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ABSTRACT

THE MEASUREMENT OF INTERNAL TEMPERATURE
ANOMALIES IN THE BODY USING MICROWAVE

RADIOMETRY AND ANATOMICAL INFORMATION:
INFERENCE METHODS AND ERROR MODELS

MAY 2012

TAMARA SOBERS

B.Sc., RENSSELAER POLYTECHNIC INSTITUTE

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor P. Kelly

The ability to observe temperature variations inside the human body may help

in detecting the presence of medical anomalies. Abnormal changes in physiological

parameters (such as metabolic and blood perfusion rates) cause localized tissue tem-

perature change. If the anatomical information of an observed tissue region is known,

then a nominal temperature profile can be created using the nominal physiological

parameters. Temperature-varying radiation emitted from the human body can be

captured using microwave radiometry and compared to the expected radiation from

nominal temperature profiles to detect anomalies. Microwave radiometry is a passive

system with the ability to capture radiation from tissue up to several centimeters deep

into the body. Our proposed method is to use microwave radiometry in conjunction

with another imaging modality (such as ultrasound) that can provide the anatomical

information needed to generate nominal profiles and improve detection of temperature
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anomalies. An inference framework is developed for using the nominal temperature

profiles and radiometric weighting functions obtained from electromagnetic simula-

tion software, to detect and estimate the location of temperature anomalies. The

effects on inference performance of random and systematic deviations from nominal

tissue parameter values in normal tissue are discussed and analyzed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

When people are sick, their bodies display symptoms such as an increase in core

and localized temperatures in the body. These changes in temperature originate when

physiological parameters such as metabolic rate and blood perfusion rate deviate from

the norm. For this reason, the ability to detect temperature variations, may aid in

detection of diseases/infections as well as characterizing different medical conditions.

By using microwave radiometry, the power level of thermal radiation from a tissue

region can be captured. If anatomical information of the region is known, then

this information can be used with the radiometer power measurements to detect

temperature anomalies in the tissue.

1.2 Why is microwave radiometry interesting for medical ap-

plications?

As the human body generates heat, thermal radiation is emitted in the microwave

spectrum. This thermal radiation can be captured using radiometry, a non-invasive

method that measures the amount of energy emitted/released from a source and re-

ceived at an antenna. Currently, infra-red thermography (the measurement of temper-

ature) has proved useful for detecting temperature anomalies near the skin’s surface

or anomalies multiple centimeters deep whose temperature increase is large enough

such that temperature near the skin increases [13]. Microwave radiometry, however,

can respond better to thermal radiation emitted several centimeters below the skin
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because of its wavelength spectrum and lower frequency range (between 300 MHz

(3 × 108 Hz) and 300 GHz (3 × 1011 Hz))[8]. Microwave radiometry is also a passive

process. That is, information can be gathered by solely using a receiving antenna

without actively distributing any radiation/signals into the body. Currently, MRI

and CT prove useful in medical diagnosis but they may also put patients at risk due

to the use of radiation. Recently in the medical imaging community, there has been

a push to lower the amounts of radiation used [7], [31], [12].

1.3 Brief Overview of Radiometry and Principle of Reci-

procity

Radiometry measures the amount of noise power observed at a receiving antenna.

When measuring black bodies, the radiometer receives all of the energy. However,

when measuring non-ideal bodies (i.e. the human body), incident energy is partially

reflected and not all of the power radiates from the body. As a result, only a fraction of

the power radiating is observed at the receiving antenna. This percentage is measured

as emissivity (1.1), and the portion of the power observed at the radiometer is the

brightness temperature (1.2):

e =
P

kTB
(1.1)

TB = eT (1.2)

where P is power radiating from the non-ideal body, k is Boltzman’s constant, T is

temperature of the body, and B is system bandwidth [8]. Emissivity is dependent

on the operating frequency as well as the observed volume’s properties. Equation

1.2 refers to an object that has uniform temperature and emissivity. For composite

objects (like the human body), there is a more complex relationship between the true

temperature and the measured brightness temperature. In fact, brightness tempera-
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ture can be modeled as the inner product of a weighting function and the temperature

profile in an observed object [19]:

