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ABSTRACT 

ROBUST SIGNALING TECHNIQUES 

FOR THROUGH SILICON VIA BUNDLES 

SEPTEMBER 2011 

KRISHNA C CHILLARA 

B.TECH, VELLORE INSTITUTE OF TECHNOLOGY, INDIA  

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Prof. Wayne P. Burleson 

3D circuit integration is becoming increasingly important as one of the remaining 

techniques for staying on Moore’s law trajectory. 3D Integrated Circuits (ICs) can be 

realized using the Through Silicon Via (TSV) approach. In order to extract the full 

benefits of 3D and for better yield, it has been suggested that the TSVs should be 

arranged as bundles rather than parallel TSVs. TSVs are required to route the signals 

through different dies in a multi-tier 3D IC. TSVs are excellent but scarce electrical 

conductors. Hence, it is important to utilize these resources very efficiently.  

In high performance 3D ICs, signaling techniques play a crucial role in 

determining the overall performance of the system. In this work, 3x3 and 4x4 TSV 

bundles are considered. Electrical parasitics of TSV bundles are extracted using Ansoft 

Q3D Extractor. Various techniques for signaling over TSV bundles are analyzed in this 

work. Performance, energy and robustness are the crucial aspects to be considered for 

analyzing a signaling technique. For performance analysis, maximum data rate for each 

of the signaling techniques is obtained and the dominant factors that determine these 

values are identified. 3D integration is fairly a new field and does not have common 
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standards. Different research groups (both academic and industry) across the globe have 

different manufacturing technologies to suit their needs. In this work, we obtain the 

electrical parasitics of TSV bundles for different TSV radii ranging from 1µm to 15µm. 

The TSV radius for most of the 3D integration technologies falls within this range. 

Maximum data rates are determined for different TSV radii ranging from 1µm to 15µm. 

This study across different TSV radii helps in choosing a better signaling technique for a 

particular TSV radius depending on the design goals. Energy/bit for each of the signaling 

techniques is obtained for a common data rate of 10Gbps Pseudo Random Bit Sequence 

(PRBS) input. For robustness analysis, the impact of process, voltage and temperature 

variations between driver and receiver circuits is analyzed. Ansoft Q3D extractor, NCSU 

45nm PDK and HSPICE simulation tool are used.  

From the simulation results, it is observed that a differential technique is 

beneficial for smaller radii in terms of maximum data rate that can be obtained. For a 

radius above 7µm, single ended current mode signaling gives a better data rate. Low 

swing single ended signaling techniques consume less energy but suffer slightly more due 

to process variations compared to full swing voltage mode signaling. In terms of 

robustness to supply noise, differential signaling is more robust compared to single ended 

techniques. An increase in the temperature reduces the data rates of both single ended and 

differential signaling techniques. Hence, depending on the TSV radius of target 

technology and process and environment variations, an optimum signaling technique can 

be chosen. 
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CHAPTER 1 

INTRODUCTION 

1.1 Moore’s Law and Interconnect Bottleneck 

Any digital system is composed of three main components: memory, data path 

and control logic. The performance in such systems primarily depends on how well these 

components can perform the required tasks while communicating with each other. At a 

lower level the two key factors that determine the overall performance of a digital system 

are device (transistor) delay and the interconnect delay. One approach to achieve higher 

performance is by technology scaling. By scaling, the channel length of the device is 

reduced. In other words, the charge carriers have to travel smaller distances in order to 

reach the drain terminal from the source terminal. This reduces the amount of time taken 

to move charge carriers from source to drain, thus resulting in faster circuits. The voltage 

required to drive the charge carriers after creating the channel is also reduced. This is 

significant as it reduces the amount of power consumed by the system.  

Reduced device and interconnect helps to add more components on a single 

integrated circuit in compliance with Moore’s law [1]. According to Moore’s law, the 

number of transistors that can be added to an integrated circuit doubles every two years. 

Thus technology scaling has been the driving force behind the semiconductor industry to 

stay in course with Moore’s law. However in Deep Sub Micron (DSM) technologies, 

scaling of interconnect is not in proportion to that of devices. According to Amdahl’s 

law, overall performance of the system is determined by the slowest unit in the system. 
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At DSM technology nodes, interconnect delay is higher compared to device delay. Thus, 

interconnect which is relatively slow compared to device in terms of delay determines the 

overall performance of an Integrated Circuit. Furthermore, the increased functionality due 

to scaling has led to the scenario where the overall power is dominated by the 

interconnects. Hence, there is a need for new methodology to tackle this problem of 

Interconnect Bottleneck. 

1.2 Motivation for 3D Integration 

The primary reason for Interconnect bottleneck problem is that the interconnect 

delay increases in a quadratic manner with an increase in interconnect length [2] [3]. This 

is due to the linear dependency of both resistance and capacitance of interconnect on its 

length. Thus RC delay has a quadratic dependency on the wirelength. Techniques like 

tapered buffers and repeater insertion [4] are proposed to handle this interconnect 

bottleneck. In these techniques, buffers/repeaters are inserted in such a way that the 

repeater delay is equal to interconnect delay, thus making the delay a linear function of 

wirelength. But these repeaters in general are huge inverters consuming both area and 

power. There is a compromise in terms of power consumed [5] and area occupied with 

these approaches. One way to handle the interconnect bottleneck is to decrease the length 

of the interconnects. This was the motivation for the emergence of Three Dimensional 

Integrated Circuits. 
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1.3 Benefits of 3D Integration 

In 3D Integration, different dies can be connected using inter-tier interconnects 

that directly pass through the substrate. This is called Through Silicon Via (TSV) based 

3D integration technology. In 3D integration, the average interconnect length is reduced 

significantly. Figure 1.1 shows 2D and 3D implementation of a particular design 

containing both Memory and Logic. In 2D, the logic and memory are placed next to each 

other and interconnect of length L is required to make a connection. The same design 

when implemented in 3D, reduces the interconnect length significantly. At system level, 

it allows the integration of memory with logic, thus allowing larger memory at lower 

access times, addressing the Memory Bottleneck problem more efficiently.  

 

Figure 1.1  Long interconnects in 2D replaced with shorter 3D interconnects [6] 

The inherent advantages of 3D ICs and their ability to go beyond Moore’s Law 

make it more interesting to explore new designs based on 3D integration. Some of the 

potential benefits of 3D ICs are 

1) Higher levels of integration 
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2) Shorter interconnects  

3) Heterogeneous integration 

4) High speed operation 

5) Reduced risk of reverse engineering [7] 

3D integration supports higher levels of integration for a given area. It also allows 

different designs to be implemented in different technologies. This is particularly useful 

for System on Chip (SoC) designs. In current 2D SoC designs, we are restricted to 

fabricate the entire chip in a single technology. Thus, 2D SoC designs require analog, 

digital and RF blocks to be implemented in a single technology. In 3D integration, 

different wafers can be stacked using TSVs. Hence it can be used for heterogeneous 

integration as shown in Figure 1.2.    

 

Figure 1.2  Heterogeneous 3D Integration[8]  
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1.4 Challenges in 3D Integration 

In this section, some of the challenges associated with 3D ICs are discussed. Due 

to the increasing demand for higher functionality, processors with billions of transistors 

are in demand. The biggest challenge in such processors is the increasing power density 

and associated thermal issues. In order to fully utilize the benefits of 3D, it is beneficial to 

have as many tiers as possible. This increased stacking leads to an increased power 

density. In 3D ICs, the tier that is farthest from the heat sink will have the highest thermal 

resistivity and requires greater time to dissipate the heat. The results in [8] show that the 

temperature increases by 17K for 2 die stack and 33K for a 4 die stack. 

Apart from thermal issues, several challenges related to 3D CAD tools remain 

unaddressed. Due to the addition of another dimension, the complexity in the design and 

verification increases. It becomes a more complicated problem in case of 3D ICs with 

heterogeneous integration. Due to this increased complexity, the design flow should 

include many more hierarchical levels. Apart from this, 3D thermal, signal and power 

TSVs have to be supported by the CAD tools. This demands the need for 3D tools from 

physical design to logic verification. Most of the logic and functionality verification tools 

available for 2D can be utilized for 3D circuits. CAD tools, like 3D CACTI [10] and 

NCSU3D PDK [11] which can support 3D layout up to 2 layers, are available. But the 

current version of NCSU 3DPDK cannot extract the RLC parasitics for 3D ICs. Another 

academic tool from MITLL can only support the 180nm 3D SOI technology. Considering 

the current 2D processor technology nodes, 180nm is far behind from ITRS roadmap of 

28nm technology for 3D ICs. 
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Post silicon validation and testing for 3D ICs is a big challenge. Techniques that 

are used for 2D ICs can no longer be effective for 3D ICs. A new approach to handle 

these 3D ICs is yet to be developed. TSVs in contact with interconnects made of another 

material (aluminum or copper) are sensitive to temperature. Variations in temperature 

would lead to the production of a voltage relative to the temperature difference between 

the two materials. This voltage would affect the signal on the TSV, introducing a 

significant noise component. Reliability is one of the biggest concerns for 3D ICs. 

Although TSVs are excellent electrical conductors, a failed TSV can cause a number of 

known good dies that are stacked together to be discarded. Hence, it is a good idea to 

consider some fault tolerance scheme. However, this increases additional resources as 

well as TSV count. These challenges have to be addressed to extract the full benefits of 

3D ICs.  

1.5 Problem Statement 

This thesis is aimed at identifying Robust signaling techniques for Through 

Silicon Via bundles. Most of the earlier work on TSVs has been focused on electrical 

characterization and modeling. The first work on signaling over TSVs has been carried 

out by Weerasekera in [12]. But it was restricted to single ended signaling on 3 parallel 

TSV structures for a particular TSV technology. In order to extract the benefits of 3D, it 

is important to consider an array of TSVs (also called a TSV bundle), which helps in 

more efficient usage of die area and yield [13]. Hence, analyzing the signaling schemes 

over TSV bundles is important. 

The following are the contributions of this work.  
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- We explored various signaling techniques like single ended voltage mode, current 

mode and differential technique. We obtained the maximum data rates for each of 

these signaling techniques and identified the factors that determine these numbers.  

- Electrical parasitics of a TSV bundle vary with TSV radius. Due to lack of 

standards for signal TSVs, different research groups across the globe have 

different manufacturing technologies with different TSV radii. In this work, we 

considered various TSV radii to understand when a particular signaling technique 

(single ended or differential) might be beneficial to use. 

- Robustness analysis of these signaling schemes is an important aspect. In this 

work, we analyze the impact of process, voltage and temperature variations on 

signaling over TSV bundles with focus on variations between the driver and 

receiver circuits which are residing on different dies.  

Thus, in this work we explore signaling over through silicon via bundles, identify 

the key factors that determine the performance of a particular signaling technique and 

finally perform robustness analysis to identify the most optimum signaling technique for 

TSV bundles for a given TSV radius. 

1.6 Document Organization 

The rest of this document is organized as follows: 

- Chapter 2 deals with the necessary background information and related prior work. 
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- Chapter 3 is dedicated to TSV parasitic extraction and analysis of its electrical parasitics 

and crosstalk. 

- Chapter 4 explores various signaling techniques over TSV bundles and their 

performance for various TSV radii.  

- Chapter 5 contains the robustness analysis.  

- Chapter 6 provides the conclusion and suggestions for future work. 
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CHAPTER 2 

BACKGROUND AND PRIOR WORK 

This chapter provides the necessary background information on the 3D integration 

with focus on Through Silicon Via (TSV) based 3D ICs and related prior work on TSV 

characterization and signaling techniques in such 3D ICs. 

2.1 3D Integration Technologies  

Apart from its several other benefits, 3D integration allows stacking of dies with 

different technologies. Several techniques are used for stacking of the chips for 3D 

integration. Some of them place the individual chips one over the other and connect them 

across the periphery. These techniques suffer due to the reduced number of I/O 

connections like in 2D. Such packaging techniques like System in Package (SiP) and 

Chip Stack Multi-Chip-Module (MCM) do not integrate the chips into a single circuit. 

