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 ABSTRACT 
 

LOW COST DYNAMIC ARCHITECTURE ADAPTATION SCHEMES FOR DROWSY 
CACHE MANAGEMENT 

 
FEBRUARY 2013 

 
NITIN PRAKASH 

 
B.E., MANIPAL UNIVERSITY, MANIPAL, INDIA 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professors Israel Koren and C. Mani Krishna  
 

Energy consumption and speed of execution have long been recognized as conflicting 

requirements for processor design.  In this work, we have developed a low-cost dynamic 

architecture adaptation scheme to save leakage power in caches. This design uses voltage scaling 

to implement drowsy caches. The importance of a dynamic scheme for managing drowsy caches, 

arises from the fact that not only does cache behavior change from one application to the next, but 

also during different phases of execution within the same application. We discuss various 

implementations of our scheme that provide a tradeoff between granularity of control and design 

complexity. 

We investigate a combination of policies where the cache lines can be turned off 

completely if they are not accessed, when in the drowsy mode. We also develop a simple 

dynamic cache-way shutdown mechanism, and propose a combination of our dynamic scheme for 

drowsy lines, with the cache-way shutdown scheme. Switching off cache ways has the potential 

of greater energy benefits but provides a very coarse grained control. Combining this with the 

fine grained scheme of drowsy cache lines allows us to exploit more possibilities for energy 

benefits without incurring a significant degradation in performance. 

Keywords: Drowsy Cache, Architecture Adaptation, Low Power, Leakage Reduction, 

Dynamic Scheme 
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CHAPTER 1 

 INTRODUCTION 

1.1 Overview 

Computing platforms have been facing the dilemma of energy consumption versus 

performance requirements, for a long time. The trade-off is especially important for real-time 

systems used in situations where energy is scarce and/or heat dissipation is costly. Increased 

power dissipation also leads to an increase in the temperature, which directly affects the 

reliability of the system. As reported in [5], the delay fault rate doubles for every 10°C increase in 

the operating temperature.  A 10-15°C increase in the temperature can halve the life span of a 

circuit [15]. 

Traditionally, Dynamic Voltage and Frequency Scaling (DVFS) has been used for 

reducing energy consumption at the expense of execution speed. Researchers have studied the 

complementary approach of Architecture Adaptation, which takes advantage of the application 

specific behavior and turns off unused sections of the hardware. As modern embedded systems 

use more and more complex hardware for their plethora of applications, the scope for architecture 

adaptation increases. But, so does the complexity of finding the optimum configurations, in the 

face of a variety of applications with different demands on the hardware. 

With considerable increases in the size of on-chip memory, and the steady decrease in the 

feature size of transistors, leakage power has become a major contributor to the total energy 

consumption in processors [8]. Furthermore, leakage power increases exponentially with a rise in 

operating temperature, which in turn increases the temperature even more rapidly.  Most of this 

leakage power originates in the caches, due to the presence of a large number of transistors. We 

therefore, target in this work the on-chip cache units and attempt to reduce the performance 

penalty while still achieving lower energy consumption. 
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1.1 Contributions of this work 

As real-time applications become ever more complex with varying demands on caches, 

there is a need for dynamic architecture adaptation policies that work across a wide range of 

applications with minimal tuning requirements. In this work, we have implemented such a 

dynamic scheme for drowsy cache management. Drowsy cache is a scheme where a cache line is 

put to a low voltage mode, which consumes less power and preserves the information on the 

cache line. However, to access the data, the cache line has to be reinstated to the high voltage 

mode. Typically, the cache lines are put to drowsy mode if there is no activity in a certain time 

interval. Instead of static selection of intervals, we propose a low overhead dynamic adaptation 

scheme, where the interval is selected based on the runtime behavior of the application. Unlike 

earlier methods (discussed in Chapter 2), our dynamic scheme uses performance counters to 

manage drowsy caches. This gives us a fine-grained control based on current application 

behavior. We show that our scheme is robust and can be used across a wide range of applications 

and cache configurations, without the need for re-tuning the algorithm parameters for every case. 

The earlier methods that use this voltage scaling technique for drowsy caches (discussed 

in Chapter 2), assume that each row in the SRAM array has its own Vdd line. However, modern 

SRAM arrays share the Vdd contacts amongst adjacent rows. Our design takes this into account 

and controls a pair of cache lines using a single voltage controller. This greatly reduces the 

associated design and area overhead, while providing a similar granularity of control as with 

dedicated Vdd lines. To the best of our knowledge, this is the first attempt to implement a scheme 

of drowsy lines by taking into account shared Vdd contacts. 

Furthermore, we investigate a combination of the drowsy cache and the Gated-Vdd 

schemes. The Gated-Vdd scheme switches off cache lines completely and hence provides more 

leakage benefits, but at the risk of an increase in runtime due to increase in the number of cache 

misses. 
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We also propose a simple scheme for cache-way shutdown and integrate it with our 

previous design of drowsy cache lines. The cache-way policy provides a coarse-grained control 

by switching off entire cache ways. The drowsy line policy provides finer control as it targets 

individual cache lines, and puts them into a low-voltage mode when not in use. We show that this 

integrated approach provides more energy benefits than previously known designs while still 

maintaining minimal performance degradation. 
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CHAPTER 2 

 REVIEW OF RELATED WORK 

2.1 Reducing leakage power in cache lines 

Various designs such as gated-Vdd [12], ABB-MTCMOS [10] (dynamically increasing 

threshold voltage), and voltage scaling have been proposed to control leakage power in 

transistors.  Kaxiras et al. [6] have used the gated-Vdd method along with counters to control the 

drowsy cache lines. Miss rate is used to determine an optimal value for the counters: once they 

saturate, the corresponding cache lines are placed in drowsy mode. In the gated-Vdd scheme, the 

memory cell loses its data and hence, a hit on a drowsy line causes a miss. Similarly, Powell et al. 

[13], using the gated-Vdd method, have proposed a mechanism to identify an application’s I-

cache requirements in order to reduce the leakage current. Using a threshold scheme, the 

mechanism reacts to changes in miss rate by changing the number of sets in the cache. The 

proposed mechanism uses a variable set mask to properly access the corresponding set. 

Flautner, et al. [3] have shown a circuit implementation for drowsy cache lines using 

voltage scaling. The supply voltage to the SRAM cell is scaled down, to around 1.5 times the 

threshold voltage. The sub-threshold leakage due to short channel effects is significantly reduced. 

