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Abstract. This study assesses the advantages of using a cou-
pled atmospheric-tracer transport model, comprising a global
Eulerian model and a global Lagrangian particle dispersion
model, to improve the reproducibility of tracer-gas varia-
tions affected by the near-field surface emissions and trans-
port around observation sites. The ability to resolve vari-
ability in atmospheric composition on an hourly time-scale
and a spatial scale of several kilometers would be beneficial
for analyzing data from continuous ground-based monitoring
and from upcoming space-based observations. The coupled
model yields an increase in the horizontal resolution of trans-
port and fluxes, and has been tested in regional-scale stud-
ies of atmospheric chemistry. By applying the Lagrangian
component to the global domain, we extend this approach to
the global scale, thereby enabling computationally efficient
global inverse modeling and data assimilation. To validate
the coupled model, we compare model-simulated CO2 con-
centrations with continuous observations at three sites: two
operated by the National Oceanic and Atmospheric Admin-
istration, USA, and one operated by the National Institute
for Environmental Studies, Japan. As the goal of this study
is limited to introducing the new modeling approach, we se-
lected a transport simulation at these three sites to demon-
strate how the model may perform at various geographical
areas. The coupled model provides improved agreement be-
tween modeled and observed CO2 concentrations in compar-
ison to the Eulerian model. In an area where variability in
CO2 concentration is dominated by a fossil fuel signal, the
correlation coefficient between modeled and observed con-
centrations increases by between 0.05 to 0.1 from the origi-
nal values of 0.5–0.6 achieved with the Eulerian model.
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1 Introduction

This study reports on the development and validation of
a coupled atmospheric-tracer transport model, which com-
prises a global Eulerian grid model combined with a La-
grangian particle dispersion model (LPDM). In principle,
LPDMs such as FLEXPART (Stohl et al., 1998) and STILT
(Lin et al., 2003) can simulate highly resolved observation
footprints, and also allow for a degree of flexibility in re-
lated decision-making because they calculate the trajectory
of each particle individually. In addition, LPDMs overcome
the problem of numerical diffusion that is associated with
Eulerian models. LPDMs therefore avoid transport errors
caused by numerical diffusion and non-monotonic behav-
ior, which is inevitable in higher-order schemes (Godunov,
1959).

Thompson (1971) developed an early model of parti-
cle diffusion that provided the foundation for subsequent
LPDMs. Although LPDMs have been under development
for several decades, they have only recently become popular
as a tool for investigating the transport processes associated
with atmospheric events. This slow adoption of LPDMs has
occurred because such models require abundant computer re-
sources: to accurately describe a multi-day transport episode
requires simulations of the separate trajectories of a large
number of particles over multiple days. Since the 1990s,
many studies have, however, employed LPDMs (e.g., Zan-
netti, 1992; Uliasz, 1994; Rodean, 1996; Wilson and Saw-
ford, 1996).

More recently, LPDMs have been used for various re-
search applications at a regional scale (Lin et al., 2003, 2006,
2007; Paris et al., 2010; Warneke et al., 2009). When apply-
ing an LPDM for global analysis, a long-term integration is
required (see Stohl et al., 2010), although this approach is
not as computationally efficient as that of Eulerian models.
This problem may be overcome by using a coupled model as
the resolution of the flux data for an LPDM can be selected
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independently from the resolution of the simulation grid for
a Eulerian model and its flux data. Several studies have in-
vestigated the coupling of Lagrangian and Eulerian models
at a regional scale (Vermeulen et al., 2006; Trusilova et al.,
2010). The benefits of coupled transport modeling at regional
and global scales for locations downwind of highly hetero-
geneous surface fluxes can be fully realized by using emis-
sion inventories at resolutions of either 10 km (Olivier et al.,
2008; Gurney et al., 2009) or 1 km (Kannari et al., 2007; Oda
and Maksyutov, 2011). Benefits are also seen when coupled
transport models are used for coastal background monitoring
sites that are influenced by the large variations in composi-
tion of air arriving from the land and from the ocean (Ra-
monet and Monfray, 1996). Hence, a coupled model can
calculate tracer-gas concentrations at any given global loca-
tion, with high spatial-resolution surface fluxes requiring less
computation time than conventional Eulerian models. How-
ever, the computational efficiency of a coupled model may
be reduced in the case of simulations using very large obser-
vational datasets, such as those from satellite observations.