TB =

∫
v

W (v, f)T (v)dv + Tn (1.3)

where v is the tissue volume, T (v) is the temperature distribution in volume v, W (v, f)

is the radiometric weighting function at frequency f over volume v, and Tn is the

radiometric measurement noise. Previous papers have modeled W as:

W (v, f) =
Pd(v)∫

Ω

Pd(v)dv
(1.4)

where Pd(v) is the power deposited at v by a radiating antenna at the same frequency

and of the same form as the radiometer [10]. Weighting functions also have the

following properties:

(i)W (v, f) ≥ 0 for all v

(ii)

∫
v

W (v, f)dv = 1 (1.5)

Weighting functions give more weight to positions in the observed volume that are

closer to the antenna’s position, versus points that are further away. So while ra-

diometry in principle can be used to measure subcutaneous temperatures, thermal

radiation from a location in a volume that is far away from the antenna’s position

will not contribute much to the brightness temperature.

We assume that the observed volumes are discretized into N voxels. Then the

weighting functions, {wi, i = 1, ..., K}, calculated at K different frequencies and/or

3



spatial locations can be treated as a set of linearly independent vectors, and arrayed

as columns of a matrix W . Then the vector TB of K brightness temperatures satisfies:

TB = W ∗T + T n (1.6)

where T n is the measurement noise K-vector, W is the NxK matrix of weighting

functions, T is the discretized true temperature field arranged as an N -vector, and

the superscript ∗ denotes adjoint. As noted below, weighting functions for a given

tissue configuration can be obtained using electromagnetic simulation software. Other

imaging modalities such as MRI or ultrasound can be used to obtain the necessary

anatomical information.

1.4 Difficulties using Microwave Radiometry

There are various applications for using radiometric measurements in the clinical

setting. Based on the required test, radiometry could be used to generate temperature

estimates over an entire volume or a specific region of interest (ROI). Alternatively,

these measurements might be used to simply detect the presence of an anomaly in a

volume or a restricted ROI. There are some well known difficulties when using mi-

crowave radiometry to observe deep tissue temperatures. In particular, in (1.6), there

are many more voxels (components of T ) then there are measurements (components

of TB). Therefore, generating temperature estimates is difficult because there are

few radiometric measurements available for reconstructing a large temperature field,

resulting in an ill-posed problem [35].

The situation can be helped by increasing the number of measurements, varying

the receiving antenna’s angle, and obtaining the power measurements from different

frequencies. Doing so will add more information by increasing the number of weighting

functions and improve the chances of projecting the anomaly onto the ”weighted”

4



portion of the weighting functions. However, it is not practically possible to make

the problem of reconstructing temperature from radiometry measurements well-posed

just by taking more measurements - additional constraints, such as prior distribution

on T , must be imposed [1].

Some researchers have tried this approach by assuming, for example, that the

temperature field must be in the span of a small set of specified basis functions [28],

[29]. Another possible approach might be to assume a particular random field model

for the temperature, and to find the estimate as a Bayesian reconstruction. In any

such approach it would be necessary to ensure that the additional constraints and

models are accurate for the temperature field being estimated, so that the estimate

is not biased by the assumptions. How best to do this in the case of internal body

temperature needs to be the subject of more research. Due to the challenges in

estimating T , this thesis focuses on the (well-posed) problem of detecting anomalies

in T based on TB. We also propose a new anomaly location estimation method with

the use of a pre-calculated dictionary.

1.5 Contribution

Without knowing the weighting functions and normal temperature distribution,

brightness temperatures contain limited information about any anomaly. The gen-

eral anatomical structure is similar between people but there are slight variations

in dimensions such as tissue layer thicknesses. These differences lead to different

weighting functions even for identical radiometer configurations, and hence to dif-

ferent brightness temperature vectors between people. Therefore, using an energy

detection method that classifies a brightness temperature reading as an anomaly,

based on some expected value for the general population might lead to many false

alarms because of normal anatomical tissue depth variations.
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Again, there are several scenarios for the set of information used to test for anoma-

lies. We might only have the radiometric measurements themselves, along with some

basic information such as body core temperature. In some cases (for example, testing

for breast cancer [20]) we might be able to take advantage of the body’s contralateral

temperature symmetry by using measurements from the opposite side of the body

from the location of interest to establish a baseline.