The authors have implemented a static scheme on a 32 KB cache using a Simple Policy, in which 

they select an interval, and put to drowsy mode, all cache lines, at the end of the interval. Only a 

single global counter is required for this scheme. A wakeup cost is incurred only on the currently 

active footprint of the cache. They have discussed a NoAccess Policy, where only the non-

accessed lines in the specified interval are put to drowsy mode. Based on their Simple Policy and 

other considerations like wakeup transition time and processor architecture, they show that a 

static interval of 2000 to 8000 cycles works adequately for their benchmarks. They also point out 

the fact that their simple algorithm does not work well for the Icache. The authors in their next 

work [7] have proposed a cache sub-bank prediction technique for Icache. The cache is divided 
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into sub-banks and only one sub-bank is awake at any given time. A sub-bank prediction buffer is 

included that stores the instructions (which lead to a change in the sub-bank) and the address of 

the next predicted sub-bank. This method has increased area and dynamic power overheads. An 

alternate approach is presented, in which the predicted address is included in the tag array. But 

this information is lost when the cache line is replaced, and hence is not suitable for applications 

where miss rates are high.  

Geiger et al. [4] have proposed a combination of drowsy cache lines (with static 

intervals) and region-based caches. Petit et al. [11] rely on the reuse information to control 

drowsy caches. This mechanism is used for set-associative caches, wherein they keep awake only 

the most recently used line in every set. A comparison is made with the scheme where the two 

most recently used lines are kept awake in the set. They have also proposed a combination of the 

two, to get a balance between energy benefits and performance degradation. The benefit of this 

method depends on the associativity of the cache, and it cannot be used in a direct-mapped or a 

fully associative cache. 

Zushi et al. [32] have proposed an improvement on the MRU scheme. In addition to the 

MRU information they record access information for every cache line at regular (predetermined) 

intervals. A global drowsy update signal is activated at the end of every interval. The lines are put 

to drowsy mode based on the MRU bit and the access information of the last interval. We present 

a detailed comparison to various flavors of this scheme in Section 6.6.2. 

Alioto et al. [31] have proposed a scheme to exploit locality wherein they put active lines 

to drowsy mode immediately after the access moves on to another line. They have devised 

localized control, based on the observation that the newly accessed cache lines are nearby to the 

previously accessed line (spatial locality). This scheme works well for sequential codes but 

degrades quickly if the number of branches is high. We present a detailed comparison to this 

scheme in Section 6.6.3. 
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Recently, researchers have proposed working at the granularity of sub-blocks within a 

cache line. This is based on the observation that all the words in a cache line may not be accessed, 

especially if the cache line is large. Chen et al. [33] have proposed a prediction scheme where 

they predict the access pattern of every sub block in a cache line. Extra bits are included in the tag 

array (one for every sub-block), which store information regarding which sub-blocks were 

accessed. This information is then transferred to a Pattern History Table when the cache line is 

replaced. Next time the line is fetched, the sub-blocks that are predicted not be accessed are 

switched-off (using the Gated Vdd scheme). Alvez et al. [34] have extended and modified the 

design to predict when the accessed sub-blocks become dead. To implement this, they have 

included 2-bit usage counters for every sub-block (instead of a single bit). They also include an 

overflow bit to indicate that the predicted accesses are more than what the counters can contain. 

These sub-blocks are switched-off after the predicted number of accesses. If the overflow bit is 

set, then the sub-block is never switched off. This scheme has a fairly high area overhead. They 

have reported the size of the additional structures to be 6.1 KB for implementing this scheme on a 

32 KB L1 cache. Furthermore, extra control signals are required by the Gated-Vdd scheme to 

implement it at a sub-block level. 

 The authors of [7][27][28] have taken an orthogonal approach to decreasing the 

performance degradation caused by drowsy caches. Instead of optimally controlling the time 

when the cache lines should be put to drowsy mode, they try to predict future accesses and wake 

up the line before the access is done. These schemes put all lines to drowsy mode at 

predetermined static intervals. Then, prediction information is used to predict future accesses and 

wake up the lines. [27] proposes a DHS (Dynamic HotSpot based leakage reduction) policy, 

which uses the BTB (Branch Target Buffer) to detect loops. A global drowsy signal is issued 

when a new loop based hotspot is detected. On top of DHS, it employs the JITA (Just In Time 

Access) policy that awakes up the next sequential line when an access is made. [28] directly uses 
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the branch predictor information to predict the next line to be woken up. To hide the latency, an 

extra pipeline cycle is introduced between the branch predictor access and instruction fetch stage. 

This method incurs a penalty in the event of a branch target misprediction. These prediction-

based methods can be used on top of our dynamic adaptation scheme. 

2.2 Other cache reconfiguration schemes 

Various authors have explored different schemes to configure caches based on 

application requirements, in order to achieve energy savings. Cache configuration is done mainly 

by switching off cache ways, sets, or changing the associativity. Others approaches include some 

modification in the cache lookup schemes to reduce the energy expended. 

The phased-lookup cache [21] uses a two-phase lookup, where all tag arrays are accessed 

in the first phase, and upon a hit, only one data way is accessed in the second phase, resulting in 

less energy at the expense of longer access time. Way predictive set-associative caches 

[20][22][24] access one tag and data array initially (based on the prediction), and only access the 

other arrays if that initial array did not result in a match, again resulting in lower energy 

consumption at the expense of longer average access time. In [22], the authors have used an MRU 

(Most Recently Used) scheme for prediction. To hide the latency of prediction, the set-index 

address is calculated at an earlier stage in the pipeline. In [24], the authors have used a lookup 

table based predictive scheme. They have studied the effectiveness of the predictive scheme and 

selective direct-mapped caches [19] for Icache and Dcache. Filter caching [23] introduces a small 

(and hence low-power) direct-mapped cache in front of the regular cache. If most of a program’s 

time is spent in small loops, then most hits would occur in the filter cache, thus reducing overall 

energy consumption. 

Albonesi [17] has proposed a scheme to disable cache ways to save dynamic power. 

Based on the allowed Performance Degradation Threshold (PDT), the applications are profiled to 
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find the optimum number of cache ways that can be disabled. A simple AND gate structure is 

used to disable the access to particular cache ways. He argues that different PDT values can be 

used for different instantiations of the same application, and that the operating system or a 

continuous profiling and optimization system could effectively control the PDT. 

Instead of only disabling the access to a cache way, we propose switching off the ways 

completely. We have developed a dynamic control for the same and combine it with the drowsy 

cache line scheme. 

A mechanism to identify an application’s I-cache requirements in order to reduce the 

leakage current is proposed in [13]. Using a threshold scheme, the mechanism reacts to changes 

in miss rate by changing the number of sets in the cache. The proposed mechanism uses a 

variable set mask to properly access the corresponding set. The optimum ‘miss bound’ is searched 

by running simulations on a per application basis. Comparison results with this scheme are 

presented in Section 7.3. 
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CHAPTER 3 

 MOTIVATIONAL EXAMPLES 
 

We studied the general behavior of embedded applications with regard to cache accesses. 