True benefits of 3D can be realized using TSV based 3D integration. In TSV based 3D 

integration, multiple chips can communicate with each other with the help of direct 

connections in the vertical direction. Such techniques in general are referred to as 3D 

integrated circuits or simply 3D ICs.  

Integration techniques like wire-bonding, micro-bumps, through-vias, and contact 

less interconnects differ from each other in terms of their density and limitations in their 

usage. Wire-bonding is the most common approach for general purpose applications. 

These applications do not include the high performance processors or real time high 

performance embedded systems. However, it is not a true 3D integration as shown in 
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Figure 2.1. In this technique, all the connections should go through the chip carrier. The 

primary advantage of wire-bonding is its reduced complexity and low cost as it simply 

connects the dies across the periphery. The drawback of this approach is its limited 

integration density as the communication between the dies is restricted to the periphery, 

as shown in Figure 2.1. The number of metal layers needed for pads is also more due to 

the increased mechanical stress, which has the potential to destroy the devices under the 

pad due to extreme pressure. 

 

Figure 2.1 Various 3D Integration Technologies [19] 

Micro-bumps technology uses the solder to make connections on the surface of 

the die [12]. The mechanical stress in this technique is comparatively lower than that of 

the wire-bonding approach, thus requiring only one metal layer for pads. The number of 
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layers it can handle is primarily limited by the heat assembled inside the package rather 

than the assembly process. Face-Face approach provides better performance due to the 

reduction in the parasitics. The primary disadvantage with face to face approach is its 

inability to support more than two tiers. 

As discussed earlier, 3D circuits can be realized using TSVs. TSVs provide the 

most promising solution for high performance 3D Integrated Circuits. These TSVs can be 

assembled in a wafer-wafer approach or die-wafer approach, depending on the 

application and yield requirements. Generally, the wafer-wafer approach provides higher 

yield but supports fewer heterogeneous technology integration compared to die-wafer 

approach. These can be bonded in face-face or face-back manner depending on the 

application. TSVs with very small dimensions are obtained in Silicon on Insulator (SOI) 

technology [15] compared to the bulk approach [16]. This is primarily due to low 

substrate thickness in SOI and hence, for a given aspect ratio, smaller TSV diameters and 

therefore smaller pitches can be used in 3D SOI technology. The contactless 

interconnects are achieved using the capacitive and inductive coupling [17] [18] for 

communication between the layers. This approach is more suitable where there are 3-4 

chips that are stacked and communication is required between the chips throughout the 

stack. 

Structured definitions of 3D Interconnect technologies as presented in ITRS [20] 

are shown in Table 2.1. TSV based 3D integration for high performance applications falls 

into the category of 3D SICs and 3D ICs as mentioned in Table 2.1, and referred to as 3D 

ICs throughout the document. Since this work is primarily focused on developing robust 
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signaling techniques for high performance applications, we will discuss more about TSV 

based 3D ICs or simply 3D ICs in the next section. 

Table 2.1 3D Interconnect Technologies based on Interconnect hierarchy [20] 

Level 
Suggested 

Name 

Supply 

Chain 
Key Characteristics 

Package 

3D-

Packaging  

(3D-P) 

OSAT 

Assembly 

PCB 

� Traditional packaging of 

interconnect technologies, e.g., 

wire-bonded die stacks, package-

on-package stacks. 

� Also includes die in PCB 

integration 

� No through-Si-vias (TSVs) 

Bond-pad  

3D-Wafer-

level Package 

(3D-WLP) 

Wafer-level 

Packaging 

� WLP infrastructure, such as 

redistribution layer (RDL) and 

bumping. 

� 3D interconnects are processed 

after the IC fabrication, “post IC-

passivation” (via last process). 

Connections on bond-pad level. 

� TSV density requirements follow 

bond-pad density roadmaps. 
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Global 

3D-Stacked 

Integrated 

Circuit/ 

3D-System-

on-Chip  

(3D-SIC /3D-

SOC) 

Wafer Fab 

� Stacking of large circuit blocks 

(tiles, IP-blocks, memory –banks), 

similar to an SOC approach but 

having circuits physically on 

different layers. 

� Unbuffered I/O drivers (Low C, 

little or no ESD protection on 

TSVs).  

� TSV density requirement 

significantly higher than 3D-WLP.  

Intermediate 3D-SIC Wafer Fab 

� Stacking of smaller circuit blocks, 

parts of IP-blocks stacked in 

vertical dimensions.  

� Mainly wafer-to-wafer stacking.  

� TSV density requirements very 

high.  

Local 

3D-Integrated 

Circuit 

(3D-IC) 

Wafer Fab 

� Stacking of transistor layers.  

� Common BEOL interconnect stack 

on multiple layers of FEOL.  

� Requires 3D connections at the 

density level of local 

interconnects.  

2.2 Through Silicon Via based 3D ICs 

In Through Silicon Via based 3D ICs, as the name indicates, the vertical 

interconnect (TSV) will cut through the silicon substrate forming a connection between 

the two tiers. Generally the TSVs are filled with Cu or W metal and a dielectric coating is 

applied to prevent any diffusion of the metal into the silicon substrate. Several 
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approaches can be used to realize this and all the approaches have three common modules 

[20], as mentioned below. 

1. Order of Through Silicon Via process 

2. Wafer thinning, thin wafer handling and backside processing 

3. The actual 3D-Stacking process. 

Depending on the order in which the TSV process occurs with respect to the 

device fabrication process, the TSV process can be characterized into Via first, Via 

middle and Via last approach. In Via first approach, TSVs are fabricated before the Front 

End of Line (FEOL) process. In Via middle approach, TSVs are fabricated after the 

FEOL but before the Back End of Line (BEOL) process. In Via last approach, the TSV 

fabrication takes place after the BEOL. 3D ICs can also be differentiated depending on 

the method of 3D Bonding. Three common approaches are 

1. Wafer to wafer (W2W) bonding 

2. Die to Wafer (D2W) bonding 

3. Die to die (D2D) bonding 

Apart from this, secondary classification is made depending on whether it is a 

Face to face (F2F) bonding approach or Face to back (F2B) approach. Figure 2.2 

represents various key process modules in TSV based 3D ICs. 
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Figure 2.2 Schematic representing the key process modules in 3D ICs. [20] 

The performance of 3D ICs depends on the vertical interconnect (TSV) parasitics. 

Since the electrical characteristics of TSVs are primarily dependent on their physical 

material, geometry and dimensions, ITRS proposed the roadmap for the minimum TSV 

dimensions for interconnects as shown in Table 2.2. From Table 2.2, it can be observed 

that the pitches in general are twice the diameter. The minimum TSV depth can be as low 

as 20 µm.  

Table 2.2 ITRS roadmap for TSV dimensions for interconnects [20] 

Global Level, W2W, D2W or D2D 3D-stacking 2009-2012 2012-2015 

Minimum TSV diameter 4-8 µm 2-4µm 

Minimum TSV pitch 8-16 µm 4-8 µm 

Minimum TSV depth 20-50 µm 20-50 µm 

Maximum TSV aspect ratio 5:1 – 10:1 10:1 – 20:1 

Number of tiers 2-3 2-4 
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Having discussed the key features of 3D integration technologies in general and 

TSV based 3D ICs in particular, it is important to understand the electrical characteristics 

of TSVs. Resistance, Inductance and Capacitance of the TSV play a crucial role in 

determining the overall performance of 3D ICs. As this work is focused on signaling 

techniques over TSV based 3D ICs, a background on TSV modeling and electrical 

characterization is presented in the following section. 

2.3 Through Silicon Via parasitic extraction 

The purpose of TSV modeling is to obtain the equivalent circuits that can 

completely describe the electrical characteristics of the TSV. A simple RLC lumped 

model of a single interconnect is shown in Figure 2.3. It consists of a series resistance, 

series inductance and parallel capacitance. Depending on the geometrical dimensions of 

the interconnect, the values of R, L and C vary significantly. 

 

Figure 2.3 RLC modeling of interconnect.  

Through Silicon Via modeling should expand the single interconnect modeling of 

Figure 2.3 by including the impact of silicon substrate, dielectric insulator and coupling 

effects from surrounding TSVs. A simple electrical equivalent model of 3 parallel TSVs 

with one of them used as signal TSV and the remaining two connected to ground is 
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shown in Figure 2.4. Through Silicon Via, as the name suggests, is a via across the 

silicon substrate. Generally Cu or W is used as the metal filling for the TSV. SiO2 

dielectric can be used as coating over the metal to avoid any DC leakage of metal into the 

substrate. 

 

Figure 2.4 Equivalent Circuit Model of Through Silicon Via GSG [21]  

Several attempts have been made to understand and model the electrical 

characteristics of Through Silicon Vias. In [22], Friedman et al. have developed the 

closed form expressions for a 3D via. Closed form expressions for R, L and C developed 

in [22] are for a single 3D via. Though these expressions cannot be used directly for a 

group of TSVs, it provides a good model to understand the electrical behavior of Through 

Silicon Vias.  

RLC coupling between two 3D Vias is investigated in [24]. Ansoft Quick 3D 

extractor [25] is used for RLC parasitic extraction. RLC parasitic extraction is carried out 

for various configurations by increasing the distance between the two 3D Vias. The 

results explained that the values of DC coupling capacitance and inductance decrease 
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with via separation and the AC R, L and C values tend to approach the extracted RLC 

values of a single 3D via. In [22] and [24], multiple configurations of parallel 3D vias 

with and without ground plane are considered for the extraction of RLC parasitics. The 

inclusion of ground plane did not affect the total resistance or inductance but drastically 

increased the capacitance. The closed form expressions developed are only for individual 

TSVs and hence cannot be used for obtaining all the parasitics, including coupling for all 

the surrounding TSVs in case of an array or bundle of TSVs.  

Most recent work on developing equivalent lumped element models for n-port 

TSV models is presented in [23]. In [23], the authors proposed an equivalent lumped 

model for multi-TSV arrangements. The closed form expressions are developed in terms 

of physical dimensions and material properties. For checking the accuracy of the model, 

Q3D extractor is used for extracting the electrical parasitics of various TSV 

configurations. Each TSV is surrounded by a SiO2 dielectric coating. The silicon 

substrate surrounding the TSVs is connected to ground plane.  

In [26], electrical characterization of TSVs depending on number of TSV stacks is 

analyzed. S-parameters for a frequency range of 100MHz to 30GHz are obtained. The s-

parameters from 3D full wave simulation are used to evaluate the signal integrity. (2
7
-1) 

PRBS data streams at 1 Gbps, 2 Gbps, 5 Gbps and 10 Gbps with a 10% rise and fall time 

are considered. The eye diagrams are obtained by passing the bit stream through a single 

TSV once and through the stack of 2, 5 and 10 TSVs next, to understand the impact of 

TSV stacks. It is observed that for a single TSV, capacitance is the dominating factor 

whereas for a stack of 10 TSVs resistance and capacitance both dominate.  
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2.4 Delay and power in 2D and 3D interconnects 

In this section, we will see after what length of 2D interconnect it is beneficial to 

switch to 3D interconnect both in terms of delay and power. For this study we consider 

2D and 3D interconnects with similar driver and load. 2D interconnect model is shown in 

Figure 2.5. In this we considered a PI-model. PI-model gives Elmore delay equal to 

distributed RC model delay [27]. In 3D interconnects, capacitance is the dominating 

factor [28] and it is represented by CTSV in Figure 2.6. RTSV is not considered in Figure 2.6 

as its resistance is much less compared to driver resistance (RD). The delay equation 

considering RTSV and modeling it similar to 2D interconnect PI-model is given by 

3 0.5 0.5( ) ( )D D TSV D TSV TSV D TSV LoadT R C R R C R R C= + + + +  

RD is few hundreds of ohms and RTSV is few tens of milli-ohms. Hence we can ignore RTSV 

and model the TSV as a capacitive load. The authors in [28] also modeled the TSV as a 

capacitive load for the delay analysis through TSVs stating that RTSV has negligible 

impact on delay. 

 

Figure 2.5 2D interconnect with driver and load 
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Figure 2.6 Simple model of 3D interconnect with driver and load 

Now, we will see the equivalent length of 2D interconnect that gives delay equal to that 

of a 3D interconnect. 

