s∗j
and t∗j (j, 0, H) = t∗j for j = n, n+ 1.

Subtracting equation(3.21) from equation (3.20) and using the fact that c(t) is positive

and no-increasing function, we have

∂[T ∗(n, 0, t)− T ∗(n+ 1, 0, t)]

∂t

∣∣∣
t=H

=
[ (c1 + θc2)

θ
+ c(a)

]
[eθ(H−t

∗
n) − eθ(H−t

∗
n+1)]f(H)

+[c(s∗n)eθ(H−t
∗
n) − c(s∗n+1)eθ(H−t

∗
n+1)]f(H) > 0, (3.22)

which implies that T ∗(n, 0, H)−T ∗(n+ 1, 0, H) is a strictly increasing function of H. Thus,

T ∗(n, 0, H)− T ∗(n+ 1, 0, H) < T ∗(n, 0, H1)− T ∗(n+ 1, 0, H1). (3.23)
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Again, by equation (3.11) and the optimality principle, we obtain

T ∗(n, 0, H1)− T ∗(n+ 1, 0, H1) = min
t∈[0,H1]

{T ∗(n− 1, 0, t) + T (1, t,H1)}

− T ∗(n, 0, H)− T (1, H,H1). (3.24)

Taking t = H into equation(3.24), we have

T ∗(n, 0, H1)− T ∗(n+ 1, 0, H1) < T ∗(n− 1, 0, H)− T ∗(n, 0, H). (3.25)

Therefore, we have

T ∗(n, 0, H)− T ∗(n+ 1, 0, H) < T ∗(n− 1, 0, H)− T ∗(n, 0, H), (3.26)

which implies T ∗(n, 0, H) is convex in n. Hence, TC(n) is also convex in n. This completes

the proof.

3.2 A special case of the primal problem

In this subsection, we investigated the special case with K(t) = K, f(t) = D and

c(t) = a and we can obtain some stronger results which may help to design the optimal

algorithm for general problem.

Theorem 3.3 The length of ti − si and the length of si+1 − si in the special case of

the primal problem with K(t) = K, f(t) = D and c(t) = a are equal, respectively. That is,

t1 − s1 = t2 − s2 = · · · = tn − sn and si+1 − si = H
n for i = 1, · · · , n.

Proof Substituting K(t) = K, f(t) = D and c(t) = a into (3.3) and (3.4), we have

K
(
a+

c1 + θc2
θ

)
[eθ(si−ti) − 1] = D

(
a+

c1 + θc2
θ

)
[eθ(si−ti) − eθ(si−ti−1)] (3.27)

and

K[1− eθ(si−ti)] = D[eθ(si+1−ti) − eθ(si−ti)]. (3.28)

By rearranging the equations (3.27) and (3.28), we have esi+1−ti = esi−ti−1 , i = 2, · · · , n.

We easily prove the function f(x) = eθx is a strictly monotonic function, moreover, we have

the following conclusion: for any x1, x2, if f(x1) = f(x2), then x1 = x2 holds. Hence

we conclude that si+1 − ti = si − ti−1, (i = 2, · · · , n) is unique determined. Combin-

ing the equation (3.27) or (3.28), we also can obtain ti−1 − si−1 = ti − si. Therefore,

si+1 − si = (si+1 − ti) + (ti − si), si+1 − si = H
n for i = 1, · · · , n hold.

Utilizing the fact that ex ≈ 1 + x, as x is small, we can approximately estimate the

length of production cycle. From equation (3.28), we have

Kθ(ti − si) ≈ K[eθ(ti−si) − 1] = D[eθ(si+1−si) − 1] = D(eθ
H
n − 1) (3.29)

and

ti − si =
D

Kθ
(eθ

H
n − 1), i = 1, · · · , n. (3.30)
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Substituting si+1 − si = H
n and (3.30) into (2.13), we obtain

TC(n) =
A1

b+ 1
nb+1 + na

D

θ
(eθ

H
n − 1) + n(c1 + θc2)

D

θ2
(eθ

H
n − 1)− (c1 + θc2)

DH

θ
. (3.31)

We note that the only decision variable in equation (3.31) is the discrete integer variable

n. On the other hand, according to the proof of Theorem 3.2, TC(n) is a convex function

of n. However, we also can prove this result using a different technique. By ignoring the

integer constraint of the decision variable n and taking the first derivative of equation (3.31)

and equating them to zero, we obtain

∂TC(n)

∂n
= A1n

b + a
D

θ
(eθ

H
n − 1)− aDH

n
eθ

H
n + (c1 + θc2)

D

θ2
(eθ

H
n − 1)

− (c1 + θc2)DH

θn
eθ

H
n = 0. (3.32)

Rearranging above equation, we can have the approximate real solution for the optimal

integer solution. In order to derive an optimal integer solution, we employ another technique

to prove the convexity of the total cost. By ignoring the integer constraint and taking the

second derivative of TC(n) with respect to n and substituting (3.32) into it, we have

∂2TC(n)

∂n2
=
D

n

[ab
θ

(1− e
θH
n ) +

abH

n
e
θH
n + (c1 + θc2)

b

θ2
(1− e

θH
n )

+
(c1 + θc2)bH

θn
e
θH
n +

aθH2

n2
e
θH
n +

(c1 + θc2)H2

n2
e
θH
n

]
. (3.33)

Set θH
n = x, we have

∂2TC(n)

∂n2
=
D

nθ

[
a+

(c1 + θc2)

θ

]
(x2ex + bxex − bex + b). (3.34)

Set f(x) = x2ex + bxex − bex + b, we can easily verify that f(0) = 0 and f
′
(x) =

ex[x2 + (b + 2)x] > 0 since 0 < b < 1 and x > 0. Hence f(x) > 0, and ∂2TC(n)
∂n2 > 0 which

means TC(n) is a convex function with respect to n.