We used 19 applications from the MiBench/MediaBench benchmark suite and recorded the 

cycles between successive hits to the same cache line. Figures 1 and 2 show the data averaged 

over lines in a 32 KB Icache and a 32 KB Dcache, respectively. Most of the cache line reuse is 

concentrated within the first few hundred cycles; the number of hits after the ‘5000 cycles’ 

interval is negligible. The figures show the average and maximum number of accesses in every 

interval. Different applications have their accesses concentrated in different bins. Also, the 

standard deviation shows considerable variation within a single bin. To effectively manage the 

drowsy lines, we need dynamic control based on runtime application behavior. 

 

Figure 1: Access Pattern in a 32KB Icache 
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Figure 2: Access Pattern in a 32KB Dcache 
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CHAPTER 4 

 CIRCUIT IMPLEMENTATION 

4.1 Additional circuit for leakage reduction in cache lines 

To achieve reduction in leakage power, we assume the drowsy cache lines 

implementation that uses voltage scaling, as was done in [3]. This drowsy voltage is set to be 

approximately 1.5 times the threshold voltage Vt. A typical value for drowsy voltage for today’s 

technology is 0.3V. Figure 3 shows the associated circuit design from [3]. We apply this drowsy 

mechanism only to the data array cells of the cache. The tag array is always kept awake: it 

contributes only about 5% of the total leakage in a 32 KB cache (Cacti 5.3) [14]. Furthermore, if 

tags are also put to drowsy mode, then the cache hit latency increases, since the drowsy tags have 

to be woken up before tag comparison can be done. Implementing this voltage scaling technique 

gives around 71% reduction in leakage power for individual cells. This is significant since data 

array cells contribute about 57% of the leakage power in a 32 KB cache  (Cacti 5.3). This number 

increases with an increase in the size of the cache. 

 

Figure 3: Implementation of drowsy cache line [3] 
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The transition delay between the two voltage modes for a cache line depends on the size 

of the pass transistors in the voltage controller.  As per  [3], a 64 × Leff transistor has an access 

time of 1 cycle, while a 16 × Leff transistor has an access time of 2 cycles. However, making the 

transistors wider increases the dynamic power dissipation. Since the wakeup latency is critical for 

the performance of the processor, we maintain it at 1 cycle, but we have selected a smaller 

transistor for pulling down the voltage, and conservatively selected the pull down time to be 3 

cycles. 

As presented in [3], this area overhead is less than 3% per cache line (taking into 

consideration the bigger voltage controller and the circuit for drowsy bit). The cache line size is 

32 bytes. 

It must be noticed that [3] considers individual voltage controller for every cache line. 

This means that the Vdd contacts cannot be shared for adjacent memory cells. This leads to a 

major area overhead in the design of the SRAM array (which has not been taken into account in 

the previous calculation). This overhead can be removed by having a single voltage controller of 

a pair of cache lines that share Vdd contacts. Section 5.4 discusses the algorithm where we 

control a pair of cache lines together. 

4.2 Additional circuit for counters 

The basic idea of our design is that a cache line that has not been accessed in the last few 

cycles, should be put into the drowsy state. The optimum value of this drowsy interval is 

dependent on the behavior of the application and is obtained adaptively during operation. 

To implement this we need ideally a dedicated counter for every cache line, but the area 

and power overheads of this design would be prohibitive. Hence, we use a combination of global 

and local counters [6]. Every cache line has a small counter, for example, a 2-bit counter. A 

maximum count is set for the global counter according to the drowsy interval to provide an 
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increment signal to the local counters. The local counter counts the number of such increment 

signals from the global counter. When the local counter saturates, the drowsy bit for the cache 

line is set, and the line is put to drowsy mode. Whenever there is an access on a cache line, the 

local counter for the line is reset. This method has an inherent error. The state of the global 

counter is independent of the accesses to the cache lines. For a particular cache line, if the local 

counter receives a signal just after an access, the state is incremented immediately. Hence, the 

count in this scheme will not be accurate. 

We have observed that the 2-bit approximate counting scheme has an average energy 

consumption penalty of only 0.33% and a maximum penalty of 1.26% over the exact counting 

scheme. Furthermore, based on the behavior of the application, some applications perform better 

with the approximate counting scheme. We have also tried a scheme with 1-bit counter. In this 

scheme, there are only two counter states - active and drowsy. Hence, at every signal from the 

global clock, all the cache lines are put to drowsy mode. This mechanism is essentially the same 

as having no local counters and using just a global counter to put the entire cache to a sleep mode 

whenever it saturates. This scheme has an average penalty of 1.82% with a maximum penalty of 

11.41%. The behavior is highly dependent on the application and the selection of drowsy 

intervals. Hence, we have selected the 2-bit counting scheme for our design. 

The overhead of the global counter is negligible in comparison to the transistors in the 

entire processor. We have added a 30-transistor overhead to every cache line, for the 2-bit counter 

[6]. 

Combining the overhead of the leakage reduction circuit and that of the local counters, 

we get an increase of 3.9% transistors per cache line. Thus, in our simulation, we have assumed 

an overhead of 3.9% in leakage power. Additionally, we have added an overhead of 5% dynamic 

power, due to the extra routing that is required. Note that 5% is a conservative number as the 

circuit for the drowsy bit and voltage controllers have very low switching activity. 
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CHAPTER 5 

 DYNAMIC ALGORITHM FOR DROWSY CACHE 

5.1 Algorithm for Icache 

We begin with implementing our algorithm for Icache. For dynamic reconfiguration, we 

searched for performance counters that correspond well with the energy consumption in the 

processor. We observed that the Instruction Fetch Rate (IFR) is closely related to the Icache 

accesses on drowsy lines. When there is a hit on a drowsy line, no instructions are fetched in that 

cycle. As the number of hits on drowsy lines increases, the Instruction Fetch Queue (IFQ) starts 

running dry, which in turn affects the pipeline speed. We propose to use a counter that counts the 

number of instructions fetched from the Icache in every cycle. Such a counter is present in 

modern processors like Intel Xeon and Core i7. The average IFR is calculated by dividing this 

count by the number of cycles passed since the last measurement. The counter is reset after 

making a measurement. In our profiling, we observed that the drowsy interval showing best 

energy benefits also shows a sharp increase in the average IFR. We developed a simple algorithm 

that measures the IFR runtime and selects a near-optimal value of the drowsy interval. We first 

discuss our algorithm assuming that every cache line has a dedicated Vdd line and voltage 

controller. In Section 5.4, we show the extension of this scheme to the design where Vdd contacts 

are shared between adjacent lines. 

Our algorithm relies on a learning process to determine the best drowsy interval. We start 

with an initial period that is set to the maximum interval considered. We then keep reducing the 

interval until the average IFR reduces by more than a pre-determined threshold ratio. To estimate 

the average IFR for a given value of the drowsy interval, the same interval is repeated n times (n 

is called the repeat count and is a parameter of the algorithm). After n repetitions of an interval, 

the average IFR is calculated. If the ratio between the current average IFR and the previously 

calculated IFR is smaller than the threshold ratio, learning is stopped. Once the learning is over, 
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the system goes into tracking mode. In this mode, we take a measurement of the average IFR in 

every epoch. If the average IFR has decreased by more than the threshold ratio, then the learning 

cycle starts again. We have also tried schemes were learning is restarted if the average IFR 

increases above a certain threshold, but no added advantage was observed. We have studied the 

sensitivity to the parameters of this algorithm, i.e., repeat count and threshold ratio. The 

experimental results are discussed in Section 6.3. 