Delay of 2D interconnect is given by 

2 0.5 0.5( ) ( )D D I D I I D I LoadT R C R R C R R C= + + + +  

RD is th driver resistance, CI is interconnect capacitance, CLoad is load capacitance, 

Considering the unit length capacitance and resistance of interconnect in 45nm 

technology, we have capacitance per 1mm of length = 250fF and resistance per 1mm of 

length = 69.84 ohm [29]. 

Let us say capacitance per 1mm length = a  

Resistance per 1mm length = b 

Let the length of 2D interconnect be l2D. 

2 2 2 2( ) ( )( ) ( )D D D D D Load D LoadT R al al bl bl C R C= + + +  

Now we will estimate the delay in case of 3D. 

3 ( )D D Load TSVT R C C= +  
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For a TSV radius of 5µm and length of 25µm, the equivalent length of 2D interconnect 

for equal delay is calculated to be 154µm. If we do not consider the driver resistance for 

both 2D and 3D interconnects just to compare the 2D interconnect with TSVs, we see 

that the length of 2D interconnect that gives the delay equal to a TSV (of length 25 µm 

and radius 5µm) is 0.7µm. This is due to much lower resistance of TSV compared to 2D 

interconnect for a given length. 

However when driver resistance is considered we observed that for 2D interconnects with 

length higher than 154µm it is beneficial to move to 3D interconnect (radius 5µm and 

length 25 µm). 

Now we will do similar estimation in terms of power. The interconnect power dissipation 

is given by  

20.5
I

P kfC V=  

P is the power dissipation 

CI is interconnect capacitance 

V is voltage on the interconnect 

k is the activity factor 

f is the frequency of operation 

Considering similar activity factor, frequency and voltage on the interconnect we can 

estimate the length of 2D interconnect that dissipates equal power compared to 3D 

interconnect. The calculated length of 2D interconnect that has equal power dissipation 
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through the TSV of radius 5µm and length 25 µm is 160µm. From this study we observed 

that it is beneficial to use 3D interconnects when length of 2D interconnect exceeds 

154µm (for delay) and 160µm (for power). 

2.5 Signaling, supply noise and reliability in 3D ICs 

2.5.1 Signaling over TSVs 

Most of the earlier work has been focused on electrical modeling and 

characterization of TSVs and very little has been explored on signaling techniques for 3D 

ICs. TSVs are excellent electrical interconnects but occupy significant area. In [12], the 

authors considered 3 parallel TSVs to explore signaling over TSVs and crosstalk for a 

particular TSV technology. Figure 2.7 shows the simulation setup for investigating the 

effect of crosstalk in 3 parallel TSVs used in [12]. 

 

Figure 2.7  Signaling over 3 parallel TSVs [12] 

Simple voltage and current mode signaling using inverters as drivers is considered 

in [12]. For current mode, self-biased inverters are considered at the receiver to provide 

low impedance. A Pseudo Random Bit Sequence with 10ps rise and fall times and a 

period of 200ps is applied to 3 parallel TSVs. For the dimensions considered in [12], 
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coupling is not negligible and shielding technique is employed to reduce the impact of 

coupling. In shielding technique, crosstalk between the conductors is reduced by 

introducing shield conductors between the signal conductors. Figure 2.8 shows how the 

introduction of a ground conductor turns coupling capacitance into capacitance to ground. 

 

Figure 2.8 Shielding technique 

2.5.2 Supply Noise in 3D ICs 

Power distribution network plays a crucial role in determining the overall 

performance of the system. In general, supply noise can be categorized into two types:  

1. Static Noise 

2. Dynamic Noise 

Static Noise is primarily due to the IR drop, as the supply voltage has to pass 

through the RLC networks associated with the power distribution scheme. The impact of 

IR drop can be handled by designing a more efficient and balanced power distribution 

network such as power grids. However, dynamic noise is due to the fluctuations in the 

supply voltage depending on the activity of the functional blocks. The inductance 

component of the supply network contributes to the dynamic noise. Maximum supply 

voltage drop occurs during the first droop. With increased scaling, the voltage levels have 
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come down significantly. Adding to this, the number of functional blocks on a single chip 

has increased tremendously, consequently demanding higher currents. Designing an 

efficient power distribution network in Deep Sub Micron (DSM) technologies has been 

the biggest challenge.  

In 3D ICs, by stacking several tiers we are increasing the functionality of the 

single chip. Also the power distribution network should tackle the additional noise due to 

the activity in different tiers. 3D stack with k tiers would require k-times higher current 

compared to a single 2D chip with the same footprint. The supply noise amplitude in 

stacked 3D ICs is found to be as high as 10% of the supply voltage for a stack of 2 dies. 

The dynamic noise can increase to up to 240mV (24% of VDD) for a stack of 5 dies [27] 

[31].  

2.5.3 TSV Fault tolerance using redundancy 

Improving the yield is another important aspect in 3D ICs. It is suggested in [13] 

that arranging the TSVs in the form of blocks, as shown in Figure 2.9, can provide higher 

yield compared to sprinkling the TSVs all around. Redundancy based fault tolerance is a 

simple solution to handle the problem with TSV faults. Each TSV block can contain a 

TSV chain which includes the fault tolerance architecture. A simple architecture shown 

in Figure 2.10 can be used as a fault recovery mechanism. 
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Figure 2.9  Arranging the TSVs in the form of blocks improves yield [13] 

 

Figure 2.10 Fault Recovery Mechanism a) No failure b) TSV_1 is failed [13] 

From Figure 2.10 (b), it can be observed that all TSVs towards the right starting 

from TSV_1 are shifted. This provides good performance improvement when compared 

to shifting only the failed TSV signal all the way to the end. Since it is the slowest signal 

that determines the overall performance, it is advantageous to shift all the signals by 1 

unit as shown in Figure 2.10 (b).  

In this chapter necessary background information is provided. TSV modeling and 

parasitic extraction, signaling techniques for TSVs and various factors that can impact the 

signaling over Through Silicon Vias like power supply noise are discussed. Through 

Silicon Via parasitic extraction and their electrical characteristics are covered in Chapter 

3.  
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CHAPTER 3 

THROUGH SILICON VIA PARASITIC EXTRACTION 

As we go into the Deep Sub-Micron (DSM) era, parasitic effects have to be 

considered. 3D field solvers provide more accurate information on the parasitic values 

compared to first order analytical expressions. In general, these field solvers require 

significant computation time and resources. Most of the parasitic effects of the 2D 

interconnects are well studied and simple analytical models are developed. Since 3D ICs 

are still in the phase of development, simple electrical models of 3D interconnects are not 

yet available. This is primarily due to the lack of standardization, which resulted in a 

wide range of TSV dimensions that can be chosen depending on the application. As 

mentioned in Chapter 1, there is no proper CAD support for 3D interconnects. Currently 

NCSU3DPDK is the only available academic PDK for 3D ICs using bulk CMOS 

technology. It is still in the development phase and currently does not support RLC 

parasitic extraction and post layout simulation. Hence, 3D field solvers are generally used 

to obtain the electrical parasitics of TSV.  

In this chapter, we first explain the methodology used for the extraction of RLGC 

parasitics of Through Silicon Via bundle and their frequency dependency. Q3D extractor, 

a 3D field solver from Ansoft, is used for the parasitic extraction.  

3.1 TSV parasitic extraction methodology 

The step-by-step procedure to be followed for the extraction of TSV parasitics 

using Q3D extractor is shown in Figure 3.1. 
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Figure 3.1 RLGC parasitic extraction methodology using Q3D 

Schematic of 3x3 TSV bundle developed in Q3D extractor is shown in Figure 3.2. 

 

Figure 3.2 Q3D Schematic of 3x3 TSV Bundle 

Q3D schematics of Through Silicon Vias with dielectric coating over them are 

made and embedded in a silicon substrate. Copper is chosen to be the TSV metal fill. 

Silicon is chosen as the substrate material. Silicon dioxide is used as a dielectric material. 

The geometrical dimensions of TSV bundles shown in Figure 3.2 are 

1. TSV diameter = 10 µm 

2. TSV pitch = 20 µm 

3. TSV height = 25 µm 

4. Thickness of dielectric coating over TSV = 0.2 µm 

5. Silicon substrate = 400 µm x 400 µm 

Once the schematic is ready, the source and sink nodes along with the ground 

plane are defined. In the simulation setup, a new frequency setup is created and the 
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frequencies are selected ranging from 100 MHz to 35 GHz. A validation check is 

performed before running the parasitic extractor. It checks for 3D Model boundaries, 

excitations, material overlaps and analysis setup. If the validation check fails, check for 

the errors and modify the appropriate material parameter or geometry. Some of the most 

common errors are with material overlaps and parametric setup. Once the validation 

check is complete, the parasitic extractor is executed and the results are obtained in a 

Touchstone file, which consists of RLGC values for DC and all the frequencies defined 

in the frequency setup. The Touchstone file can be given as an input for frequency 

dependent simulations in HSPICE.  

3.2 Frequency dependency of TSV parasitics 

TSV parasitics, particularly Resistance (R), Conductance (G) and Inductance (L) 

vary with frequency. The variation of resistance and conductance with frequency for a 

substrate conductivity of 100kS/m and the previously mentioned TSV dimensions are 

shown in Figure 3.4. It can be observed that the resistance of the TSV and the 

conductance through the dielectric increase with frequency. The increase of TSV 

resistance with frequency is due to the skin effect. As the frequency increases, the skin 

depth decreases thus reducing the overall cross section area for the currents to flow 

through the conductor (TSV).  Since the current flowing through the conductor decreases, 

the resistance of the conductor increases. In other words, for a given current, the cross 

section area A decreases, thus increasing the resistance according to  

l
R

A

ρ
=  

R – Resistance of the conductor 
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� -  Resistivity of the conducting material 

 �  - Length of the conductor 

A – Area of cross section 

The conductance per unit length mentioned is the leakage conductance and not the 

conductance of the TSV. This is measured in perpendicular direction to the TSV length. 

Consider a simple RLGC transmission line model as shown in Figure 3.3. As we double 

the length of the transmission line, the series resistance R of the conductor doubles. 

However the shunt resistance of the conductor is halved. As we double the length of the 

line there is more area through which the leakage current can flow, reducing the shunt 

resistance. In other words, shunt conductance doubles. Hence we can say that shunt 

resistance or the leakage resistance is nothing but the inverse of shunt conductance ‘G’. 

 

Figure 3.3 RLGC transmission line model 

1

Leakage

G
R

=  

The dielectric constant of a material is a complex quantity and is represented as 

εr = εr
’ 
- i εr

’’
 [34] 

εr is the complex dielectric constant  
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εr
’ 
representing the real component 

εr
’’
 representing the imaginary component 

The angle of the vector with the real axis is called the loss angle δ. 

tan (δ) = εr
’’
/εr

’
 

εr
’’
 = εr

’ 
tan (δ) 

For the voltage V = V0 exp(iωt), the current through the dielectric is given by 

I = C dV/dt = iCωV = iεr C0ωV = i εr
’
 C0ωV + εr

’’
 C0ωV  

In the above equation, the real part represents the loss and the imaginary part represents 

the capacitive current. 

Now, RLeakage = V/Real(I) = V/ (εr
’’

 C0ωV) = 1/ (ω C tan (δ)) 

Conductance G = 1/RLeakage = ω C tan (δ) 

Thus leakage conductance G increases with the frequency. 

The inductance in a bundle is comprised of self and mutual inductance components. For a 

3x3 bundle, mutual inductance between two TSVs varies with spacing. 

Considering the arrangement of TSV bundle as shown in Figure 3.5, it can be 

observed that the TSV-0 is surrounded by a maximum of 8 TSVs. We denote the total 

mutual inductance by TSV-0 as Lm1. Similarly the total mutual inductance by the TSVs 

at 1, 3, 6 and 8 is denoted by Lm2 and by the TSVs 2, 4, 5 and 7 is denoted by Lm3. In 
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Figure 3.6, Ls represents the self inductance and Lm1, Lm2 and Lm3 represent the 

mutual inductances as discussed above. 