Since n is an integer, the inequalities TC(n∗s) 6 TC(n∗s − 1) and TC(n∗s) 6 TC(n∗s + 1)

can be utilized to find the optimal integer solution n∗s. From TC(n∗s) 6 TC(n∗s−1), we have

A1

b+ 1
[(n∗s)

b+1 − (n∗s − 1)b+1] +
D(c1 + θa+ θc2)

θ2

[
n∗se

θH
n∗s − (n∗s − 1)e

θH
n∗s−1

]
6
D(c1 + θa+ θc2)

θ2
. (3.35)

On the other hand, the inequality TC(n∗s) 6 TC(n∗s + 1) can be shown as

A1

b+ 1
[(n∗s + 1)b+1 − (n∗s)

b+1] +
D(c1 + θa+ θc2)

θ2

[
(n∗s + 1)e

θH
n∗s+1 − (n∗s)e

θH
n∗s

]
>
D(c1 + θa+ θc2)

θ2
. (3.36)

The following theorem can be concluded from (3.35)–(3.36).

Theorem 3.4 The optimal number of replenishments, n∗s, is unique in the special case

with K(t) = K, f(t) = D, c(t) = a (a > 0), if the conditions (3.35) and (3.36) are satisfied.
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3.3 Solution procedure

The optimal value n∗ for general model is typically obtained using a full enumeration

starting with n = 1 and going on until the optimal n∗ is located. However, with this initial

value many more iterations be required before the optimal n∗ is identified. Since TC(n) is

convex with respect to n, we take the optimal solution of a special case as a new possible

initial value to speed up the search for the optimal n∗. Hence, an algorithm for determining

the optimal value n∗ is summarized as follows:

Algorithm A

Step 0 Choose one of special case with K(t) = K, f(t) = D, c(t) = a (a > 0) and

compute its optimal solution n∗s.

Step 1 Set n = n∗s, use a standard search method to obtain s∗i and t∗i , and compute

the corresponding TC(n) and TC(n− 1), respectively.

Step 1.1 If TC(n) > TC(n− 1), compute TC(n− 2), TC(n− 3), · · · , until there is

some k with TC(k) < TC(k − 1). Set n∗ = k, stop. Otherwise, go to Step2.

Step 1.2 If TC(n) < TC(n− 1), compute TC(n+ 1), TC(n+ 2), · · · , until we find

some k with TC(k) < TC(k + 1). Set n∗ = k, stop. Otherwise, go to Step2.

Step 2 Compute the value of TC(n) for n = 1, 2, · · · , n∗s − 1 until find TC(k) <

TC(k − 1) and TC(k) < TC(k + 1). Set n∗ = k, stop.

4 Numerical example

In this section, a numerical example is provided to illustrate the applicability of the

algorithm developed in Section 3.

Example Let f(t) = 100 + 150t, c(t) = 20 + 100e−5t, K(t) = 300 + 60t, c1 = 50, c2 =

10, A1 = 200, θ = 0.09, H = 1 and b = − ln(0.9)ln(2) .

We firstly study the special case in which K(t) = 350, f(t) = 100, c(t) = 120. Ap-

plying (3.35) and (3.36), we get the optimal replenishment times, n∗s. By substituting

above parameters into the left hand of inequality (3.35) or inequality (3.36), we have
D(c1+θa+θc2)

θ2 = 761 728.4. Let g(n) represents the right hand side of the inequality (3.35),

obviously, g(n + 1) are the right hand side of the inequality (3.36). Set n = 1, · · · , 6, the

values of g(n) and g(n+1) are shown in Table 1. From Theorem 3.4, the optimal number of

replenishment n∗s is 4, the corresponding optimal total cost is 13 634.4 for the special case.

Table 1 The results for the special case

n 1 2 3 4 5 6

g(n) 833 637.2 760 326.8 761 430.9 761 708.6 761 823.4 761 883.5

g(n + 1) 760 326.8 761 430.9 761 708.6 761 823.4 761 883.5 761 920.0

Next, we start the search for the optimal replenishment times n∗ from n = 4. The

algorithm A ends at n = 6. Therefore the optimal number of replenishment n∗ = 6 and the

total cost is 50 262.0. The values of s∗i and t∗i are given in Table 2.
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Table 2 Optimal solution for the general case

i 1 2 3 4 5 6 7

si 0 0.208 2 0.392 8 0.560 9 0.716 7 0.862 6 1.000 0

ti 0.080 1 0.293 6 0.481 5 0.651 9 0.809 1 0.956 0

5 Conclusions

An generalized EPQ problem for deteriorating items with forgetting consideration of

setup cost and time-varying unit production cost, production rate and demand rate is pro-

posed. A mixed-integer non-linear optimization model is formulated. Via analysis, we find

that the optimal production schedule uniquely exists, the total cost is a convex function with

respect to replenishment times. Furthermore, the search process of optimal solution can be

simplified by providing a better initial value for the replenishment times. Future research

could consider models with effects such as shortages, quantity discounts and probabilistic

demand.
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