5.2 System call overhead of Dynamic Learning 

When we call the learning function, there is a context switch and the application is 

stalled. We have quantified the overhead due to this context switch and included it in our 

simulations. The context switch overhead can be classified into two parts: the direct overhead 

(number of cycles spent in the system call), and the indirect overhead (cache pollution due to the 

system call). According to [25], the system call overhead of getpid (the shortest Linux system 

call) is 223 cycles. Also for the native Linux kernel, the architectural overhead for entering and 

leaving kernel mode was shown to be 82 cycles. For our learning function, the major computation 

overhead comes from the floating-point calculations involved in computing the averages, 

calculating the ratios and comparing them. Taking these into account, we estimate a 300-cycle 

overhead for every call to the learning function. 

[26] shows the size of the cache footprints for various system calls. The Icache pollution 

due to system calls is limited to a few 10s of cache lines [26][25]. Since our code for the learning 

function is relatively small, we have estimated the overhead to be 50 cache lines. In our 

simulation, a random selection of 50 cache lines is invalidated for every call to the learning 

function. No pollution for the Dcache has been considered, as our learning function need not 

access the data memory. We have performed a sensitivity analysis on our algorithm, with 

different values of system call overhead, the results of which are presented in Section 6.5. 
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5.3 Algorithm for Dcache 

We studied the impact of implementing a similar dynamic algorithm for Dacche. No 

widely prevalent performance counter correlates well with the Dcache drowsy access pattern. 

Hence, we use a new performance counter that counts hits on drowsy Dcache lines. We calculate 

the percentage hits with respect to the total number of cache accesses, and use this to control our 

learning algorithm. This counter can be updated with the wake-up signal given to a drowsy line. 

A wired-OR logic implementation will be required for the same. The counter is cleared by 

software at the start of the learning cycle for every interval. 

In our experiments, we observed that the dynamic scheme for Dcache does not provide 

considerable advantages over the static scheme. The advantage of the dynamic scheme is mainly 

observed in the Icache. This is because the processor performance is closely dependent on the 

behavior of the Icache. In our processor, 4 instructions are fetched in every cycle (fetch, decode, 

issue width is 4). When there is a hit on a drowsy line in the Icache, no instructions are fetched in 

that cycle. This means that the instruction fetch queue may run out of instructions and the 

superscalar is unable to issue instructions at its maximum potential, resulting in degradation in 

performance. In contrast, the effect of Dcache is not so profound. The access rate of Dcache is 

lower than that of the Icache. Furthermore, when there is a hit on a drowsy line in the Dcache, it 

adds a latency of 1 cycle to just that instruction. Based on the data dependencies, there may or 

may not be a latency on instructions down the line. Also, many of the hits on drowsy lines in the 

Dcache may be hidden by other hazards in the pipeline. 

Since the static scheme works satisfactorily for the Dcache, the added design overhead 

for the dynamic scheme is not justified. It is for this reason that we implement our dynamic 

scheme only for the Icache. Section 6.4 discusses comparison results when using dynamic and 

static schemes for the Dcache. 
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5.4 Selecting Granularity - Sharing Vdd lines across adjacent cells 

As discussed above, adjacent rows in SRAM arrays generally share the Vdd contacts. 

Controlling every row individually leads to a major area overhead. We can decrease the 

granularity of our control to reduce this overhead. We have a single voltage controller for the pair 

of lines but every line has its own 2-bit local counter. We follow a similar algorithm as discussed 

in the previous sections. We have tried out two flavors.  

1. Either Counter Saturate (ECS) - Switch off the pair cache lines if either of the two 

associated counters saturate. 

2. Both Counters Saturate (BCS) - Switch off the cache lines only after both the 

associated counters saturate. This is similar to having a single 2-bit counter for a pair of cache 

lines. This counter is reset on access to any of the two cache lines. When this counter saturates, it 

means that no access has been made to any of the two cache lines in the drowsy interval. 

The former is a much more aggressive scheme and provides more energy benefits at the 

expense of higher performance degradation. The experimental results are presented in Section 

6.2. 
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CHAPTER 6 

 EXPERIMENTAL RESULTS 

6.1 Experimental Setup 

We have used the Simplescalar tool [2] to estimate the performance of our scheme. Sim-

Wattch1.02d [1] is used to simulate power and Cacti version 5.3 [14] is used to get the scaling 

factors for leakage power in Dcache and Icache. These scaling factors have been included in the 

Sim-Wattch code to generate results for leakage power. We ran our simulations on randomly 

selected 19 applications from the MiBench [16] and MediaBench [18] suite. These benchmarks 

contain representative applications for embedded processors. We have modeled a generic 

superscalar processor for our experiments. Table 1 shows the base line configuration of our 

processor. The processor has 32 KB, 8-way associative Icache and Dcache. 

Clock rate 2Ghz 

Process parameters 45 nm 

Threshold voltage 0.2 V 

Supply voltage 1.2 V 

Fetch, issue, decode, commit width  4 

Instruction fetch queue (IFQ) size 16 

Load-Store queue (LSQ) size 32 

ROB 64 

Branch predictor 2K entry, bimodal 

Integer functional units 2ALUs, 1 mult/div 

FP functional units 2ALUs, 1 mult/div 

L1 Icache 32KB, 8-way 

L1 Dcache 32KB, 8-way, writeback 

Combined L2 Cache 256KB, 4-way, writeback 

L1 hit time 1 cycle 

L2 hit time 20 cycles 

Main memory hit time 100 cycles (first chunk),  

6 cycles (inter chunk) 

   Table 1: Baseline configuration of the processor 
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6.2 Performance Results of our schemes 

We have simulated the performance of both the schemes discussed in Section 5.4 - ECS 

and BCS. Energy measurements are done in terms of Million Instructions Per Joule (MIPJ). We 

have measured the energy consumption of the entire processor, rather than only for caches. This 

gives us a more realistic picture of the actual benefits of our scheme, as the increase in runtime 

affects the energy consumption of the entire processor. It should be noted that all designs use the 

same algorithm parameters for the dynamic scheme – repeat count = 5 and threshold ratio = 0.9. 

This configuration is used only for Icache. As mentioned above, the Dcache uses the static 

scheme. We discuss the sensitivity to the algorithm parameters in the next section. Figure 4 

shows the MIPJ benefits with respect to the base processor (with no drowsy caches). Figure 5 

shows the IPC (Instructions per cycle) degradation with respect to the base processor. 