 

Figure 3.4 Linear dependency of R and G with frequency for σσσσ=100kS/m. 

 

Figure 3.5 TSV configuration of a 3x3 bundle 

 

Figure 3.6 Inverse variation of L with frequency 
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At higher frequencies, the current inside the conductor decreases due to skin 

effect. Consider a conductor cross-section as shown in Figure 3.7. Total inductance is the 

sum of internal and external self inductance. As the frequency increases, the current re-

distributes inside the conductor away from the center thus decreasing the number of 

internal field rings surrounding the current. This results in the reduction in internal 

inductance of the conducting rod, thus reducing the total inductance. This is observed in 

Figure 3.6 where the inductance values decrease with frequency. 

 

Figure 3.7 Magnetic field line rings surrounding solid conductor [34] 

3.3 Skin effect and TSV resistance 

The resistance of a conductor is evaluated using the formula 

l
R

A

ρ
=  

R is the resistance of the conductor, � is the resistivity of the conducting material, l is the 

length of the conductor and A is the area of cross-section. Now let us consider a 

cylindrical TSV of radius r as shown in Figure 3.8. 
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Figure 3.8 Cylindrical TSV with radius r surrounded by dielectric coating 

The resistance of cylindrical TSV of length l and radius r as considered in Figure 3.8 is 

given by  

2
l

R
r

ρ
π

=   

Here the area is taken as the total cross-section area of the cylinder given by� � ���. 

This is true for evaluating DC resistance. However, the current distribution in a conductor 

is not uniform throughout its cross-section. At higher frequencies the current tends to 

travel along the outside of the conductor and this phenomenon is known as “Skin effect” 

i.e. the tendency of the current to flow on the skin (outer surface) of the conductor. As a 

result of this, the effective area through which the current can flow decreases resulting in 

increase in the resistance for higher frequencies. 
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Figure 3.9 Skin effect in cylindrical conductor 

The resistance of the interconnect also depends on the skin effect of the substrate 

depending on the substrate conductivity of silicon [36][37][38]. For substrates with very 

high conductivity, the skin depth will be low and results in skin effect due to substrate. 

This results in large variations in current density and current distribution in substrate and 

leads to variations in interconnect resistance for high frequencies [38]. In substrates with 

high conductivity, the effective resistance of the interconnect at high frequencies will 

increase due to both substrate skin effect and the interconnect skin effect. However for 

substrates with low substrate conductivity, the impact of substrate skin effect is little as 

the substrate skin depth increases with reduction in substrate conductivity. The skin depth 

is given by 

0

2
2s

Rf
ρδ

π µ µ
=  

δs is the skin depth, f is the frequency, ρ is the resistivity of the material and µ0 is the 

permeability of free space and µR is the relative permeability of the material. 

For substrates with low conductivity, the dominant factor is the conductor skin effect. As 

discussed earlier, the resistance of a conductor varies with frequency due to skin effect. 

For hand calculations, simple expression for skin depth is considered for understanding 
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its impact on resistance. Once the skin depth is calculated, we can obtain the resistance 

using the formula 

l
R

A

ρ
=  and 

2 2( )sA r rπ π δ= − −  

The resistance obtained using hand calculation and those obtained from Q3D are shown 

in Figure 3.10. 

 

Figure 3.10 Variation of resistance with frequency 

3.4 Mutual Inductance and Coupling Capacitance in 3x3 TSV Bundle 

In a 3x3 TSV bundle, each TSV will have coupling from all other TSVs. 

Considering the TSV bundle arrangement shown in Figure 3.5, the total mutual 

inductance of the center TSV (numbered 0) is 

Lm1 = L01 + L02 + L03 + L04 + L05 + L06 + L07 + L08 

Due to symmetry, 
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L01 = L03 = L06 = L08   

L02 = L04 = L05 = L07   

Similarly the total mutual inductance by TSV 1, TSV 3, TSV 6 and TSV 8 is the same 

and it is equal to  

Lm2 = L12 + L13 + L14 + L15 + L16 + L17 + L18 + L10 for TSV 1 

Due to symmetry,  

L13 = L16; L12 = L14; L15 = L17 

The total mutual inductance by TSV 2, TSV 4, TSV 5 and TSV 7 is the same and is given 

by  

Lm3 = L20 + L21 + L23 + L24 + L25 + L26 + L27 + L28 

Due to symmetry, 

L20 = L21 = L23 

L24 = L25 and L26 = L28 

Similar to inductance, the coupling capacitance depends on the location of the TSVs. 

The total coupling capacitance of the center TSV is given by  

Cc1 = C01 + C02 + C03 + C04 + C05 + C06 + C07 + C08 

Due to symmetry, we have  

C01 = C03 = C06 = C08 and C02 = C04 = C05 = C07   

Similarly, the total coupling capacitance of each of TSV 1, TSV 3, TSV 6 and TSV 8 is 

the same and it is equal to  

Cc2 = C12 + C13 + C14 + C15 + C16 + C17 + C18 + C10 for TSV 1 

Due to symmetry,  

C13 = C16; C12 = C14; C15 = C17 
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The total coupling capacitance of each of TSV 2, TSV 4, TSV 5 and TSV 7 is the same 

and is given by  

Cc3 = C20 + C21 + C23 + C24 + C25 + C26 + C27 + C28 

Due to symmetry, 

C20 = C21 = C23 

C24 = C25 and C26 = C28 

The extracted values from the field solver at DC and 2GHz frequency are shown 

in Table 3.1. Self Capacitance and Self Inductance values are denoted under Cs and Ls. 

As discussed earlier, Lm1, Lm2 and Lm3 represent the mutual inductance and Cc1, Cc2 

and Cc3 represent coupling capacitance experienced by different TSVs depending on 

their location. 

Table 3.1 Electrical parasitics at DC and 2 GHz frequency 

Freq.  R (mΩ) Ls (pH) Lm1(pH) Lm2(pH) Lm3 (pH) Cs (fF) Cc1 (fF) Cc2 (fF) Cc3 (fF) 

DC 4.88 7.14 15.648 11.515 13.364 116.34 0.104 0.076 0.049 

2GHz  16.38 5.66 7.768 5.486 6.536 116.34 0.104 0.076 0.049 

 

From Table 3.1, it can be observed that the coupling capacitance is less compared 

to self capacitance. This is due to higher spacing between the TSVs and the substrate 

acting as a shield. Total mutual inductance values are comparable to self inductance 

values.  



 

39 

 

3.5 Circuit model 

In this section a simplified circuit model is presented. The simulations are carried 

out to check the accuracy of the simplified circuit model with that of the full circuit 

model obtained from the Q3D extractor. Consider a simple 2x1 structure (2 pair of TSVs) 

as shown in Figure 3.11. The TSV radius is 5µm and length 25µm. Its equivalent circuit 

is shown in Figure 3.12. 

 

 

Figure 3.11 2x1 TSV structure 

 

Figure 3.12 Equivalent circuit of 2x1 TSV structure 
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Simulations are carried out to check the accuracy of the simplified RLC 

equivalent circuit compared to the full circuit model. The detection of the signal at the 

receiver circuit depends on the eye opening of the signal at the receiver. Peak to peak 

voltage of the noise indicates the distortion in the eye opening and hence chosen as a 

metric. For a 2x1 structure as shown in Figure 3.11, port 1 is given a rising input and the 

peak to peak voltage at the outputs 3 and 4 are obtained. A similar analysis is carried for 

3x1 structure. 

 

Figure 3.13 Simplified RLC equivalent circuit of 2x1 TSV structure 

The peak-peak noise voltages using RLC equivalent circuit model and full circuit model 

are shown in Table 3.2. It can be observed that the results from RLC circuit model are 

close to full circuit model. 
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Table 3.2 Peak-peak voltage using full model and RLC model 

Output Node V(p-p) full model (V) V(p-p) RLC model (V) 

2x1 aggressor 0.068 0.067 

2x1 victim 0.061 0.062 

3x1 aggressor 0.054 0.057 

3x1 victim-1 0.059 0.060 

3x1 victim-2 0.043 0.047 

3.6 Crosstalk 

In this section, crosstalk in 3x1 and 3x3 structures is examined. Simulation setup 

for crosstalk analysis for 2D interconnects is suggested in [35]. The simulation setup for 

crosstalk analysis suggested in [35] is shown in Figure 3.14. Figure 3.15 shows the 

equivalent circuit model. The inverter on the driver side is modeled as the resistance Rtr 

and the inverter on the receiver is modeled as a capacitive load CL as shown in Figure 

3.15.  

 

Figure 3.14 Simulation setup for analyzing crosstalk [35] 
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Figure 3.15 Circuit model for crosstalk analysis [35] 

In this work, we consider 3x1 and 3x3 structures for crosstalk analysis. For each 

of these two structures we consider two cases – static case and switching case. By static 

case we mean that only one of the TSVs will have a switching signal and rest of the TSVs 

are given a static input. In switching case, we have center TSV switching in opposite 

direction relative to rest of the TSVs. To understand the crosstalk in interconnects, 

similar simulation setup as in Figure 3.14  is considered. Simulation setup for 3x1 

structure for static case is shown in Figure 3.16. In Figure 3.16, on the input side we have 

one node with a rising input and the other two nodes are given a “ground” input. The 

simulation results are shown in Figure 4. 

 

Figure 3.16 Simulation setup for crosstalk estimation in 3x1 (static case) 

Simulation results are shown in Figure 3.17. From Figure 3.17, it can be observed 

that the peak to peak voltage of noise induced due to the aggressor on the other TSVs 
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decreases as we move away from it. This is due to the reduction in coupling between the 

TSVs. Assuming 3 TSVs arranged as 3x1 (3 parallel TSVs), the coupling between 1 and 

2 will be high compared to the coupling between 1 and 3. This is both due to the increase 

in spacing as well as the shielding provided by the middle TSV. 

 

Figure 3.17 Waveforms showing the crosstalk in 3x1 (static case) 

However, when all the TSVs are used for signaling, the worst case switching 

scenario occurs when the center TSV switches in the opposite direction relative to rest of 

the TSVs. Now let us consider this scenario shown in Figure 3.18 to analyze the crosstalk 

in worst case switching. 
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Figure 3.18 Simulation setup for 3x1 with switching inputs 

 

Figure 3.19 Waveforms showing impact of crosstalk in 3x1 (switching case) 

The simulation results for worst case switching in 3x1 structure is shown in 

Figure 3.19. In switching case all the TSVs have a changing input. However the 

propagation delay depends on the relative switching between the conductor and its 

neighboring nodes. For 3x1 switching case, the center TSV will suffer more due to 
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crosstalk. This is because it has two neighbors switching in the opposite direction 

resulting in change in voltage of 4VDD. For the edge TSVs, there is only one switching 

neighbor resulting in 2VDD change in the voltage. From the simulation results it can be 

observed that the center TSV has higher delay compared to edge TSV.  

Now we will discuss the crosstalk in 3x3 TSV structure. For static case, we will 

give a rising input to one of the TSV drivers and the rest of the drivers are “grounded” at 

the input. Depending on the location of the TSV with respect to aggressor node, the noise 

due to crosstalk varies. 3x3 TSV structure indicating the aggressor and victim TSV nodes 

is shown in Figure 3.20. TSVs located orthogonal to the switching TSV are named as 

orthogonal1 and orthogonal2, orthogonal1 being the TSV immediately orthogonal to the 

switching TSV and orthogonal2 being the TSV next to orthogonal1. TSVs that are 

diagonal to switching TSV are named as diagonal1, diagonal2 and diagonal3 as 

mentioned in Figure 3.20. 

 

Figure 3.20 Simulation structure for cross talk in 3x3 (static) 
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Simulation results are shown in Figure 3.21. In a 3x3 TSV structure, crosstalk noise 

depends on the location of victim TSV relative to aggressor. The TSVs that are 

immediately close to aggressor suffer more compared to rest of the TSVs. It can be 

noticed that the immediate orthogonal TSVs (in red) and immediate diagonal TSV (in 

dark blue) will have higher crosstalk noise compared to rest of the TSVs. The crosstalk 

on non immediate neighbors is less due to increased spacing as well as shielding by the 

immediate neighbors. 