By including anatomical information in the detection process, a baseline can be

established to determine what qualifies as nominal versus abnormal radiometric obser-

vations for a given individual. The goal of this thesis is to determine how knowledge

of anatomical information can impact the detection of subcutaneous temperature

anomalies.

We want to consider the case that we have complete knowledge of anatomy in

the volume of interest − that is, we know the tissue type at each voxel. Our first

objective is to develop hypothesis tests that are in some sense optimal, given ra-

diometric observations and anatomical information, for detecting a deviation from

nominal physiological parameter values. We view this work as just a first step in de-

veloping a more comprehensive framework for the diagnostic application of microwave

radiometry working in conjunction with other modalities.

We first propose a detection process that utilizes the anatomical information to

generate nominal brightness temperature. We further exploit the availability of the

model to generate multiple anomalous profiles that can be used as a dictionary to

improve detection and estimate the location of an anomaly. We also consider how

random and systematic errors in each parameter can affect detection rates.

1.6 Organization

This thesis will present a process for detecting temperature anomalies in sub-

cutaneous regions of the body and propose methods for implementation in medical

6



settings. Chapter 2 explains how anatomical information can be gathered and used

to generate weighting functions and temperature profiles. Several imaging modalities

that are currently used in clinical settings, could potentially be used for obtaining

the information. Using this information, weighting functions can be found using

electromagnetic simulation software and temperature profiles can be calculated using

Matlab. Chapter 3 covers the derivation of the detection and location estimation

algorithms when there is access to anatomical information. Simulation results are

presented in Chapter 4 based on the detection and estimation algorithms presented

in Chapter 3. In Chapter 5, possible nominal variations are analyzed to determine

their impact on the detection algorithm. Chapter 6 summarizes the work presented

and proposes directions for future use of radiometry in medical applications.
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CHAPTER 2

GATHERING AND USING ANATOMICAL
INFORMATION

2.1 Finding Anatomical Information

As noted in the previous chapter, in order to fully use radiometric measurements

to capture information about tissue temperatures, we need to couple radiometry to

another modality that can provide anatomical information. Methods that might

be used to obtain the tissue configuration in a volume include Magnetic Resonance

Imaging (MRI), Computed Tomography (CT), and Ultrasound. MRI and CT are

expensive procedures whereas Ultrasound is a non-invasive and inexpensive procedure

that can be performed at the bedside of a patient. Ultrasound operates by sending

high-frequency (2-20 MHz) sound waves into the body and observing how the sound

waves are reflected at acoustic impedance boundaries. The differences in acoustic

impedance properties make the ultrasound receiver capable of discerning different

tissue types and their depths.

Areas of interest for radiometric measurement include the brain, breast, and ab-

dominal regions of the body. Fully modeling an adult head non-invasively would

require the use of an MRI or CT scan. However, using one of these devices to detect

temperature in the brain (e.g. through the use of MR spectroscopy [6]) may seem in-

efficient because they are expensive and not as readily available as ultrasound. There

is also a concern about radiation dose with CT. In this work, we will focus on the use

of a head model obtained from a MRI scan due to the availability of the data. How-

ever, the question of how to obtain sufficient anatomical information with minimal

cost and risk to the patient is a subject that will need to be explored further.
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Ultrasound has several advantages in terms of cost and patient safety. One major

limitation with the use of ultrasound for anatomical measurements is that it does not

readily pass through bone. However, the use of ultrasound to determine skull and

other tissue layer thicknesses has been reported [22],[4]. It should also be noted that

in the case of infants and neonates, the skull is not fully formed together and there

are soft spots called fontanelles in the head where ultrasound pulses can pass through.

This procedure is called a cranial ultrasound and is currently used in clinical settings

[14]. Cranial ultrasounds are preferred when observing the brain in neonates due to

their minimal discomfort and easy implementation at the bedside.