 

Figure 4: Benefits in MIPJ for ECS and BCS schemes 
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Figure 5: Degradation in IPC for ECS and BCS schemes 

 

As seen in the figures, the MIPJ benefits achieved by ECS are only slightly higher than 

BCS. The ECS scheme is expected to provide higher MIPJ benefits, as it is more aggressive in 

putting lines to drowsy mode. However, most of the benefits are offset by the increase in runtime. 

The BCS scheme provides similar MIPJ benefits with much lower IPC degradation, as it tracks 

cache accesses more accurately. 

6.3 Sensitivity to algorithm parameters 

In order to find the best set of parameters for our dynamic algorithm, we studied the 

sensitivity of our algorithm to different parameter values. The maximum drowsy interval selected 

in our design is 5000 cycles. This decision is based on our observation in Figures 1 and 2, that 

very few cache hits occur after that interval. The epoch mentioned in the tracking mode is set at 

100,000 cycles. We vary one parameter at a time and measure the average benefit in MIPJ with 

respect to the base processor. We individually check the effect of varying the IFR threshold ratio 

and the repeat count. 

Figure 6 shows the behavior of a 32 KB cache with different values of the repeat count. 

The IFR threshold ratio is maintained at 0.9. It is seen that for very low and very high periods, the 

benefits decrease slightly. When repeat count is high, then the time taken to find the optimal 
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drowsy interval is also high and the applications spend a lot of time running on sub-optimal 

configurations, which results in lower benefits. Also, using repeat count values of 1 or 2 leads to 

unreliable learning. As we have discussed, the state of the counters are independent of the time 

when a new drowsy interval is initiated. For example, a 2-bit local counter might already have 

counted half way through when a new drowsy interval is introduced. Hence, the application needs 

to ‘settle down’ to the drowsy interval being tested. A value of repeat count between 3-5 works 

best. We choose the value of 5 for all our comparisons. 

 

Figure 6: Sensitivity to Repeat Count 

 

Figure 7 shows the effect of varying the threshold ratio. For this case, we have 

maintained the repeat count at 5. From the graph we see that the optimal value of the threshold 

ratio is 0.8 - 0.9. We select the value of 0.9 as it works slightly better. As we decrease the 

threshold ratio to smaller values, very short drowsy intervals are selected. This means that the 

lines are put to drowsy mode at very short intervals, leading to an increase in the performance 
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degradation. With decreasing values of threshold ratio, the ECS scheme degrades very quickly. 

This is because of the aggressive nature of the ECS scheme. Here, two lines are switched off even 

if one of the counters saturates. Hence, in this mode, the number of lines in drowsy mode 

increases very quickly with decreasing threshold ratio. 

 

Figure 7: Sensitivity to Threshold Ratio 

 

For our final selection we use IFR threshold ratio = 0.9 and repeat count = 5. We have 

verified these parameters with cache sizes of 16KB, 8KB and 4KB and observed a similar trend. 

The same set of parameters works satisfactorily for different cache sizes. We discuss this in 

Section 6.6.1. 

6.4 Configuration for Dcache 

We have analyzed the static intervals that work best for the Dcache. The intervals range 

from 100 to 5000. For the ECS scheme, the best drowsy interval is 5000 while for the BCS 
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scheme the best drowsy interval is 100. The ECS scheme puts two lines to drowsy mode based on 

the access to any one of the lines. The other line might have a different access behavior. Hence, 

this requires a conservative selection for the drowsy interval to balance out the effect. On the 

other hand, the BCS scheme by nature is conservative and hence an aggressive selection of the 

drowsy interval works best with it. It must, however, be noted that, the selection of these intervals 

for Dcache does not have a considerable impact. When comparing the benefits in terms of MIPJ 

between a drowsy interval of 100 and 5000, we see that the average difference is around 0.6% 

while the maximum difference is approximately 3.7% for Qsort. 

We compared the MIPJ benefits between static and dynamic schemes for Dcache. The 

dynamic scheme for Dcache uses the same algorithm parameters as that for the Icache. Both static 

and dynamic schemes show very similar results. The average difference is only 0.49% with the 

maximum difference of 2.7% for Rijndael. The differences in IPC results are smaller with only 

three applications showing differences more than 1%. It is for this reason that we have chosen a 

static scheme for Dcache. 

6.5 Sensitivity to System Call Overhead 

As discussed in Section 5.2, we have included a direct overhead of system calls, of 300 

cycles for every call to the learning function. We have also included a cache pollution of 

overhead of 50 cache lines every time the function is called. In this section we show the 

sensitivity of our algorithm to variation in these system call overheads. Figure 8 shows the 

sensitivity to the direct overhead of system call, in terms MIPJ benefits. Even for an overhead of 

1000 cycles the degradation is less than 0.5% for both the schemes. The minor decrease in the 

benefits is due to the increase in runtime of the applications. Figure 9 shows the sensitivity to 

cache pollution in terms of MIPJ benefits. For this experiment, the system call overhead is 

maintained at 300 cycles. For a cache pollution of 100 lines, the degradation is around 0.4% for 
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the ECS scheme and around 0.1% for the BCS scheme. Cache pollution brings in some 

unpredictability to the process. This affects applications if they have a large active footprint. If a 

large number of lines are polluted whenever the learning function is called, the system needs time 

to reload the lines from the memory. Note that we use a repeat count of 5, so when we try out 

lower drowsy intervals while learning, the configuration runs for lesser number of cycles, which 

gives the system less time to recover. In this case, the average IFR is affected not only by hits on 

the drowsy lines but also cache misses. Hence, for lower drowsy intervals, the average IFR will 

tend to be lower than it ideally should. Thus, when the cache pollution is high, there is a smaller 

chance that these lower intervals are selected. This might lead to a sub-optimal selection. Figures 

8 and 9 show that the effect of cache pollution is much more than that of stalls due to direct 

overhead of system calls. 

 

 
Figure 8: Sensitivity to Direct overhead of system calls 
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Figure 9: Sensitivity to cache pollution overhead 

6.6 Our dynamic scheme vs. Earlier Methods 

As we have seen in Figures 3 and 4, the BCS scheme show satisfactory results with lower 

performance degradation (when compared to ECS). Hence, we choose BCS for the rest of the 

experiments. 

6.6.1 Comparison with Static scheme 

In this section we compare our dynamic scheme to the static schemes presented in [3]. 