 

Figure 3.21 Crosstalk in 3x3 structure (static) 

Now we will consider the switching case in 3x3 structure. As discussed earlier, 

when all the TSVs in a 3x3 bundle are used for signaling, we will have worst case noise 

when the center TSV switches in the opposite direction relative to rest of the TSVs. Let 
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us call this the worst case switching scenario and simulation setup is shown in Figure 

3.22. The center TSV and rest of the TSVs switch in opposite directions. All the TSVs 

surrounding the center TSV can be categorized into orthogonal and diagonal TSVs 

depending on their relative location with respect to the center TSV in the bundle. 

Simulation results are shown in Figure 3.23.  

 

Figure 3.22 Simulation setup for worst case switching in 3x3 

From Figure 3.23 it can be observed that the center TSV has the maximum delay due to 

crosstalk. The delay through the orthogonal TSV is 14.1ps and the delay through the 

diagonal TSV is 15.6ps. In this chapter, we dealt with TSV parasitic extraction, circuit 

model and crosstalk in 3x1 and 3x3 structures. Signaling techniques and their 

performance for different TSV radii will be discussed in Chapter 4. 
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Figure 3.23 Crosstalk in 3x3 (switching)  
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CHAPTER 4 

SIGNALING ON THROUGH SILICON VIA BUNDLES 

Signaling techniques play a crucial role in determining overall performance of a 

digital system. A typical signalling system consists of a transmitter/driver, channel and a 

receiver. Depending on the electrical representation of the data, signaling techniques are 

classified into voltage mode/high impedance mode and current mode/ low impedance 

mode. 

In voltage mode, the signal is represented by the voltage levels, whereas the 

signal is represented by the currents in current mode. In general, both voltage and current 

mode primarily depend on the termination at the receiver. If the receiver used is a low 

impedance termination, then it is more suitable for current mode transmission, since all 

the current can flow into the receiver as opposed to flowing into ground through a low 

impedance path. If the receiver is a high impedance node, then voltage mode is suitable 

since all the voltage can be applied at that node. Based on the number of interconnects 

used for signal transmission, signaling techniques can be classified into two types. 

a) Single ended signaling technique 

b) Differential signaling technique 

In single ended techniques, there is a common reference for all the signals at both 

transmitter and the receiver. At the receiver side, the signal is compared with this 

common reference to determine whether the transmitted bit is 0 or 1. In differential 

signaling technique, each signal requires two interconnects. At the driver side, both signal 
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and its complement are transmitted. At the receiver side, these two signals are compared 

to identify the transmitted bit.  

In this chapter we present various signaling techniques for TSV based 3D ICs. 

Single ended and differential signaling techniques are explored. Maximum data rates and 

energy/bit for each of the signaling techniques are obtained. All the driver and receiver 

circuits are designed using 45nm CMOS technology using NCSU PDK. As TSV 

parasitics vary with its radius, we extracted the parasitics for TSV radii ranging from 

1µm to 15µm and maximum data rates are determined for each of the signaling 

techniques determined above. 

4.1 Single Ended Techniques 

4.4.1 Voltage Mode Signaling 

Voltage Mode signaling is also called high impedance mode signaling due to the 

high input impedance of the receiver circuit. The driver and receiver circuit in voltage 

mode signaling can be realized using a simple inverter. Some of the crucial parameters to 

be considered while designing driver and receiver circuits are 

- Rise and Fall times 

- Maximum Data rate 

- Power consumption 

Rise and fall times at the output are important for power and performance issues. 

For a simple inverter circuit, during the transition from 0 to 1 or 1 to 0, for certain 

duration both NMOS and PMOS are ON. During this period, there is a direct current path 
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from VDD to ground which contributes to dynamic leakage power. In general, longer rise 

and fall times reduce the overall performance. One way to obtain sharp rise and fall times 

is to increase the drive strength. Hence, it is important to determine the drive strength to 

increase the data rate. The rise and fall times are determined by the sizing of pull up and 

pull down networks. For voltage mode signaling with inverters as drivers and receivers, 

the rise and fall times are determined by the P/N ratio of the inverter and the absolute 

widths of the transistors. Based on the simulation results, the P/N ratio for equal rise and 

fall times is found to be 3.5. As the size of the inverter increases, its drive strength 

increases. However, it also increases the load capacitance due to the driver. After certain 

point, the reduction in delay due to the increase in drive strength is overcome by the 

increase in the capacitance. Based on this, simulations are carried out to obtain the 

absolute widths with performance as primary objective.  

The maximum data rate for a particular signaling scheme depends on load 

capacitance of the driver, interconnect capacitance and the input capacitance of the load. 

For voltage mode signaling, a unit inverter driving a Fan Out of 4 (FO4) load is 

considered as the receiver. The parasitics for 3x3 TSV bundle are obtained from Q3D 

extractor and provided as input touchstone file for HSPICE simulation. Simulations are 

performed to obtain the maximum datarate that can be achieved using Single Ended 

Voltage Mode signaling (SEVM). Based on the simulations for minimum delay each 

TSV of the 3x3 bundle is driven by the 64 x inverter. All the TSVs in a bundle are driven 

in the same way. The simulation setup for one of the TSVs in 3x3 bundles for SEVM is 

shown in Figure 4.1.  
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Figure 4.1 SEVM signaling simulation setup for one of the TSVs [39] 

The center TSV will experience the maximum coupling in the bundle. Hence, all 

the simulation results are taken at the nodes of the center TSV. Simulations are 

performed in HSPICE with 2
7 

– 1 Pseudo Random Bit Sequence (PRBS) as inputs. The 

eye diagrams are plotted at the output of the 1x receiver, node‘d’ in Figure 4.1. A rise and 

fall time of 10ps is given at the input. Targeting an eye height of 60% of VDD as 

considered in [26], the maximum data rate that can be supported by voltage mode 

signaling for particular TSV radius is determined. For a TSV radius of 10µm, the 

maximum data rate is found to be 21.7 GBPS. The eye diagram for voltage mode 

signaling at 21.7 GBPS is shown in Figure 4.2. 

 

Figure 4.2 Eye Diagram at 21.7 GBPS for SEVM signaling[39] 
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4.4.2 Current Mode Signaling 

In this section, the current mode signaling scheme is designed and analyzed. 

Current mode signaling is also called low impedance mode signaling due to the low input 

impedance of the receiver circuit. A simple inverter circuit cannot be used as a receiver 

for current mode signaling due to high input impedance offered by the PMOS and NMOS 

gate terminals. A simple self biased inverter as shown in Figure 4.3 can be used as a 

receiver.  

 

Figure 4.3 Simulation setup for SECM1 [39] 

The simulation setup is similar to that of voltage mode except the receiver circuit, 

which is mainly a low impedance node. Let us call this circuit as Current Mode Receiver 

1 (CMR1) and the signaling technique, Single Ended Current Mode1 (SECM1). The self 

biased inverter receiver shown in Figure 4.3 has a low input impedance. The drains of the 

transistors have high impedance (rd). However the total impedance is reduced due to 

feedback. The input impedance is given by 1/ {(gm1+gm2+ (1/rd1) + (1/rd2)}.Voltage 

swing at the receiver in current mode signaling can be less than VDD (full swing). This 

provides the performance improvement. Considering the CMR1, the sizing of M1 and 

M2 plays a crucial role in determining the signal swing at node ‘c’ or node ‘d’ (as both 

are connected directly). Transistors M1 and M2 act like active load resistors. As the size 
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of M1 and M2 transistors increases, the signal swings decreases thus increasing the 

speed. But this improvement in speed gradually decreases and the link fails once the 

signal levels are too low to switch the inverter following node‘d’. From simulation results 

for maximum speed, the size of M1 and M2 are chosen to be 64x unit size at 45nm 

CMOS technology. Similar to voltage mode simulations, the inputs to the 3x3 TSV 

bundle are provided by the 2
7 

– 1 PRBS with rise and fall times of 10ps. Considering 

60% eye height  as a criteria, the maximum data rate for TSV radius of 10µm is found to 

be 32.2 GBPS for CMR1. The eye diagram at 32.2 GBPS is shown in Figure 4.4.  

 

Figure 4.4 Eye Diagram at 32.2 GBPS for SECM1 signaling 

An improvement to the receiver circuit of CMR1 can be made by adding an 

NMOS transistor between the nodes ‘c’ and ‘d’, as shown in Figure 4.5. This circuit is 

introduced in [40] where the signaling mode switches from current mode to voltage mode 

depending on whether this transistor is switched on or off, which in turn depends on 

whether there is a transition in the incoming data signal. In [40], the gate voltage of M3 
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varies depending on the input data and its transition, and is primarily used as a part of the 

repeater circuit. In this work, we bias it to a fixed voltage to operate at a maximum gain. 

This increased gain also helps in reduction in the overall impedance between input and 

output, as the total impedance is now divided by the factor of (gain+1) due to Miller 

Effect. The input impedance is given by (rd3+A)/(1+A(gm1+gm2)) where A = 

(rd1+rd2){1+rd3(gm3+gmb3)}. The sizing of the feedback transistor plays a significant 

role in determining the performance of the circuit. As the transistor size increases, the 

gain increases and at the same time, the drain and source capacitance of M3 at the input 

and output nodes increases. Hence, the improvement in performance with increase in the 

transistor size gradually decreases due to the increasing capacitance. 

 

Figure 4.5 Simulation setup for SECM2 signaling [39] 

Similar to earlier simulations, the input is a 2
7 

– 1 PRBS with rise and fall times of 

10ps. The maximum data rate for a TSV radius of 10µm is found to be 36.6 GBPS. The 

eye diagram at 36.6 GBPS is shown in Figure 4.6.  However it can be observed that this 

circuit is highly affected by Inter Symbol Interference (ISI). From the eye diagram it can 

be observed that there are “sub-eyes” which are misaligned. This can be handled by 

adding an equalization circuit at the driver or receiver.  
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Figure 4.6 Eye Diagram at 36.6 GBPS for SECM2 signaling 

4.2 Differential technique 

The choice of a signaling technique depends on performance, power and 

robustness. A single ended signaling scheme which considers VDD and VSS as high and 

low voltages, respectively, suffers significantly due to common-mode noise. In 

differential signaling, each signal is represented as a pair of complementary signals (V+ 

and V-). At the receiver end, both the signals are compared to obtain the transmitted bit. 

The primary drawback of single ended signaling is its vulnerability to common mode 

noise.  

In differential signaling, the receiver takes the difference of the two 

complementary signals, thus mitigating the common mode noise. Also the maximum 

voltage swing in differential technique is twice that of single ended signaling. This helps 

in providing higher noise margins compared to single ended signaling. In other words, it 

allows lower voltage swings for similar noise margins. Dynamic power has the quadratic 
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dependency on the voltage level. As differential technique requires lower voltage swings, 

significant savings in dynamic power can be obtained with this technique. Lower voltage 

swings can provide higher data rates as the load capacitance need not charge or discharge 

for complete supply swing.  

 

Figure 4.7 Schematic for Differential Signaling technique [39] 

In this work, a differential signaling scheme as shown in Figure 4.7 is considered. 

The differential inputs are applied to the gates of the transistors M1 and M2, which are 

pinned to carry a total current of 1mA with the help of a tail current source. At the 

receiver side, a simple common gate transistor with a load resistor is used for each leg. 

Depending on the differential inputs, the current in one of the legs dominates over the 

other, resulting in differential outputs. The bias voltage is applied to operate the 

transistors in saturation region. Such a receiver configuration with a simple common 
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source driver is explained in [41]. Simulations are performed using 2
7 

– 1 PRBS inputs 

and the eye diagram at 31 GBPS is shown in Figure 4.8. The differential voltage at the 

nodes out1 and out2 is shown in Figure 4.8.  