In this study, we expand the application of a coupled
model to the global scale by coupling a global LPDM and
a Eulerian model at a time boundary, as opposed to the do-
main boundary used in regional modeling (Trusilova et al.,
2010). Hence, the spatial locations of coupling are not lim-
ited to a certain regional domain. Also, a global coupled
model setup makes it possible to implement a single-stage
inversion and data assimilation schemes, as opposed to the
two-stage approach proposed for nested model setups (Peylin
et al., 2005; R̈odenbeck et al., 2009). Combining Eulerian
and Lagrangian models offer the opportunity of constructing
a cost-efficient, high-resolution surface flux data assimilation
system. The high-resolution Lagrangian model requires just
one run for every observation (e.g., Stohl et al., 2010) regard-
less of number of iterations, whereas the Eulerian component
has lower resolution and requires forward and adjoint model
runs for every iteration before convergence (Chevallier et al.,
2007).

To develop the coupled model, we employ the National
Institute for Environmental Studies transport model (NIES
TM) (Maksyutov et al., 2008) as a Eulerian model, and
use FLEXPART (version 3.2) (Stohl et al., 1998) as an
LPDM. To validate the coupled model, we compare mod-
eled CO2 concentrations with the National Oceanic and At-
mospheric Administration’s (NOAA) continuous measure-
ments at Barrow, USA (BRW; 71.32◦ N, 156.61◦ W) and at
Samoa (SMO; 14.25◦ S, 170.56◦ E) (Thoning et al., 2007).
We use data that have passed through three quality-control
flags, as adopted by NOAA/ESRL (Earth System Research
Laboratory). We also compare modeled CO2 concentrations
with continuous observations obtained by NIES at Hateruma
station (HAT; 24.05◦ N, 123.80◦ E). This station is situated
on the eastern end of Hateruma Island (Mukai et al., 2001),
which is a small island (12.5 km2) located at the southwest-
ern end of the Japanese Archipelago, 220 km east of Taiwan.

This site is characterized by southeasterly winds during the
summer and northwesterly winds during the winter, and win-
tertime pollution events are common as a result of emissions
transported from the Asian continent.

The main purpose of this study and of coupling a LPDM
with a global Eulerian model is to understand whether tracer
variations are dominated by the surface flux around the se-
lected sites. In this instance, the reproducibility of short-term
synoptic-scale variability is more important than contribu-
tions from large-scale latitudinal gradients provided by the
Eulerian model alone. In the Northern Hemisphere in partic-
ular, variations in CO2 concentrations are strongly affected
by large-scale variability, with seasonal variations primar-
ily relating to respiration and photosynthesis processes. It is
therefore useful to subtract the seasonal influence when as-
sessing the capabilities of the coupled model. Synoptic-scale
variability was also extracted from simulated and observed
CO2 concentrations by subtracting the running average, and
correlation coefficients and variance ratios were then calcu-
lated between simulated and observed data.

2 Materials and methods

In the coupled tracer-transport algorithm employed in this
study, CO2 transport is divided into two time periods. Dur-
ing the first stage, CO2 concentrations are simulated by the
Eulerian model on a global scale at a medium resolution. The
LPDM is then used in the second stage to simulate transport
with corresponding fluxes at a higher resolution. The optimal
duration of the second stage – the period of backward plume
transport – is determined here empirically for the Hateruma
site as 7 days. Results presented by Gloor et al. (2001) sug-
gest that a shorter period may suffice for other sites. To test
the sensitivity of the coupled model to the duration of the
Lagrangian simulation, we calculated CO2 concentrations at
Hateruma for a period of a year using a double backward
transport period of 14 days. Comparison of the 7- and 14-day
simulations revealed no significant difference in peak shape
or amplitude of CO2 concentrations, although a shorter du-
ration leads to a decrease in peak amplitudes. Hence, we
employ 7 days as the backward transport period. Concentra-
tion differences were within 2 ppm, and the averaged abso-
lute value of the differences was 0.52 ppm, which is a modest
discrepancy comparable with the representation error in ob-
servations.