We use the NoAccess Policy from [3] which shows better results than the Simple Policy [3], for 

the static scheme. The NoAccess Policy puts only those lines to drowsy mode that are not 

accessed within the drowsy interval. The Simple Policy puts all lines to drowsy mode when the 

drowsy interval elapses. For a fair comparison, we have modified the design in [3] so that it uses 

shared Vdd contacts for adjacent cache lines. We use the BCS design for the static scheme as 
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well. Here, the selection of drowsy intervals does not change in runtime. Although [3] does not 

discuss the implementation details of the NoAccess Policy, we have used the same approximate 

counting scheme involving global and local counters. We have calculated the percentage benefits 

in terms of MIPJ with respect to the base processor (with no drowsy lines). The best static scheme 

for both Icache and Dcache is selected on the basis of MIPJ benefits by profiling. Figures 10 and 

11 show the comparison for MIPJ benefits and IPC degradation, respectively. We see that the 

MIPJ benefits of both the schemes are similar. But the dynamic scheme shows considerably 

lower performance degradation with respect to the static scheme. The maximum difference in the 

performance degradation is around 5% for Stringsearch and the average difference between the 

two schemes, for the 19 applications, is around 1.5%. It can be clearly seen from the figure that 

many applications show a big improvement with the dynamic scheme. These results can be 

explained by the fact that we have chosen the configuration of the static scheme on the basis of 

the best MIPJ benefits. In the event that the static configuration is chosen to minimize the 

performance degradation, the energy benefits come down considerably. 

 

Figure 10: Comparison of MIPJ benefits (static and dynamic schemes) 
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Figure 11: Comparison of IPC degradation (static and dynamic schemes) 

 

We have also studied application behavior across cache sizes. Applications can show 

widely varying behavior for different cache sizes. Figures 12 and 13 show two kinds of behavior. 

For Mpeg2dec, the optimal interval remains at 500 across all cache sizes. In contrast, the optimal 

interval for Rijndael varies. The energy minima occur at higher intervals for cache sizes of 32 and 

16 KB. But for cache sizes of 8 KB and 4 KB, the energy minima are at the lowest interval of 

100. This is because, for cache sizes of 8 KB and 4 KB the entire cache starts trashing. Due to 

capacity misses all the lines are trashed before being reused. Hence, there is no point in keeping 

the lines awake till 5000 cycles. The best energy benefits are seen when the lines are put to sleep 

after 100 cycles (the lowest configuration used in the design). For another application, Basicmath, 

we observe that the optimal drowsy interval increases from 500 to 2000 when the cache size 

reduces from 32 KB to 4 KB. This happens because, in this case, only a part of the active code 

footprint is trashed, while the rest is always present in the cache. Because of these extra misses, 

the cache hit distance (the number of cycles after which a line is reused) increases for the lines 

that are always present in the cache. Therefore, instead of 500, the optimal drowsy interval 

increases to 2000. 
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Figure 12: Dependence of optimal 
interval on cache size: Mpeg2dec 

 

Figure 13: Dependence of optimal 
interval on cache size: Rijndael 

To demonstrate the robustness of the dynamic scheme, we show results for Rijndael. We 

used our dynamic algorithm with the same parameter values as used for the 32 KB cache. Figure 

14 shows that the dynamic algorithm is able to find the best configuration across cache sizes. 

 

Figure 14: Effectiveness of dynamic algorithm across cache sizes: Rijndael 

6.6.2 Comparison with Modified MRU (Most Recently Used) Scheme [32] 

We have implemented the dynamic scheme presented by Zushi et. al, [32]. As mentioned 

in Chapter 2, this scheme is an improvement on the MRU scheme proposed by Petit et. al, [11]. 

Along with the MRU information, the scheme in [32] also uses a time window to control the 

voltage mode transition of the cache lines. There is an access bit associated with every cache line. 

This bit is set whenever an access is made to the cache line. At the end of every window, a global 
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drowsy signal is sent to all cache lines. Based on the MRU information and the access bit, a 

decision is made for every cache line whether to put it to drowsy mode. The access bits are then 

cleared for the next window. The policy only limits the number of awake lines in the beginning of 

the window. It does not limit the number of lines that can be kept awake during the window. This 

means that any line accessed during the window is kept awake till the end of the present window. 

Two different schemes are proposed – AOM (Accessed Or MRU) and AAM (Accessed And 

MRU). In the AOM scheme, all lines are put to drowsy mode except the MRU lines, and the lines 

that have been accessed in the previous window. In the AAM scheme, all lines are put to drowsy 

mode except those MRU lines that have been accessed in the last window. If the MRU line is not 

accessed in the last window, it is put to drowsy mode. 

The design presented in [32], like the others, assumes a dedicated Vdd for every cache 

line. For the sake of comparison, we have modified the design so that these Vdd contacts are 

shared amongst two adjacent lines. This has some direct implications on the algorithm. Based on 

the policy (AOM or AAM), if a line qualifies to be kept awake in one set, then it will have to be 

kept awake in the adjacent set also, even if the line in the adjacent set does not qualify to be kept 

awake. As presented in [32], we have used a window size of 4096 cycles. Figure 15 compares the 

MIPJ of our dynamic scheme (BCS) with that of the AOM and AAM schemes. Figure 16 shows 

the comparison of the IPC degradation.  
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Figure 15: MIPJ benefits (Dynamic BCS and Modified MRU scheme) 

 

 
Figure 16: IPC degradation (Dynamic BCS and Modified MRU scheme) 

 

The dynamic BCS scheme clearly shows bigger energy benefits for all applications with 

respect to the AOM scheme. The maximum difference in benefits is around 8% for Qsort, and the 

average difference is more than 3%. The average performance degradation of the AOM scheme is 

better by around 0.6% when compared to the BCS scheme. The energy benefits of the BCS 

scheme are slightly better than the AAM scheme, with the average difference of around 1%. The 

maximum difference in benefits is around 4% for Rijndael and 4.8% for Qsort. The average 

performance degradation is almost the same for the BCS and the AAM scheme. Some 
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applications like Basicmath, Fft and Rijndael show higher performance degradation with the 

AAM scheme. These applications have a big active footprint in the cache, but the AAM scheme 

keeps awake a maximum of one line awake in every set. This leads to an increase in the 

performance penalty. Another disadvantage of the MRU-based schemes is that they cannot be 

used for fully associative or direct mapped caches. The benefits are also dependent on the 

associativity of the cache. This is more evident in the AOM scheme. For example, in a 2-way 

associative cache, at least half of the cache lines will always be awake when using the AOM 

scheme. Hence, the energy benefits reduce considerably. For a 32 KB cache, 2-way associative, 

the MIPJ benefits of the AOM scheme comes down to 6.71%. The BCS scheme provides MIPJ 

benefits of 13.41% for a 2-way associative cache. Likewise, the AAM scheme, when 

implemented in a direct-mapped cache, acts like static scheme with a window size of 4096 (since 

all lines are MRU in a direct-mapped cache). The AOM and AAM schemes also require a global 

routing for the drowsy update signal, and additional gating logic to block the drowsy signal when 

the MRU and/or the Access bits are set for a cache line.  