 

Figure 4.8 Differential output eye diagram at 31 GBPS 

It was observed that the Inter Symbol Interference (ISI) is dominating and simple 

driver equalization with one bit emphasis circuit can significantly improve the signal 

quality. A one bit emphasis circuit configuration as explained in [42] is used to improve 

the signal quality to obtain an eye opening as shown in Figure 4.8. The configuration 

mentioned in [42] is shown in Figure 4.9. It can be observed that for the first signal 

transition both the current sources will be ‘on’ and for consecutive ‘1’s the current is 

steered from one source into the other. 
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Figure 4.9 One-bit emphasis circuit [42] 

4.3 Energy/bit comparison of signaling techniques 

The energy/bit is an important metric to estimate the energy consumption of the 

signaling scheme. For energy/bit comparison, all the signaling techniques are given an 

input of 10 Gbps to have a common (iso) data rate comparison. Energy/bit is evaluated 

using average power obtained from the HSPICE simulation. HSPICE gives the total 

power consumed by all the 9 TSVs averaged to bit time. The energy consumed by all the 

9 TSVs is obtained by multiplying the power for 9 TSVs with bit time. For Single Ended 

Voltage Mode signaling, transmitting each bit requires only one TSV. So energy/bit is 

estimated by dividing the total energy by 9. For differential signaling with 4x4 structure, 

all the 16 TSVs are used for sending 8 signals. Hence, the total energy/bit is divided by 8.  

The primary drawback of differential signaling is that it requires 2N interconnects 

for transferring N signals. But single ended schemes require only N interconnects. From 

Table 4.1, it can be observed that SECM2 requires the least energy for transmitting the 

same number of bits at 10 Gbps. It can be observed that differential signaling requires the 

energy close to SECM1 signaling for 10 Gbps input. 
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Table 4.1 Energy/bit for various signaling techniques at 10 GBPS 

Signaling technique Energy/bit (fJ) 

SEVM 1.715 

SECM1 1.348 

SECM2 0.981 

DCM 1.282 

4.4 Performance of signaling techniques for different TSV radius 

The electrical parasitics of a TSV are dependent on its radius. Depending on the 

application, different research groups (both academia and industry) use a different TSV 

radius. To understand the performance of different signaling techniques across different 

TSV radii we extracted electrical parasitics of TSVs for radius ranging from 1µm to 

15µm. The following section will discuss the variation of TSV electrical parasitics with 

radius. The arrangement of a TSV pair for parasitic extraction is shown in Figure 4.10. 

 

Figure 4.10 A pair of TSVs in a silicon substrate 
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4.4.1 Variation of resistance, inductance and capacitance with TSV radius 

The resistance of a material is inversely proportional to its cross-sectional area. 

As the radius of the TSV increases, its cross-sectional area increases in a quadratic 

manner, thus reducing the resistance. The resistance of a TSV is given by  

	 �  � 

�

�
 

R is the resistance of the conductor, �  is the resistivity of the material, � is the length of 

the conductor and A is its area of cross-section of a cylindrical conductor. The area of 

cross-section is proportional to the square of the radius. In Figure 4.11, the variation of 

resistance of TSV with radius is shown. 

 

Figure 4.11 Variation of resistance with TSV radius 

Inductance of a TSV also varies inversely with TSV radius. As the radius of TSV 

increases, the cross section area increases. This results in spreading of the current, thus 

decreasing the inductance of the conductor. The mutual inductance also decreases with an 

increase in TSV radius, as the spacing increases with increase in radius. This reduces the 
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number of magnetic field lines that can couple with a neighboring TSV. Variation of 

inductance with TSV radius is shown in Figure 4.12. In Figure 4.12, the mutual 

inductance shown is the mutual inductance between two immediate TSVs evaluated by 

multiplying the coupling coefficient ‘k’ between the two TSVs with the self inductance. 

 

Figure 4.12 Variation of TSV inductance with radius 

Now variation of capacitance with TSV radius is discussed. The self capacitance 

of TSV increases with TSV radius. As the TSV radius increases, the contact area of TSV 

with the dielectric coating increases. This results in an increase in the self capacitance of 

the TSV. As shown in Figure 4.13, as the TSV radius increases, the surface area of the 

cylinder (TSV) increases, thus increasing the contact area with the dielectric coating 

surrounding the TSV. 
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Figure 4.13 Single TSV with dielectric coating 

The coupling capacitance depends on the portion of the surface area of the 

cylinders that face each other and the spacing between them. Figure 4.14 shows a pair of 

TSVs. The spacing between them is indicated as ‘S’. The coupling capacitance between 

TSVs 1 and 2 depend on the spacing ‘S’ and the surface area where the TSVs face each 

other. Initially for smaller radii the coupling capacitance increases slightly due to the 

increase in the surface area but for larger radii, the spacing dominates and the coupling 

capacitance decreases, as shown in Figure 4.15. 

 

Figure 4.14 Coupling capacitance between a pair of TSVs 



 

64 

 

 

Figure 4.15 Variation of capacitance with TSV radius 

4.4.2 Variation of mutual inductance and coupling capacitance with spacing 

In this section, impact of TSV spacing on mutual inductance and coupling 

capacitance is studied. We considered a fixed TSV radius of 1µm and extracted the 

parasitics of TSVs for different spacing. Simulation results showing mutual inductance 

for different TSV spacing is shown in Figure 4.16. 

 

Figure 4.16 Variation of mutual inductance with TSV spacing 
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From 5.1.1Figure 4.16, it can be observed that as the spacing between the TSVs 

increases the mutual inductance between them decreases. This is because, as the spacing 

increases the number of magnetic field lines that can surround both the TSVs decreases, 

resulting in decrease in the mutual inductance.  

Simulation results showing the variation of coupling capacitance with TSV 

spacing are shown in Figure 4.17. From Figure 4.17, it can be observed that the coupling 

capacitance decreases with an increase in spacing between the TSVs. As the capacitance 

between the two conductors is given by C = (εA)/d; indicating the inverse variation of 

capacitance with the spacing between the conductors given by ‘d’.  

 

Figure 4.17 Variation of coupling capacitance with TSV spacing 

4.4.3 Performance of signaling techniques for different TSV radii 

In this section, we will see the impact of TSV radius on the performance (speed). 

To understand this we will write the delay equation through TSV. Let us consider the 

equivalent circuit model for delay estimation through TSV as shown in Figure 4.18.  



 

66 

 

 

 

Figure 4.18 Equivalent circuit for TSV delay estimation 

In Figure 4.18, the driver resistance is represented as RD and load capacitance is 

represented as CLoad. TSV resistance is represented as RTSV and TSV capacitance is 

represented as CTSV. For the circuit in Figure 4.18, delay equation can be written as 

0.5 0.5( ) ( )D D TSV D TSV TSV D TSV LoadT R C R R C R R C= + + + +  

From the above equation it is understood that TSV delay is a function of RD, RTSV, CTSV 

and CLoad. For understanding the impact of TSV radius on performance, we use TSVs 

with different TSV radius. As the TSV radius increases, its resistance decreases due to 

the increase in cross-section area. Maximum resistance is obtained for minimum TSV 

radius. Maximum TSV capacitance is obtained for higher TSV radius. Delay increases as 

the resistance and capacitance of TSV increase. However in case of TSVs, due to their 

length in microns, resistance is in milli ohms and the capacitance is found to be the 

dominating factor. Thus, TSV can be modeled as a capacitance ignoring the resistance. 

This is also mentioned in [28] where the authors first consider RC delay model for TSV 

interconnect and owing to very small resistance of TSV compared to driver resistance, 

they show that TSV is a capacitance dominated element and can be modeled as a simple 

capacitance. Resistance of TSV can be ignored because of its low value compared to the 
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driver resistance. So we can replace (RD+RTSV) in the delay equation with just RD. To see 

why TSV resistance can be ignored we consider the maximum resistance of TSVs used in 

this work. The resistance of TSV of radius 1µm and at a frequency of 31GHz (62 Gbps) 

is found to be 225mΩ. This is much smaller compared to the minimum driver resistance 

of 165 Ω (for 64x inverter in 45nm). Hence we can ignore the TSV resistance and model 

it as a simple capacitance. Now the delay equation can be written as 

( )D D TSV LoadT R C C= +  

From the above equation it can be observed that for a given driver resistance and load 

capacitance, the delay depends on the capacitance of TSV. The delay increases with 

increase in TSV capacitance. From our study on dependency of capacitance on TSV 

radius, we observed that as the radius increases, TSV capacitance increases. As shown in 

Figure 4.19, the area of TSV in contact with the dielectric is the surface area of the 

cylinder. The surface area increases with an increase in TSV radius thus increasing the 

capacitance of TSV. The TSV capacitance for varying  radius is shown in Figure 4.19. 

 

Figure 4.19 Copper TSV and its capacitance for different TSV radius 
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For hand calculation, we use the capacitance formula mentioned in [22]  and 

given by  

� �  
� 
 2�	�

�
 

�  is the capacitance of TSV, � is the permittivity of dielectric (silicon dioxide), 	 is TSV 

radius, � is length of TSV and � is thickness of dielectric coating. The authors in [22] 

mentioned that the capacitance formula mentioned above gives a simple expression for 

hand calculation. However they mention that the capacitance is over-estimated using the 

above mentioned formula as it assumes that the electric field lines from 3D via terminate 

on the cylinder surrounding the via dielectric liner[22].  

Now we can see how TSV radius impacts the delay. From the delay equation

( )D D TSV LoadT R C C= + , it can be observed that TSV delay increases with an increase in 

TSV capacitance. From Figure 4.19, we see that TSV capacitance increases with TSV 

radius. Hence we can say that TSV delay increases with an increase in TSV radius. TSV 

parasitics are extracted for 3x3 and 4x4 structures for TSV radius ranging from 1µm to 

15µm. Using the single ended and differential signaling techniques discussed earlier and 

the extracted TSV parasitics for different TSV radii, simulations are carried out. In this 

work, we considered the TSV pitch to be twice the diameter as suggested by ITRS 2009 

[20]. The simulation results for maximum data rates that can be obtained from each of the 

signaling techniques are shown in Figure 4.20.  
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Figure 4.20 Maximum data rates of signaling techniques for different TSV radii 

From Figure 4.20 it can be observed that as the TSV radius increases, the data rate 

of signaling techniques decreases. This is because, as the TSV radius increases, the total 

capacitance of the TSV increases, thus resulting in a reduction of the maximum data rate 

that can be attained. It can also be observed that differential signaling performs better for 

smaller radii compared to single ended techniques. Single ended voltage mode signaling 

has low data rates compared to other techniques. This is due to the full rail-to-rail swing 

required for SEVM compared to low swing in other signaling techniques. From this it is 

understood that the capacitance of a TSV is the dominating factor that determines the 

maximum data rate through TSV bundles. For applications that look for technologies 

with smaller radii, differential signaling provides the maximum data rate. For higher TSV 

radius (above 7µm), single ended techniques provide better performance. 

To understand how data rates of single ended and differential signaling vary with 

TSV, a simple step response analysis can be carried out. For step response analysis, we 
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consider the equivalent circuit model of TSV shown in Figure 4.18. We provide a step 

input with rise and fall times of 10ps. The maximum data rate is obtained by reducing the 

bit time of the step input until it reaches the minimum eye opening criteria of 660mV for 

single ended and 400mV for differential signaling. From the step response eye diagrams 

it is observed that, for differential signaling we have maximum data rates of 60.6Gbps 

and 27Bbps for radius of 1µm  and 15 µm respectively. For voltage mode signaling 

similar analysis is carried out and from simulaitons we observed the maximum data rates 

of 28.57Gbps and 21.7 Gbps for radius of 1µm  and 15 µm respectively. The results from 

this step response analysis follow the results obtained from full circuit model simulations 

using PRBS input sequence shown in Figure 4.20. 

In this chapter, various signaling techniques are explored. TSV parasitics are 

extracted for different TSV radii and performance of signaling techniques across TSV 

radius is analyzed. Impact of process, voltage and temperature variations between driver 

and receiver circuits will be discussed in next chapter. 
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CHAPTER 5 

ROBUSTNESS ANALYSIS 

In chapter 4, various techniques for signaling over TSV bundles are introduced. In 

case of signaling over TSV bundles, the driver and receiver circuits will be on different 

dies and these are subjected to process, voltage and temperature variations. In this 

chapter, we analyze the impact of these variations between driver and receiver circuits on 

single ended and differential signaling techniques. 