Simulated concentrations are predicted in four steps, as
follows. (1) FLEXPART simulates 7-day back-plume trans-
port, which represents the time reversed trajectory of 10 000
air particles released from the location of interest. The ac-
tual transport time varies between 6.875 and 7 days, depend-
ing on the time of particle release, because coupling with
the global Eulerian model occurs at 3-h intervals and the
release of 10 000 particles takes 3 h. (2) The obtained par-
ticle distributions are combined with surface CO2 fluxes at
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the location of each particle in order to calculate the con-
tribution of the surface fluxes, during the 7-day simulation
period, to the observed concentration (1C). (3) The CO2
concentrations simulated by the NIES TM at the location of
each particle, at the moment of coupling, is averaged over the
total number of particles to yield an initial CO2 concentra-
tion for the Eulerian stage (Cinit). This initial concentration
includes the contribution of surface fluxes before the start
of the Lagrangian stage. (4) The initial CO2 concentration
(Cinit) and the change in concentration along the trajecto-
ries of the Lagrangian stage (1C), as contributed by surface
fluxes, are then added together to give the predicted concen-
tration (Ccpld) at the observation time and location.

Consequently, the CO2 concentration predicted by the
coupled model,Ccpld, is expressed as

Ccpld= 1C +Cinit (1)

1C can be calculated based on trajectory statistics (Seibert
and Frank, 2004), and is expressed as

1C =
1

Mo

∫ Te

Tb

dt

∫
dx

∫
dy

∫
dz m(r,t)

δC(r,t)

δt
, (2)

whereMo is the total mass of air particles released from the
monitoring site;Tb andTe are the beginning and end times
of the back-plume trajectory calculations, respectively; and
m(r,t) is the particle density field, which can be expressed
via individual particle positions, as follows:

m(r,t)=

N∑
i=1

µi ·δ(r −r i), (3)

whereN is the number of particles,µi = M0
/
N and isi-th

particle mass,r = (x,y,z) is the position vector,r i is ani-th
particle position at timet , andδ(r) is a Dirac delta function.

Assuming the surface flux,F , is injected homogeneously
into a near-surface layer of thicknesszs, we can approximate
the rate of change of the near-surface CO2 concentration con-
tributed by a surface flux,δC/δt , as follows:

δC

δt
=

F (x,y,t)

zs
(4)

Here,zs is assumed to be 300 m, which is approximate to the
lowest model level of the NIES TM and is selected to bal-
ance the exact approximation of the transport equation. This
is achieved with smallzs but requires a very large number of
particles for transport. Hence,zs is given the largest possi-
ble value without compromising the results for a scenario of a
well-mixed boundary layer during the day (assuming that ob-
servations of stable tracers that are frequently sampled during
the day will be analyzed). Therefore, the selected value ofzs
offers a rough approximation of the minimum value of the
daytime mixed-layer height.

From Eqs. (2), (3), and (4),1C can be calculated as fol-
lows:

1C =
1

Mo

∫ Te

Tb

dt

∫
dx

∫
dy

∫ zs

dz m(r,t)
F (x,y,t)

zs
(5)

A time interval,dt, of 1 h is assigned for the purposes of this
study.

Cinit is calculated as follows:

Cinit (Te) =
1

Mo

∫
dx

∫
dy

∫
dz m(r,Te)C3-D(x,y,z,Te),(6)

whereC3-D is the CO2 concentration in each simulation grid
cell of the NIES TM. Therefore, using Eq. (3) for the par-
ticle density field,m(r,Te), both 1C andCinit (Te) can be
calculated without determining explicitly the global particle
density field in the Lagrangian stage (FLEXPART), which is
a convenient property when the surface flux,F , is given at a
very high resolution.

Forward calculations can also be performed using an
LPDM alone, by using Eq. (5) as a crude representation of
C3-D, as tested by Stohl et al. (2009). To reproduce seasonal
variations, it is necessary to obtain transport data covering
a period of at least 3 months (Stohl et al., 2009). However,
computing a 10 000 particle plume transport over 3 months
with FLEXPART for each 3-hourly observation is computa-
tionally expensive, with the result that such calculations are
inefficient. In contrast, the coupled model requires only a
short period of back-plume trajectory calculations to repro-
duce seasonal variations.