6.6.3 Comparison with the Improved Drowsy Scheme [31] 

As mentioned in Section 2, Alioto et al. [31] have proposed a scheme where they put 

active lines to drowsy mode immediately after the access moves on to another line. The authors 

have named it the Improved Drowsy scheme, which is an improvement over the scheme proposed 

by Flautner et al. [3]. In the simple policy proposed by Flautner et al., all the lines are put to 

drowsy mode after every drowsy window (selected to be 4096 cycles). To implement this, all 

cache lines are controlled by a global drowsy update signal.  

In the proposed Improved Drowsy scheme [31], along with this global update signal, 

every cache line has four other drowsy signals. The cache line gets drowsy signals from two lines 

above and below it. In other words, every line sends drowsy signals to two lines above and below 
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it. Whenever a line is awake, it activates the drowsy signal on these nearby four lines. They are 

put to drowsy mode if they are not being currently accessed. The global drowsy signal is still 

activated after every drowsy window. This scheme works efficiently for sequential accesses but 

degrades quickly if the number of branches increases. Figure 17 compares the MIPJ of our BCS 

scheme to that of the Improved Drowsy scheme. This comparison has been made for the 8KB 

direct mapped cache configuration used in [31].  Also, since we use the shared Vdd mechanism, 

we implement the Improved Drowsy scheme by controlling one pair of lines above and below any 

line.  

 

Figure 17: MIPJ benefits (dynamic BCS and Improved Drowsy) 

 

 
Figure 18: IPC degradation (dynamic BCS and Improved Drowsy) 
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As our simulations measure total energy consumption of the entire processor, we see that 

the MIPJ benefits are only around 1-2% for a 8KB cache. Figure 17 shows a comparison between 

the MIPJ benefits with the BCS and the Improved Drowsy schemes. The results show a mix of 

applications that perform better and worse with the Improved Drowsy Scheme. Some applications 

show a considerable degradation in MIPJ. These applications have a high percentage of branch 

instructions, for example 31% for Rawcaudio, 20% for Bitcount and 15% for Fft. On the other 

hand, applications that show higher benefits with the Improved Drowsy scheme have a low 

percentage of branch instructions like Djpeg (7%), H263dec (9%) and Rijndael (6%). This shows 

that the scheme is highly dependent on the locality of the cache accesses. Our set of applications 

is similar to that used in [31].  Some applications are used only in either of the two. The 

applications in [31] that have not been used in our simulations are Gsm, Pgp, Rsynth, Typeset, 

Mad, Ispell. As presented in [31], none of these applications show the highest reduction in 

leakage. The benefits of most of these applications are similar or lower to the average case. We 

do not expect the comparison results to vary, even if these applications were included in our 

simulations. Figure 18 shows the IPC comparison. It can be seen that the performance 

degradation with the Improved Drowsy scheme is much worse than that of the dynamic BCS 

scheme.  

We observed that, for some applications like Fft and Stringsearch, the results presented 

in [31] do not match our simulations. The IPC degradation presented in [31] for these applications 

are much lower than shown here. This can be attributed to the different kinds of processors that 

are modeled in the simulator. We have modeled a 4-wide superscalar with an out-of-order 

pipeline implemented using Tomasulo’s algorithm. On the other hand, the authors in [31] have 

used an Intel XScale processor [30]. This processor issues one instruction at a time and uses three 

different pipelines after the RF (Register File) stage – the main execution pipeline, one for 

memory operations, and another for MAC instructions [29]. Instructions are allowed to complete 
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out-of-order. The dependencies are handled using Scoreboarding [29]. Since, our processor has 

an issue width of 4, the penalty due to hitting a drowsy cache line is higher. Furthermore, the 

XScale processor uses Scoreboarding, which stalls for both RAW and WAW hazards at the 

Register File Read stage [29]. Hence, there is a greater chance that the penalty due to hitting a 

drowsy line may get hidden, as the pipeline would already be stalling on a data or a structural 

hazard. A pipeline based on Tomasulo’s algorithm does not stall on WAW or WAR. Since, a 

faster pipeline incurs more penalties if instruction fetch is slow, the IPC degradation is higher for 

the Improved Drowsy scheme, for our processor. 

6.7 Trend across Technology Nodes 

All previous results have been generated using 45nm technology. In this section, we 

compare to 32 and 22nm technology nodes. Figure 19 shows a comparison of MIPJ benefits for 

these technology nodes. We see that there is a small reduction in the MIPJ benefits with 

decreasing feature size. This is because, only Vdd has been scaled down. According to ITRS 

2011, the threshold voltages for high performance transistors have not been scaled down. These 

threshold voltages have been determined by taking into consideration, the constraint that the sub-

threshold current should not exceed 100nA/µm. Due to the reduction in Vdd, the scope for 

voltage scaling reduces by some amount. But, we are still able to get meaningful benefits even for 

22nm technology. Since, no changes have been considered to the design, the IPC results remain 

the same. 
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Figure 19: Trend across technology nodes 
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CHAPTER 7 

 COMBINING DROWSY CACHE LINES AND GATED-VDD SCHEMES 
 

As discussed before, the drowsy cache scheme scales down the voltage only to a point 

where the data in the memory cell is not lost. This helps in preventing additional cache misses 

when the line is woken up. On the other hand, the Gated-Vdd mechanism completely turns off the 

cache lines. This results in the data being lost but the leakage energy savings are higher than that 

for the drowsy cache scheme. We have investigated a scheme where the combination of both can 

be used to maximize the energy benefits by completely shutting down some of the cache lines 

that are already in the drowsy mode. 

7.1 Design considerations 

We propose to combine the circuit for drowsy caches [3], and that for the Gated-Vdd 

scheme [12]. The Gated-Vdd scheme introduces a high-Vt transistor between the power rail and 

the SRAM cell. This transistor is switched on, when the circuit is active. To power down, this 

gating transistor is switched off, hence cutting the power supply from the SRAM cell. Since this 

is a high-Vt transistor, the leakage through this is minimal. But, using a high-Vt transistor 

increases the access time. Based on the exact design used, a tradeoff can be made between the 

access time, energy consumption and area overhead. For the purpose of our simulations, we have 

assumed an Nmos Gated-Vdd, dual-Vt transistor, which can provide 97% leakage benefits 

without any increase in access time [12]. The area overhead is 5%, which is larger than the other 

designs [12].  

To put the cache lines in drowsy mode, we can scale down the voltage in the power line 

while still keeping the gating transistor in the ON state. To switch-off the lines completely, the 

gating transistor should be switched-off. When the line is woken up, the power line needs to be 

brought back to the normal mode and the gating transistor needs to be switched on. 



 

 

 

 
37	  

7.2 Control Mechanism 

As discussed earlier, cache lines are put to drowsy mode if they have not been accessed 

in the period decided by the drowsy interval. We can further switch them off completely if these 

drowsy cache lines are not woken up within a certain period after being put to drowsy mode. Like 

the drowsy cache scheme, these intervals are decided dynamically for Icache, and a static interval 

is used for Dcache. 