5.1 Process Variations 

In this section, the impact of process variations between driver and receiver 

circuits is considered. Process variations can be represented as threshold voltage (Vt) and 

effective channel length (Leff) variations. For this study, 4 corner cases as mentioned 

below are considered. Figure 5.1 shows the corner case process variations for driver and 

receiver circuits. 
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Figure 5.1 Corner case process variations between driver and receiver circuits 

Case 1 – Slow Driver and Slow Receiver (SDSR) 

Case 2 – Slow Driver and Fast Receiver (SDFR) 

Case 3 – Fast Driver and Slow Receiver (FDSR) 

Case 4 – Fast Driver and Fast Receiver (FDFR) 

5.1.1 Threshold Voltage variations 

Threshold voltage is one of the key factors that determine the performance of 

CMOS devices. Threshold voltage determines the electric potential that has to be applied 

on the gate terminal to create a channel and allow the majority carrier current flow 

through the device. An NMOS transistor is said to be “on” if the applied gate voltage 

relative to the source voltage is at least greater than threshold voltage. Threshold voltage 

can have a significant impact on the performance of the device. For a given input gate 

voltage, as threshold voltage increases, the device slows down. This is due to the 

decrease in the current that is used to charge and discharge the load capacitance. In this 

work, we consider the corner cases for analyzing the impact of threshold voltage 

variations between driver and receiver circuits. The driver or receiver circuit with a high 

threshold voltage will be slow and those with a low threshold voltage will be fast. ITRS 

[47] suggested a threshold voltage variation of 40% (3σ value), which is considered for 

this study. Using the ITRS suggested variation of ∆Vt and Vtnom, we can obtain Vtmax and 

Vtmin as shown below. 
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Vtmax = Vtnom + ∆Vt 

Vtmin = Vtnom - ∆Vt. 

Vtmax is the threshold voltage of a slow circuit 

Vtmin is the threshold voltage of a fast circuit 

Vtnom is the nominal threshold voltage under no variations 

∆Vt is the variation in threshold voltage. 

4 corner cases can be identified depending on the threshold voltages of driver and 

receiver circuits. The maximum data rates for each of the signaling techniques for a TSV 

radius of 10µm are obtained. As shown in Table 5.1, it can be observed that compared to 

full swing single ended voltage mode signaling, the impact of process variations on low 

swing SECM2 signaling is high. The 3σ variation of 40% mentioned in ITRS is for a 

minimum size device. Process variations decrease with the increase in device size. It is 

inversely proportional to square root of area (W x L). Hence we consider an appropriate 

value of ∆Vt depending on the size of the MOS transistor. Thus, the impact of process 

variation also depends on the size of transistors used.   

From Table 5.1, it can be observed that low swing single ended signaling 

techniques suffer more due to Vt variations compared to full swing voltage mode 

signaling. In full swing signaling, the noise margin levels will be high compared to low 

swing signaling, thus making the low swing single ended signaling techniques more 

sensitive to process variations. The impact of process variations also depends on the size 
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of the transistors used in the circuit. For a circuit with bigger transistor sizes, the 

variations will be less resulting in low process variations. 

Table 5.1 Impact of threshold voltage variation 

Scenario SEVM  

(Gbps) 

 SECM1 

(Gbps) 

SECM2  

(Gbps) 

DIFF  

(Gbps) 

SDSR 19.8 28.8 32.5 28.5 

SDFR 22.6 33.7 37.3 29.9 

FDSR 21.5 30.0 34.8 31.9 

FDFR 23.5 35.1 39.3 33.8 

Nominal 21.7 32.2 36.6 31.0 

Worst 

deviation  

-8.7 % -10.5% -11.2% -8.06% 

5.1.2 Effective channel length variation 

The effective channel length of a MOS transistor is the distance between the drain 

and source regions. Nominal channel length is the length of the gate region. However the 

drain and source regions spread beneath the gate region to a little extent, thus reducing 

the effective distance between drain and source regions. This distance between the drain 

and source regions is called the effective channel length of the MOS transistor.  Variation 

in the channel length varies the current through the MOS transistor. As the channel length 

increases, the current through the device decreases. This results in a decrease in the 

performance of the device. Hence, shorter channel lengths yield faster circuits and longer 
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channel lengths result in slower circuits. Thus, we can have Lmax and Lmin as channel 

lengths for slow circuit and fast circuit, respectively. Lmax and  Lmin are calculated using 

the nominal Leff and variation in the channel length. Let ∆L be the variation of channel 

length. Then Lmax and  Lmin are calculated as mentioned below. 

Lmax = Leff + ∆L 

Lmin = Leff - ∆L. 

Lmax is the effective channel length of a slow circuit. 

Lmin is the effective channel length of a fast circuit. 

Leff is the nominal effective channel length under no variations.  

In this work, corner case analysis is carried out to analyze the impact of effective 

channel length variation. The channel length variation of 12% as suggested in ITRS 

2009[47] is considered. Simulations are carried out considering the corner cases of 

channel length variation. As shown in Table 5.2, maximum data rates are obtained for 

each of the signaling techniques under effective channel length variations. It can be 

observed that similar to Vt variations, the impact of channel length variation is high on 

low swing single ended signal techniques compared to full swing voltage mode signaling. 

Differential signaling also has less impact compared to other signaling techniques. This 

might be due to usage of fixed current sources in differential signaling tolerating the 

impact of current variations due to effective channel length variations. 
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Table 5.2 Impact of effective channel length variation 

Scenario SEVM 

(Gbps) 

 SECM1 

(Gbps) 

SECM2 

(Gbps) 

DIFF  

(Gbps) 

SDSR 19.6 28.5 31.7 28.8 

SDFR 22.4 33.4 36.2 29.4 

FDSR 20.8 30.7 35.4 31.9 

FDFR 23.4 36.0 40.6 33.3 

Nominal  21.7 32.2 36.6 31.0 

Worst deviation  -9.7% -11.5% -13.4% -7.1% 

 

For differential signaling it is important to consider the impact of mismatch 

between the transistors on different legs. The resistors used in two legs can have a 

variation. The threshold voltage and effective channel length variations between the 

transistors on different legs can have different values due to mismatch. As shown in 

Figure 5.2, the resistor and the transistors on one leg are considered to have different 

threshold voltage, effective channel length and resistance values compared to those on 

the other leg. Variations in effective channel length and threshold voltage are considered 

similar to earlier analysis of driver receiver variations. A resistance variation of 10% is 

assumed. The impact of mismatch variation is tabulated. From Table 5.3, it can be 

observed that mismatch between the legs of a differential circuit results in a shift in the 

average output voltage. To understand this consider the transistors and resistor of leg1 

(colored green) to form a low Vt, low Leff and low resistance leg, resulting in an increase 

in the output voltage out1 by say k1 from its nominal case. 
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Out1new = Out1nom + k1 

Similarly consider the transistors in the other leg (colored blue) are at high Vt, 

Leff and a high resistance. The output voltage out2 decreases in this leg. This results in 

the output of this leg to reduce by an amount k2 (say) from its nominal value. 

Out2new = Out2nom – k2 

Now the difference voltage is given by 

Out1new – Out2new = (Out1nom- Out2nom) + k1+k2.  

The term (k1+k2) is the shift in the output voltage of the difference signal. The output 

shift for Vt mismatch, Leff mismatch and resistance mismatch results are shown in Table 

5.3.  

 

 

Figure 5.2 Mismatch analysis for differential signaling 
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Table 5.3 Impact of mismatch in differential signaling 

Scenario Output shift (mV) 

Nominal 0 

Vt mismatch 51.6 

Leff mismatch 36.5 

Resistance mismatch 23 

Vt + Leff + Res mismatch 121.6 

 

From this process variations study, it is observed that single ended low swing 

signaling techniques suffer more compared to full swing signaling techniques. For 

differential signaling, mismatch between the transistors shifts the output voltage level by 

as much as 121mV in the worst case. However, there is not much impact on the data rate 

due to mismatch in differential signaling. 

5.2 Voltage variations 

Supply voltage is one of the key factors that determine the performance of the 

signaling system. Higher supply voltage (VDD) results in faster circuits. This is due to 

the increase in the current flowing through the circuit. This increased current can charge 

the load quickly resulting in a faster circuit. However, supply voltage is not constant 

throughout the chip. This is due to the presence of IR drop and L (di/dt) noise due to 

parasitics of power distribution network. 
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In this work, we considered VDD variations of 10% due to IR drop as suggested 

in ITRS 2009[47], and simulations are carried out for the corner cases considering the 

VDD variations due to IR drop between driver and receiver circuits. VDDmax and VDDmin 

are evaluated considering the maximum variation of 10 % VDD.  

VDDmax = 1.1
VDD and VDDmin = 0.9
VDD 

Table 5.4 Impact of VDD (IR drop) variation on signaling techniques 

Scenario SEVM  

(Gbps) 

SECM1  

(Gbps) 

SECM2 

(Gbps) 

DIFF 

(Gbps) 

SDSR 17.9 26.5 28.5 30.5 

SDFR 19.0 30.8 34.1 31.5 

FDSR 19.0 30.5 33.9 30.7 

FDFR 24.1 35.9 3.6 31.8 

Nominal 21.7 32.2 36.6 31.0 

% worst 

deviation 

-17.5 -17.7 -22.1 -1.6 

. 

The circuit with VDDmax gives the fast circuit while the circuit with VDDmin gives 

the slow circuit. Since we are interested in variations between driver and receiver circuit, 

4 corner cases, Slow Driver Slow Receiver (SDSR), Slow Driver Fast Receiver (SDFR), 

Fast Driver Slow Receiver (FDSR) and Fast Driver Fast Receiver (FDFR) are considered. 

The simulation results are shown in Table 5.4. It can be observed that single ended 

signaling techniques suffer significantly due to VDD variations. Differential signaling 
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sees little impact due to the variation in supply voltage due to its high rejection to 

common mode noise. 

Supply voltage suffers from L
(di/dt) noise due to the activity of neighboring 

circuits. In current technology nodes, the supply voltages have reduced significantly, 

resulting in lower noise margins. Lower voltage supplies with increased functionality and 

data rates have resulted in significant increase in the impact of power supply noise. As 

discussed earlier in Chapter 2, this problem is much more severe in 3D ICs. 3D stack 

with k tiers would require k-times higher current compared to a 2D chip with a similar 

foot print. In 3D ICs, the variation in currents drawn in one tier can impact the supply 

nodes in adjacent tiers resulting in an increased dynamic noise. A significant increase in 

power supply noise with increase in the number of tiers is shown in [31].  

In this work, a global power supply noise of 100MHz frequency as mentioned in 

[27] is considered. In [27], the authors considered a stack of 5 dies and estimated the 

supply noise in a 5 stack 3D IC. The voltage drop value for a 5 stack 3D IC estimated in 

[27] is shown in Figure 5.3. It can be observed that the noise frequency does not change 

from tier to tier. However, its amplitude varies from 100mV for tier1 and increases up to 

140mV for the 5
th

 tier. In this work, we considered the supply noise amplitudes of 

100mV and 120mV, as suggested in [27]. Two cases are considered assuming the worst 

case supply drop of 120mV and 100mV on the driver receiver pair. Case 1 with 100mV 

drop on the driver side and 120mV drop on the receiver side and case 2 with 120mV drop 

on the driver side and 100mV drop on the receiver side. 
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Figure 5.3 Voltage drop across different tiers in 3D IC [27] 

Simulation results to understand the impact of supply noise on signaling 

techniques are shown in Table 5.5. It can be observed that single ended signaling 

techniques suffer significantly due to the supply noise. However, differential signaling 

technique has better robustness to supply noise due to its ability to reject the common 

mode noise. 