2.2 Modeling Temperature Profiles

Once a tissue configuration is known, a temperature profile can be generated

using the Pennes Bio-Heat Equation (PBE). The PBE is a heat transfer equation

that calculates a temperature field in the body based on tissue properties such as

metabolic and perfusion rates [16]:

ρtct
∂T

∂t
= ∇(k∇T ) + wbρbcb(Tart − T ) +Qm +Qr (2.1)

where ρ[kg/m3] is the density, c[Jkg−1◦C−1] is the heat capacity, k[W/◦Cm] is the

thermal conductivity, wb[s
−1] is the blood perfusion rate, Tart[

◦C] is the arterial tem-

perature, T [◦C] is the temperature of the local tissue, Qm[W/m3] is the metabolic

rate, and Qr[W/m
3] is external heat that is being added or removed from the system.

The first assumption is that temperature is steady-state, so ∂T/dt equals zero. We

also assume no external heating or cooling (ambient temperature is assumed to be

steady-state as well), so Qr is set equal to zero. This leads to:

0 = ∇(k∇T ) + wbρbcb(Tart − T ) +Qm (2.2)
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Inside a homogeneous region with k assumed to be constant, this can be discretized

in a voxelized 3D volume as follows:

0 = k

[
T (x+ 1, y, z) + T (x− 1, y, z)

δ2
i

+
T (x, y + 1, z) + T (x, y − 1, z)

δ2
j

+
T (x, y − 1, z) + T (x, y, z + 1)

δ2
k

]
+ wb(x, y, z)ρbcb(Tart − T (x, y, z)) +Qm(x, y, z)(2.3)

where k, wb, and Qm are all dependent on the local voxel tissue and δi is the voxel size

in x, y, or z direction (the equation is slightly modified at tissue region boundaries

to account for different values of k. This equation can be rewritten in matrix format

as:

AT = b (2.4)

where T is the temperature vector; A is a sparse matrix whose ith row contains

all zeros except at position (i, i) and the six positions corresponding to the nearest

neighboring voxels to voxel i:

A(i, i− s) =
−k(x, y, z − 1)βγ

∂2
k

A(i, i− l) =
−k(x− 1, y, z)βγ

∂2
i

A(i, i− 1) =
−k(x, y − 1, z)βγ

∂2
j

A(i, i) = 1

A(i, i+ 1) =
−k(x, y + 1, z)βγ

∂2
j

A(i, i+ l) =
−k(x+ 1, y, z)βγ

∂2
i

A(i, i+ s) =
−k(x, y, z + 1)βγ

∂2
k

where l is the voxel length of the observed volume, s is the number of voxels in a slice

of the observed volume, and β and γ are defined as:
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β =
[k(x− 1, y, z) + k(x+ 1, y, z)

∂2
i

+
k(x, y − 1, z) + k(x, y + 1, z)

∂2
j

+
k(x, y, z − 1) + k(x, y, z + 1)

∂2
k

]−1

γ =
1

1 + ρbcbw(x, y, z)Tartβ

b is a vector whose ith entry has the form:

b(i) = (ρbcbwTart +Qm)βγ (2.5)

From (2.4), the PBE becomes a linear algebra problem to solve for T . Expanding

the PBE into matrix format shows that A is a sparse matrix where there are far

fewer non-zero terms compared to the number of zeros in the matrix. Since A is

sparse, an iterative sparse matrix solver can be used to solve for T . There are various

sparse matrix solvers available, but we are limited due to the characteristics of the

A matrix. There is no guarantee that A will be symmetric since it is composed of

tissue parameters dependent on the volume and it is also extremely large due to

the observed volume’s dimensions. Based on these characteristics, the Generalized

Minimal Residual method solver (GMRES) was chosen.

A temperature field was generated for a cubic model to check if the PBE and iter-

ative solver chosen produced realistic results. Figures 2.1 and 2.2 show the calculated

temperature distributions from 2-D and 1-D perspectives. The cube voxels were set

to 2mm on each side and consisted of concentric layers of air (2mm), skin (2mm),

fat (2mm), skull (6mm), and cerebral spinal fluid (2mm). The interior of the cube

was set as brain matter. The cube’s size (150 mm x 150 mm x 150mm) was chosen

proportional the size of an infant head [18]. The depth of the tissue layers were chosen

based on tabulated values for tissue thickness [18] and tissue physiological parameters

were obtained from Bardati [10]. The total size of the cube consists then of 75x75x75