Here we use the coupled model to simulate variations in
CO2 concentrations at Barrow (USA), Samoa and Hateruma
(Japan). To achieve this, the coupled model is used to sim-
ulate the transport of the biospheric CO2 tracer, the oceanic
CO2 tracer, and the anthropogenic CO2 tracer. Biospheric
CO2 is simulated using CASA model fluxes (Randerson et
al., 1997), and the ocean CO2 tracer is based on air–sea
fluxes reported by Takahashi et al. (2002). These monthly
fluxes are converted into daily fluxes by linear interpola-
tion. For the anthropogenic CO2 tracer, we employ the
flux of fossil fuel emissions produced by the Emissions
Database for Global Atmospheric Research (EDGAR), ver-
sion 4 (EDGAR, 2009). Fossil fuel emissions are kept con-
stant throughout the simulation. All fluxes used in this study
have a horizontal resolution of 1.0◦

× 1.0◦.
FLEXPART is forced with 6-hourly analysis data provided

by the Global Forecast System (GFS) model of NOAA’s Na-
tional Center for Environmental Prediction (NCEP). GFS
data have a horizontal resolution of 1.0◦

× 1.0◦ and 26 pres-
sure levels. The NIES TM is driven by 12-hourly re-analysis
data provided by NCEP’s National Centre for Atmospheric
Research (NCAR) Re-analysis Project (Kalnay et al., 1996),
and is run with a horizontal resolution of 2.5◦

× 2.5◦ and 15
sigma levels. In the simulation of the NIES TM, the initial
concentration of all grids is set to zero and the first 2 yr of
simulation are used as spin-up time.

To deseasonalize CO2 concentrations, we employ a run-
ning average method, as follows:

C̃i = Ci −
1

n+1

i+n/2∑
j=i−n/2

Cj (7)
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whereCi is the CO2 concentration corresponding to the sam-
pling date and time (i), n is the time window for averaging
(set to 90 days), and̃Ci is the deseasonalized CO2 concentra-
tion.

3 Results and discussion

Figure 1 shows the CO2 concentrations calculated by the
NIES TM (i.e., the Eulerian model) and the coupled model
in addition to continuous observations between January and
March 2003. Although CO2 concentrations are calculated for
the entire year, this 3-month period is shown to highlight the
difference between the two models. Both the model results
and observations are recorded at 3-h intervals, and the off-
set values, which are obtained by subtracting average model-
simulated concentrations from average observed concentra-
tions, are added to the original model outputs. The coupled
model performs better than the NIES TM in terms of repro-
ducing sharp peaks in observed CO2 concentrations; this is
the main advantage of coupling an LPDM and a Eulerian grid
model.

As shown in Fig. 2, the coupled model performs better
than the NIES TM in simulating deseasonalized CO2 con-
centrations, particularly at Hateruma. Figure 3 shows the ab-
solute value of the difference between deseasonalized model-
simulated and observed CO2 concentrations (|1CO2|) at
Hateruma. This figure illustrates how the coupled model is
generally closer to observations than is the NIES TM, show-
ing an improvement in the fit between models during short-
term, high-concentration events. The root mean square errors
(RMSEs) of|1CO2| for the NIES TM and the coupled model
are 2.21 and 1.81, respectively.

These RMSEs are confirmed by the correlation coeffi-
cients and variance ratios between deseasonalized simula-
tions and observations, calculated using annual data for the
period 2002–2004 (Tables 1 and 2, respectively). The vari-
ance ratio is the standard deviation of the model-simulated
CO2 concentrations, normalized by the standard deviation of
observed CO2 concentrations. The use of correlation coeffi-
cients and variance ratios for model validation is a common
method (e.g., the TransCom Project; Patra et al., 2008). It is
possible to obtain better variance ratios and correlation coef-
ficients if they are calculated using data for winter periods, as
opposed to annual data. This is due to the fact that numerous
peaks in observed CO2 concentrations occur during the win-
ter at Hateruma, as the region is influenced by contaminated
air masses from the Asian continent and by the monsoon sea-
son.

Table 1 lists the correlation coefficients between simulated
(NIES TM and coupled model) and observed CO2 concen-
trations. Correlation coefficients determined from the Bar-
row data are similar for both the NIES TM and the cou-
pled model. However, for Samoa and Hateruma, the coupled
model is in better agreement with observations, as the cor-

Figures 1 
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Figure 1. CO2 concentrations at Barrow (BRW, top), Samoa (SMO, middle), and Hateruma 

(HAT, bottom) from January to March 2003. Black lines: observations; blue lines: NIES TM; 

red lines: coupled model. 