For Icache, we use the same drowsy interval given by the learning algorithm. After a 

cache line is put to drowsy mode, we switch it off completely, if the line is not accessed for 

another drowsy interval. This can be easily implemented by extending the 2-bit local counter to a 

3-bit counter. The line is put to drowsy mode when the counter reaches count 3, and is switched 

off when the count reaches 7. 

It is not feasible to use the same design for Dcache. This is because we have used a static 

drowsy interval of only 100 for the BCS scheme. But, switching off the lines after another 100 

cycles considerably increases the performance degradation due to additional cache misses. The 

static interval selected for Dcache is the same as that used by Kaxiras et al. for their Cache Decay 

scheme [6]. Their theoretical analysis suggests an optimal interval of roughly 10,000 cycles. 

Based on the experimental results, they propose an interval of 8000 cycles for best energy 

benefits. We have used the same interval for switching off the Dcache lines. We use a different 

technique to implement this. Since the global counter for the Dcache provides increment signals 

corresponding to the drowsy interval of 100, a very large local counter would be required to count 

8000. This overhead is prohibitive. Hence we introduce another global counter that provides 

signals to count 8000. After the line has been put to drowsy mode, we reuse the same local 

counter for counting these 8000 cycles. In hardware, the local counter would use the increment 

signals from the first global counter when the drowsy bit is 0 (line is active). When the line is put 



 

 

 

 
38	  

to drowsy mode, the local counter is reset and the drowsy bit becomes 1. As long as the drowsy 

bit remains 1, the local counters use increment signals from the other global counter. 

7.3 Experimental Results 

We have implemented the proposed scheme with the parameters discussed above. Figure 

20 compares the MIPJ benefits, when only using the drowsy cache scheme (dynamic BCS), with 

that when using a combination of drowsy cache and Gated-Vdd schemes. The results show a mix 

of applications that benefit from the scheme and those who do not. The benefits are not very high. 

This is because the added advantage of Gated-Vdd scheme with respect to leakage benefits is not 

very high. The drowsy voltage scheme provides around 78% leakage reduction while the Gated-

Vdd scheme provides 97% (for individual SRAM cells). But, as discussed before, these schemes 

have only been implemented on the data array of the cache. Furthermore, the Gated-Vdd scheme 

results in cache misses, which increases the runtime of the application. If the increase in cache 

misses is too high, like that in Patricia, the energy consumption increases considerably. Based on 

the average behavior, we believe that the added design overhead of combining these schemes is 

not justified.  

 

Figure 20: MIPJ benefits (only drowsy with combination of drowsy and GatedVdd) 
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CHAPTER 8 

 COMBINING DROWSY CACHE LINES AND CACHE-WAY SHUTDOWN SCHEMES 
 

Cache-way reconfiguration is a scheme were access to entire cache ways are disabled. 

This is a very coarse grained mechanism but has potential to provide larger energy benefits. On 

the other hand, the drowsy cache scheme provides a fine-grained control over individual pair of 

cache lines. We propose a combination of these to schemes to gain the maximum energy benefits 

for a given application.  

Albonesi [17] has proposed a way-selection scheme for saving dynamic power. We 

further switch-off the cache ways to which access is disabled, using the gated-Vdd mechanism 

[12], thereby saving leakage power also. This mechanism should be confused with the one 

presented in the previous chapter. In this scheme, the voltage to entire cache ways is gated. The 

drowsy cache mechanism is used on the cache ways that are not gated.  

Since we are only operating on cache-ways, the address decoding remains unaltered for 

all the configurations. Data coherency in Dcache becomes an issue in Albonesi’s design [17], as 

only the access to the cache-way is gated, but the data is still present in it. This creates aliasing 

and needs to be handled carefully. However, in our case, when switching off the cache ways, the 

data stored is lost. Hence, no additional mechanism is required to maintain data coherency in the 

Dcache. However, since we are shutting down the ways, the data that is dirty needs to be written 

back to the memory. We have modeled a Write Back Policy and used a Write Buffer of size 8. If 

the number of Dirty words is more than that, the pipeline is stalled appropriately. 

8.1 Algorithm for cache-way shutdown 

The structure of the algorithm is similar to that used for drowsy cache lines. We use miss 

rates of the cache to control the cache ways. All the cache ways are active at the start. We make a 

choice for the learning interval, which is the number of cycles for which every configuration is 
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tried before moving on to the next one. We consecutively switch-off half the remaining cache 

ways, after the passage of every learning interval. This is done till the threshold ratio on the miss 

rates is crossed.  

8.2 Integrating cache-way shutdown and drowsy cache line algorithms 

We start our process with the cache-way shutdown policy. The algorithm runs 

independently for Icache and Dcache. Only after the cache ways have been set for a cache, is the 

learning for drowsy lines started for that cache. We use two different counters in this design. As 

mentioned before, the cache ways are controlled using miss rates while the drowsy lines in the 

Icache are controlled using the average IFR. 

Learning for deciding on the cache ways is restarted based on the tracking of the miss 

rates. It should be noted that a new configuration in the cache way triggers the relearning for the 

drowsy lines scheme, but the reverse is not true. However, even for the same configuration of the 

cache ways, learning can be restarted for drowsy lines based on the tracking of the respective 

counters. 

8.3 Experimental results 

We see a considerable increase in the energy benefits. The average MIPJ benefits with 

this scheme is 31% and the average performance degradation is around 3%. 

We have made a comparison of this scheme to the predictive MRU scheme [22], 

discussed in Section 2.2. The predictive MRU scheme is able to provide around 9% MIPJ 

benefits. We have also compared our scheme to the DRI-Icache [12][13], discussed in Section 

2.2. This scheme has only been implemented for the Icache. Implementing it in the Dcache needs 

added control to resolve aliasing. Hence, we make the comparison only for Icache. The DRI-

Icache uses miss-bound to dynamically determine the number of sets. We have implemted DRI-
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Icache with various values of miss-bound. The best MIPJ benefits are 11% with a miss bound of 

5000. Our scheme, on the other hand, gives MIPJ benefits of around 19% (on only Icache). We 

also  outperform the DRI-Icache scheme with respect to IPC degradation, for all applications. 
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CHAPTER 9 

 CONCLUSION 
 

Large memory structures, such as caches, offer the possibility of considerable reductions 

in leakage energy. Due to the individual characteristics and complexity of applications, a dynamic 

scheme is necessary for adaptive, fine-grained control over the drowsy cache lines. We have 

proposed a low cost, robust dynamic scheme that works across various configurations. Our 

scheme works satisfactorily across applications and with caches of different associativity and 

sizes. Compared to earlier published schemes, our dynamic scheme provides more energy 

benefits with lower performance degradation. For 45nm technology, the MIPJ benefits are 

18.27% with IPC degradation of 1.2%. The scheme shows promising results for more recent and 

future technology nodes.  
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