(or 421,875) unknowns.
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Table 2.1. Physiological Parameters

Tissue Layer κ(W/◦Cm) wb(s
−1) ρ(kg/m3) c (Jkg−1◦C−1) Qm (W/m3)

Air .026 0 1.3 1006 0
Skin .343 3.3e-4 1125 3150 360
Fat .23 3.3e-4 943 2300 302
Skull .75 0 1850 1300 370
CSF .60 0 1000 4200 360
Brain Matter .565 8.4 e-3 1035.5 3680 10000

Depth (cm)

D
ep

th
 (

cm
)

Nominal Temperature Profile (°C)

 

 

0 5 10 15
0

5

10

15

28

29

30

31

32

33

34

35

36

37

Figure 2.1. 2-D Nominal temperature profile of cube model.

There are various diseases such as cancer, stroke, infections and arthritis that are

accompanied by physiological changes that in turn cause tissue temperature to vary

from normal values [20],[2],[15],[26]. We wanted to simulate the effect of ischemia

(loss of blood flow) in a small region of the brain. Abnormal temperature profiles

were generated by setting the blood perfusion rate to zero in a region of 1000 voxels

(8cm3). Blood flow acts as a coolant in the PBE so the removal of blood flow should

increase the local temperature where the anomaly is taking place. Figures 2.3 and

2.4 show the 2-D and 1-D perspectives of the ischemic temperature profile with the

anomaly located in the center of the cube respectively. Temperature increases in the
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Figure 2.2. 1-D Nominal temperature profile of cube model.

anomaly region which is consistent with experimental findings in cases of ischemic

stroke [2].

As noted above, the cube model’s dimensions are comparable to an infant child’s

head and were originally used to determine the detection on a smaller model. An

adult head can be modeled using the Zubal head model. The Zubal head model is

a set of 128 MRI slices from the head of an adult male that are stacked together.

Each slice has 256 voxels in length and width and each voxel is labeled with a tissue

type. Each voxel is 1.1 mm in the x and y directions and 1.2 mm in the z direction.

Matlab was unable to compute the temperature profile of the original Zubal model

due to memory limitations. To reduce the number of voxels, the model was reduced

in dimensions to 128 x 128 x 64 voxels by subsampling with each voxels increasing

in size to 2.2 x 2.2 x 2.4 mm. The Zubal model is very detailed and consists of

tissues such as glands, tendons, etc. Some tissue types in small regions were re-

labeled to comparable tissues that were used in the cube model. This needed to be

done because of the limited physiological properties available. It should be noted that

previous studies have concluded that small tissue structures do not have significant
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Figure 2.3. 2-D Temperature profile with an ischemic anomaly in the cube model.

effects on temperature or electromagnetic models [5]. There were also some tissues

that have the same tissue properties in the model but were labeled based on location

within the brain. These tissues were relabeled as well. Figure 2.5 shows the tissue

layout in a 2D cross-section of the Zubal model. Temperature fields were found for

this model using the same steps as the cube model. Cross-sections of the nominal and

anomalous fields are shown in Figures 2.6 and 2.7, respectively, where the anomaly

was again an ischemic region of size 10x10x10 voxels.

2.3 Gathering Weighting Functions

The tissue configuration can also be used to obtain the weighting functions. The

amount of power measured at the radiometer depends on the antenna’s position

in relation to the observed volume and the antenna’s operating frequency. Points

in the volume closer to the antenna have a greater impact on the power measured

versus points that are further away. These differences in power measurements can

be represented in the form of a weighting function that exponentially falls off as the

propagation depth into the observed volume increases.
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Figure 2.4. 1-D Temperature profile with an ischemic anomaly centered in the cube
model

Weighting functions were found by running simulations in Remcom XFdtd [34].

XFdtd is a Finite-Difference Time-Domain Software that is used to solve Maxwell’s

equations for electromagnetic simulations. For this we used the nominal dielectric

properties for tissue presented in [27]; these are summarized in Table 2.1. It is not

possible to directly simulate the radiation due to tissue temperature in software.