 19

Fig. 1. CO2 concentrations at Barrow (BRW, top), Samoa (SMO,
middle), and Hateruma (HAT, bottom) from January to March 2003.
Black lines: observations; blue lines: NIES TM; red lines: coupled
model.

relation coefficients for the coupled model are>0.1 higher
than those determined from the NIES TM for all years (Ta-
ble 1). This improvement in correlation coefficients can be
considered significant, given the typical variability in cor-
relation coefficients for transport models (e.g., Patra et al.,
2008), which range between 0.2 and 0.8, although the higher
values in this range are rarely obtained.

To demonstrate the high reproducibility of observed CO2
concentrations during winter periods in comparison with
other times of the year, correlation coefficients are calculated
using winter data as well as annual data (Table 1). As a re-
sult, the correlation coefficient between model and observa-
tions increases by between 0.05 and 0.1 (from annual values
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Figure 2. Deseasonalized CO2 concentrations at Barrow (BRW, top), Samoa (SMO, middle), 

and Hateruma (HAT, bottom) during 2003. Black lines: observations; blue lines: NIES TM; 

red lines: coupled model. 
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Fig. 2. Deseasonalized CO2 concentrations at Barrow (BRW, top),
Samoa (SMO, middle), and Hateruma (HAT, bottom) during 2003.
Black lines: observations; blue lines: NIES TM; red lines: coupled
model.

of 0.5–0.6). Figure 4 shows a scatter plot of the relationship
between model-simulated and observed CO2 concentrations
at the synoptic scale for the period 2002–2004 at Hateruma.
Linear regressions in the figure are based on the least squares
fitting technique. Most of the data are within±4 ppm of the
linear regression, and the coupled model provides a better fit
(and a higher correlation coefficient) than does the NIES TM
(Table 1).

Table 2 lists the variance ratios between simulated and ob-
served CO2 concentrations, and highlights how variance ra-
tios calculated for the coupled model are closer to unity than
those determined for the NIES TM (with the exception of
Samoa). This finding indicates that coupling with LPDMs
helps to compensate for the smearing of concentration fields,

1  

 2 

3 

4 

5 

6 

Figure 3. Absolute value of the difference between deseasonalized model-simulated and 

observed CO2 concentrations at Hateruma. Blue lines: NIES TM minus observations; red 

lines: coupled model minus observations. Root mean square error (RMSE) is shown in the 

figure. Blue: NIES TM; red: coupled model. 
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Fig. 3. Absolute value of the difference between deseasonalized
model-simulated and observed CO2 concentrations at Hateruma.
Blue lines: NIES TM minus observations; red lines: coupled model
minus observations. Root mean square error (RMSE) is shown in
the figure. Blue: NIES TM; red: coupled model.

Table 1. Correlation coefficients between simulated and observed
deseasonalized CO2 concentrations (Winter: from the beginning of
January to the end of March, and from the beginning of November
to the end of December).

Site code Year NIES TM Coupled model

BRW
2002 0.55 0.45
2003 0.59 0.59
2004 0.64 0.61

SMO
2002 0.48 0.60
2003 0.47 0.67
2004 0.57 0.69

HAT
2002 0.45 0.55
2003 0.49 0.62
2004 0.43 0.56

HAT (Winter)
2002 0.58 0.60
2003 0.59 0.64
2004 0.47 0.62

which arises as a result of the numerical diffusion intrinsic to
Eulerian models. Variance ratios for winter periods only are
calculated for Hateruma, and are more realistic than annual
variance ratios or model-observation correlation coefficients.

Use of the coupled model is not, however, equally benefi-
cial for the three sites, which were selected to represent dif-
ferent meteorological conditions. This is because the correla-
tion coefficients between modeled and observed time-series
vary spatially, as has been examined in previous studies us-
ing Eulerian models. For example, Patra et al. (2008) high-
light difficulties in simulating the Barrow site. Remote loca-
tions such as Samoa tend to be characterized by lower cor-
relation coefficients and variance in CO2 concentrations be-
cause these regions are less affected by pollution emissions.
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Table 2. Variance ratios between simulated and observed deseason-
alized CO2 concentrations (Winter: from the beginning of January
to the end of March, and from the beginning of November to the
end of December).