Table 5.5 Impact of supply noise on signaling techniques 

Scenario SEVM 

(Gbps) 

SECM1 

(Gbps) 

SECM2 

(Gbps) 

DIFF 

(Gbps) 

Case 1 18.3 26.9 28.8 30.4 

Case 2 17.9 26.5 28.4 30.5 

Nominal 21.7 32.2 36.6 31.0 

% deviation  

worst case 

-17.5 -17.7 -22.4 -1.9 
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Among single ended techniques, low swing signaling technique SECM2 suffers 

more compared to full swing SEVM technique. In the full swing technique, we have 

higher noise margins compared to the low swing techniques. In conclusion, it can be said 

that differential signaling is highly robust to supply voltage variations. 

5.3 Impact of temperature 

On chip temperatures vary due to the activity of the circuit blocks. The power 

dissipated by the active blocks can result in a local temperature rise. Heat removal 

mechanisms are needed to control the rise in temperature. As technology scales down, the 

number of functional blocks on a chip increases, resulting in higher number of active 

blocks for a given area. This results in an increase in temperature of a chip with the 

technology scaling. This becomes a more severe problem for 3D ICs. Consider a 2D chip 

redesigned into a 3D structure with same functionality (similar power dissipation but with 

a smaller foot print). The power density in this redesigned 3D structure will be higher 

compared to 2D. To achieve higher performance and cost benefits, the number of stacks 

in a 3D IC is increased. However, as the number of stacks in a 3D IC increases, the 

temperature increases. Furthermore, the heat generated by the dies that are located away 

from the heat sink is difficult to transfer. This results in a temperature gradient in the 

vertical direction.  

In this work, we perform simulations to understand how the signaling techniques 

perform for different temperature assumptions on the driver and receiver sides. The 

temperature between two dies in a 3D stack varies depending on the activity of individual 

dies. Temperature gradients as high as 50ºC are reported for high performance 
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microprocessors [44]. As the temperature is highly dependent on the activity of the 

neighboring blocks, we consider the following cases to understand how different 

signaling techniques behave under these thermal conditions.  

Case1 – 50ºC on both driver and receiver 

Case 2 – 50ºC on driver and 100ºC on receiver 

Case 3 – 100ºC on driver and 50ºC on receiver 

Case 4 – 100ºC on both driver and receiver. 

The simulation results are compared with nominal maximum data rates at 25ºC, as shown 

in Table 5.6. 

From Table 5.6, it can be observed that an increase in the temperature significantly 

reduces the maximum data rate of all the signaling techniques. However, it should be 

noted that we have considered the worst scenario assuming the hotspots located close to 

driver and receiver circuits. Temperature impact depends on the relative location of the 

hotspots and the driver and receiver circuits. Thermal aware placement mechanisms can 

significantly reduce the impact of temperature. 
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Table 5.6 Impact of temperature on signaling techniques 

Scenario SEVM 

(Gbps) 

SECM1 

(Gbps) 

SECM2 

(Gbps) 

DIFF 

(Gbps) 

Case-1  18.3  27.6  30.5  26.9  

Case-2  15.1  23.6  25.7  23.4  

Case-3  15.3  23.7  24.1  22.5  

Case-4  13.3  20.2  22.2  19.0  

Nominal (25ºC)  21.7  32.2 36.6 31.0 

% worst 

deviation 

-38.7  -37.3  -39.3  -38.8  

 

5.4 Mechanical impact of temperature on TSV 

In this section, we will see the impact of temperature on the dielectric surrounding 

the TSVs. As the temperature increases the material dimensions expand depending on the 

coefficient of thermal expansion (CTE) of the material. The CTE describes by how much 

the material will expand for a 1°C rise in temperature. This is given by 

( )dlCTE dT
l

=  
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In the above equation, dl is the change in length l of the material due to expansion and dT 

is the change in temperature.  

Now, we will calculate the change in thickness of dielectric due to temperature increase 

from 25°C (nominal value) to 100°C. The CTE of silicon dioxide material is 0.5µm/m/°C 

[48]. Thickness of dielectric is 0.2µm. 

Change in thickness of dielectric = CTE
(initial thickness)
(dT). 

Initial thickness at 25°C = 0.2µm. 

dT = New temperature – nominal temperature = 100°C – 25°C = 75°C. 

Change in thickness of dielectric = 0.5µm/m/°C
0.2µm
75°C = 7.5pm. 

From the above solution it can be observed that the thickness of dielectric increases by 

7.5pm when temperature increases from the nominal value of 25°C to 100°C. This shows 

that the mechanical impact of temperature on thickness of dielectric is very little as the 

increase of 7.5pm is low compared to its thickness of 0.2 µm.  

Now we will see the impact of temperature on copper metal of the TSV. 

CTE for copper is 16.75µm/m/°C  

For radius of 5 µm, change in radius of copper can be calculated using 

Change in radius of copper = CTE
(initial radius)
(dT) = 16.75µm/m/°C
5 µm
75°C = 

6.26nm 
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From this it can be observed that the radius of the copper metal will expand by 6.26nm. 

This is much less compared to its radius of 5 µm. 

5.5 TSV fault tolerance architectures 

In this section we discuss TSV fault tolerance architectures. Although TSVs are 

excellent electrical conductors, a failed TSV can cause a number of known good dies that 

are stacked together to be discarded. Hence, it is important to consider fault tolerance in 

TSV based 3D ICs. Redundancy based fault tolerant schemes provide a simple solution 

[13]. In this section, a simple analysis on redundancy based fault tolerant architectures 

with particular focus on their impact on high speed serial signaling techniques is 

explained. Figure 5.4 shows three possible approaches of redundancy based fault tolerant 

architectures obtained by changing the relative positions of Serializer (Ser), fault 

recovery multiplexer (MUX) and the driver circuits. The redundant TSV (R_TSV) and 

faulty TSV are shown in Figure 5.4 assuming that the second TSV is a faulty one and the 

fourth is a redundant TSV.  

Fault tolerant model A, as shown in Figure 5.4 (a) is a simple solution consisting 

of a serializer, followed by a driver and a one bit 2x1 MUX or the delay cell. There are 

two major issues with this approach. The first one is the dependency of the MUX and 

delay logic implementation on the signaling scheme. For example, differential signaling 

with Current Mode Logic (CML) driver requires the MUX and delay cells to be 

implemented in CML compatible logic. In order to utilize these excellent but scarce 

TSVs efficiently, it is important to operate at the maximum data rate through the TSV 

that can be supported by a particular signaling technique. Hence, it necessitates the 
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design of fault recovery MUX and delay cells to support such high speeds ,resulting in an 

increased design complexity and power consumption. 

In approach B, as shown in Figure 5.4 (b), it can be observed that the MUX and 

the delay cell logic can be implemented independently of the signaling technique and the 

implementation logic of the driver. This comes with an overhead of additional driver 

circuit for redundant TSV. This approach still necessitates the design of fault recovery 

MUX and delay cells to be able to operate at the data rates through TSVs.  

 

Figure 5.4 Redundancy based fault tolerant architectures (a) Final stage MUX based 

approach (b) Driver decoupling MUX and TSV approach (c) MUX before Serializer 

approach 
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In approach C, as shown in Figure 5.4 (c), the multiplexing is moved before the 

serialization block. This facilitates the design of MUX and delay cells that can operate at 

the data rates that are ‘n’ times smaller than the signal data rates for an n:1 Serializer. 

This approach reduces the power and design complexity of the MUX and delay cells. The 

overhead involves an additional Serializer and the driver circuit for the redundant TSV. 

Also, one bit 2x1 MUX and delay cells are now replaced with ‘n’ bit 2x1 MUX and ‘n’ 

bit delay cells. Thus, depending on the signaling technique, an optimum fault tolerance 

scheme should be determined considering the above tradeoffs. In order to efficiently 

utilize the excellent electrical properties of TSVs, it is important to operate at the 

maximum data rates supported by the signaling scheme. 

5.6 Impact of stuck at faults 

Assuming the fault tolerance scheme described in Figure 5.4 (c), simulations are 

performed to understand the impact of a faulty TSV in a 3x3 bundle. The faulty TSV can 

be stuck at 1, stuck at 0, short circuited to another net or open circuited. The eye height 

and eye width on the center TSV under the ideal case, and those when one of the TSVs is 

stuck at VDD, VSS or open circuited for SEVM, is shown in Table 5.7. From Table 5.7, 

it can be observed that there is little impact of the faulty TSV on the normal TSV. This is 

primarily due to the low coupling capacitance. If we had significant coupling, the faulty 

TSV can act as a VDD or VSS TSV depending on the stuck at fault, thus providing 

improvement to the eye diagram acting as a shield TSV. Since the coupling capacitance 

values are very low, the signaling on the TSVs is dominated by power supply noise and 

Inter Symbol Interference rather than coupling. 
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Table 5.7 Impact of fault TSV 

Fault Type Eye Height (V) Eye Width (ps) 

No Faulty TSV 0.6719 33.242 

Undriven TSV 0.6721 33.251 

Stuck at VDD 0.6723 33.233 

Stuck at VSS 0.6719 33.247 

 

In this chapter, we have considered process, voltage and temperature variations 

between driver and receiver circuits to study their impact on single ended and differential 

signaling techniques. Low swing single ended signaling techniques suffer more compared 

to full swing single ended signaling. Differential signaling is highly robust to supply 

noise variations compared to other signaling techniques. An increase in the temperature 

decreases the maximum data rate of both single ended and differential signaling 

techniques. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

This thesis focuses on signaling over Through Silicon Via (TSV) bundles. TSV 

based 3D ICs are one of the possible solutions to tackle the problem of interconnect 

bottleneck of 2D ICs. In this work, we extracted the electrical parasitics of TSV bundles 

and obtained maximum data rates for single ended and differential signaling techniques. 

As TSV parameters are not yet standardized by the 3D community, TSV technologies 

with different TSV dimensions are considered by the research community. TSV radius is 

one of the key parameters that determine the electrical parasitics of TSV. To understand 

the behavior of signaling over TSV bundles across different technologies, we extracted 

the electrical parasitics of TSV bundles for different TSV radii (from 1µm to 15µm). The 

maximum data rate for each of the signaling techniques is determined for a TSV radius 

from 1µm to 15µm. Based on the simulation results, it is observed that differential 

signaling gives better performance for a TSV radius less than 7µm.  

Robustness analysis on signaling techniques is carried out on single ended and 

differential signaling techniques. For robustness analysis, the impact of process, voltage 

and temperature variations between driver and receiver circuits is considered. Single 

ended low swing signaling techniques suffer more due to process variations compared to 

full swing voltage mode signaling. Supply voltage variations have significant impact on 

the single ended signaling techniques. In differential signaling, the differential output 
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nullifies the impact of supply voltage variations, as both the legs see the same noise on 

the output. With an increase in temperature, all the signaling techniques suffer 

significantly. Based on these results, one can opt for differential signaling for lower TSV 

radii and for the environment with higher supply voltage variations. For higher TSV 

radius, and with less supply voltage variations, single ended signaling techniques will be 

a better choice over differential technique. Among single ended techniques, low swing 

techniques provide higher performance but suffer more due to process variations. 

6.2 Future work 

3D integration is one of key research areas in semiconductor industry to tackle the 

problem of the interconnect bottleneck. As mentioned in this work, it stills lacks the 

standardization and CAD tool support for a timely and more extensive research. In this 

work, we tried to show how signaling techniques perform for different TSV radii and 

their behavior under process, voltage and temperature variations. Future work can focus 

on exploring various TSV parameters (both material and physical dimensions) and help 

in developing some standards for signal TSV dimensions and material. Fault tolerance is 

one of the key areas that can be considered. However, it requires TSV fault models for 

different TSV dimensions and material. Developing fault models that can be incorporated 

in SPICE simulations can save significant time invested on extracting electrical parasitics 

under different fault assumptions. Thermal aspects of 3D ICs are also being extensively 

researched by the 3D community. It might be an interesting problem to see the impact of 

using thermal TSVs along with signal TSVs and suggest an optimum signaling technique 

that meets performance, energy and temperature requirements. Signal encoding 
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techniques might help in reducing the power dissipation and can be incorporated in the 

study of co-optimizing power, thermal, performance and fault tolerance aspects for 

signaling over TSVs. 
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