However, the reciprocity theorem in electromagnetics states that the power received

at an antenna from a given location is proportional to the power deposited at that

location by the antenna operating in the active mode [25]. Therefore, the amount

of power that is deposited in a tissue volume can be used to model the amount of

power radiated from the same volume, and thus, can be used to find the radiometric

weighting function. So instead of treating the body as a source, it is treated as a

receiver and the antenna is treated as a source.

Weighting functions were found for the same cube of tissue described in section 2.2

used to create a temperature profile. The antenna used in simulations was a simple

monopole antenna mounted inside of a rectangular waveguide that was centered and

flush with the face of the cube. The dimensions of the waveguide varied according
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Figure 2.5. 2-D View of Zubal tissue layout.

to the operating frequency [8] (see Table 2.2). A volume sensor was placed around

the cube to measure the amount of power deposited by the radiating antenna at 2.45

GHz, 3.5 GHz, and 4.5 GHz. The exported power results were then normalized such

that the length of each weighting function summed to unity to create the final set

of weighting functions (satisfying 1.5). Figures 2.8 and 2.9 show 1-D perspectives

of the normalized weighting functions in linear and log scales respectively. (Note

that ”bumps” in the weighting function correspond to the location of the skull, which

absorbs a relatively high proportion of the input power.) Figure 2.10 shows a 2-D slice

of the weighting function at 1 cm deep into the cube in the direction of propagation

and demonstrates that the weighting functions fall off exponentially in all directions

of propagation.

It is clear from the Figures 2.8 and 2.9 that half way through the cube it is more

difficult for the weighting functions to capture any anomalies when the inner product

of the weighting function and the temperature profile is computed. This affirms

that anomalies that take place at a distance from the radiometer will not have a

significant impact on the brightness temperature measured at the radiometer. The
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Figure 2.6. 2-D View of Zubal nominal temperature profile.

Table 2.2. Waveguide Dimensions

Frequency (GHz) Wavelength (m) Dimensions Inside(cm) Dimensions Outside(cm)
1.5 (L Band) .2 16.51 x 8.255 16.916 x 8.661
2.45 (R Band) .1224 10.922 x 5.461 11.328 x 5.867
3.5 (S Band) .08577 7.214 x 3.404 7.620 x 3.810
4.5 (HBand) .066 4.755 x 2.215 5.080 x 2.540

different rates of exponential fall-off also suggest that observing multiple frequency

readings at different positions can increase the chances of detecting an anomaly if one

is indeed present. Also, since distance between anomaly and radiometer will have

a significant impact on detection, the use of multiple sensor locations can be very

helpful.

The weighting functions have similar characteristics to the weighting functions

used in other papers [10], [11]. Some papers have used equations to calculate weighting

functions for simplified tissue configurations, and they have similar characteristics to

our simulation results as well.
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Figure 2.7. 2-D View of Zubal abnormal temperature profile.

Weighting functions were also generated for the Zubal head model using the XFdtd

software (Figures 2.11 and 2.12). Since the Zubal model (1,048,576 voxels) is larger

than the cube model (421,875 voxels), the time to acquire the weighting functions

can take up to 20 minutes. In the future, it may be possible to reduce the time by

not regenerating weighting functions for each individual. Instead, the model could

be adapted based on the dimensions acquired from the other imaging modalities and

used to generate weighting functions.

2.4 Conclusion

This chapter first noted how imaging modalities currently used in clinical settings

provide means to obtain the anatomical configuration of an observed region. Anatom-

ical information, along with known values for thermal and physiological parameters of

different tissue types, can be used to construct temperature profiles under normal and

abnormal conditions. In simulations, ischemia was chosen as the abnormal medical

condition. Radiometric weighting functions can also be calculated once anatomical

information is known using electromagnetic simulation software. Due to the charac-
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Figure 2.8. 1-D Normalized Weighting Function for Cube Model at 2.45 GHz, 3.5
GHz, and 4.5 GHz (linear scale). Note that all of the weighting ”bumps” occur within
the skull region as seen in Figure 2.10.

teristics of the weighting functions, different frequencies and antenna locations should

provide better insight of possible thermal radiation anomalies at different penetration

depths.
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CHAPTER 3

ANOMALY DETECTION AND ESTIMATION METHODS

In this chapter, we will derive detection algorithms that determine if a tempera-

ture anomaly is present in an observed volume. The important contribution is that

anatomical information is included in the detection process. Without anatomical in-

formation, power measurements could not be compared against nominal brightness

temperature based on an individual’s nominal temperature profile. The first detection

algorithm presented incorporates the nominal brightness temperature in the detection

process. Two more algorithms are derived that use a set of pre-calculated signatures

for abnormal brightness temperatures to improve performance rates.