Site code Year NIES TM Coupled model

BRW
2002 0.77 1.03
2003 0.94 1.00
2004 0.66 0.81

SMO
2002 1.58 1.66
2003 1.61 1.68
2004 1.76 2.10

HAT
2002 1.07 1.11
2003 1.33 1.07
2004 1.29 1.11

HAT (Winter)
2002 1.16 0.97
2003 0.99 0.94
2004 1.24 1.01
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Figure 4. Scatter plot showing the relationship between model-simulated and observed CO2 

concentrations at a synoptic scale for the period 2002–2004 at Hateruma. Blue circles: NIES 

TM versus observations; red circles: coupled model versus observations. 
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Fig. 4. Scatter plot showing the relationship between model-
simulated and observed CO2 concentrations at a synoptic scale for
the period 2002–2004 at Hateruma. Blue circles: NIES TM versus
observations; red circles: coupled model versus observations.

The lack of observations at remote sites makes it difficult to
correct for errors associated with, for example, wind speed
and direction, and hence leads to a degradation in the quality
of the simulation. Thus, simulations for remote/marine sites
tend to be poor in comparison with simulations for sites situ-
ated closer to strong emission sources (e.g., Fig. 6d in Patra

et al., 2008). Therefore, it is not surprising that the correla-
tion coefficients and variance ratios determined in this study
are not drastically improved by introducing a more accurate
transport method, despite the use of wind fields of similar
quality.

4 Conclusions

We developed a global coupled atmospheric transport model
comprising Lagrangian and Eulerian models, and validated
the coupled model by comparing simulation data with NIES
and NOAA continuous observations. The coupled model
performed well in reproducing both seasonal variations and
synoptic-scale peaks in observed CO2 concentrations. Un-
like most other published implementations of coupled mod-
els, both of the model components (Lagrangian and Eulerian)
in this study are global. Thus, the proposed model can be
readily applied to analyses of the global transport of long-
lived tracers, which requires that both short and long time-
scales are resolved.

To investigate the ability of the coupled model statistically,
the model–observation correlation coefficients and variance
ratios were calculated for three sites over 3 yr: 2002–2004.
In the case of Hateruma, the correlation coefficient of the
coupled model exceeds that of the NIES TM by more than
0.1 in all years. The advantage of the coupled model is seen
clearly when reproducing pollutant events observed during
winter at Hateruma, showing how the coupled model offers
improved simulations for sites influenced by contaminated
air.

There are, however, some instances where the advan-
tage of the coupled model over Eulerian models is less cer-
tain. For example, the correlation coefficients of the cou-
pled model and the NIES TM are similar for the Barrow
site, and the variance ratios of the NIES TM are closer to
observations than those of the coupled model at Barrow and
Samoa. However, the reproducibility of observations is not
only dependent on the transport model employed, but also
on the quality of surface flux data. Another important issue
is the quality of data for wind and vertical mixing parame-
ters, which are used for the forward simulations in both the
Eulerian and Lagrangian stages of the coupled model. The
misfit between modeled and observed data can be ascribed to
numerical diffusion in the Eulerian model, whereas the ma-
jor issue for the Lagrangian model is the imperfection of the
wind field, which is a primary limiting factor in terms of the
accuracy of forward and inverse modeling.

Medium-resolution Eulerian models can only resolve con-
centration variations at close to daily time-scales. Thus, con-
siderable useful information at shorter time-scales is lost, in-
cluding tracer correlations. In contrast, the coupled model is
able to resolve concentration variations at hourly time-scales
or less. Consequently, the coupled model performs better
than a global Eulerian model alone for simulating synoptic-
scale variability. Hence, the coupled model can be used
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for analyses of variations in CO2 that occur as a result of
synoptic-scale meteorological phenomena, without the need
for nested regional-scale modeling.

The use of a coupled model also enables the calculation
of surface flux contributions to tracer concentrations at a res-
olution higher than that of the meteorological data used in
an LPDM. This is because the spatial scale of heterogene-
ity in surface fluxes is often much smaller than the correla-
tion radius of meteorological data. Accordingly, surface flux
data with a very high resolution (e.g., several kilometers) can
be used for forward transport modeling without compromis-
ing the effective resolution of tracer transport. In the case of
mesoscale circulations, it is necessary to obtain sufficiently
fine resolution wind data; thus, application of large-scale in-
terpolated winds may not be appropriate.
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