Each detection algorithm presented uses a hypothesis testing framework to com-

pare normal temperature patterns/profiles versus abnormal temperature patterns us-

ing the probability distributions of the nominal and abnormal power measurements.

The unknown size and location of an anomaly are accounted for through use of a Gen-

eralized Likelihood Ratio test (GLR). The following steps will show how the GLR test

is constructed. Results of the detection algorithms are presented in Chapter 4.

3.1 Detection using GLR without a Signature Dictionary

3.1.1 Constructing Temperature Distributions

We want to construct hypothesis tests where the observation TB is used to de-

termine if an anomaly is present. Hypothesis H0 will represent the condition that

the observation is under nominal conditions and H1 will represent the condition that
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an anomaly is present. Under H0, physiological parameters take their nominal val-

ues, which leads to nominal (expected) brightness temperature vector TB,0 = W ∗T 0,

where A0T0 = b0 and T 0, A0, and b0 are respectively the nominal body temperature

field, the bioheat matrix, and the bioheat vector. In practice, there may be variations

from nominal parameter values even under what might be considered normal condi-

tions. The effect of these will be to generate variations from the expected nominal

brightness temperature vector TB,0. We model these variations as being Gaussian and

mean zero, with a covariance matrix C. (The effects of nominal parameter variations

will be considered in more detail in Chapter 4.) We also assume that the radiometer

noise is an independently and identically distributed (IID) Gaussian random vector

T n with each component having variance σ2. Then under H0 the observed brightness

temperature under nominal conditions has the distribution:

TB ∼ N(TB,0, R) (3.1)

where N denotes a normal (Gaussian) distribution and R = C + σ2I.

Under the hypothesis H1, abnormal physiological parameter values deviate from

the norm and introducing anomalies Aa and ba into the values of the bioheat matrix

and vector, respectively. As a result, anomaly T a occurs in the body temperature

field and TB,a = W ∗T a in the brightness temperature vector. The PBE is then:

(A0 + Aa)(T 0 + T a) = b0 + ba (3.2)

which reduces to (A0 + Aa)T a = ba − AaT 0; and

TB ∼ N(TB,0 + TB,a, R) (3.3)
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Note that we assume that the covariance matrix is the same for nominal and

abnormal temperature distributions. The main difference between the distributions

is that the mean of the abnormal distribution is shifted away from that of the nominal

distribution.

3.1.2 Generating the Hypothesis Tests

If f0 and f1 denote the probability density functions under H0 and H1 respectively,

then with these models the likelihood ratio for testing for an anomalous temperature

is:

f1(TB|TB,0, TB,a)
f0(TB|TB,0)

= e−
1
2
{<TB−TB,0−TB,a,R−1(TB−TB,0−TB,a)>−<TB−TB,0,R−1(TB−TB,0)>}

= e
1
2
{2<TB ,R−1TB,a>−<TB,a,R−1(2TB,0+TB,a)>} (3.4)

First, suppose that we do not have anatomical information, so we do not know TB,0

or the exact value of R. With no specific knowledge of the brightness temperature

due to normal physiological variations, it is reasonable to model R as some constant

σ2 times the identity matrix I. In that case, the likelihood ratio (3.4) reduces to:

e
1

2σ2
{2<TB ,TB,a>−<TB,a,(2TB,0+TB,a)>} (3.5)

Note that for any fixed value of TB,0 and TB,a the likelihood ratio monotonically

increases with < TB, TB,a >. Assuming that we are trying to detect a medical

condition which would produce an increase in temperature, where TB,a(k) > 0 for

k = 1, ..., K with K radiometric measurements, then any increase in ||TB|| will lead

to a larger value for the likelihood ratio. So, in absence of any specific knowledge

of the values of TB,0 and TB,a, it is reasonable to used an energy-based test for an
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anomalous temperature increase by using a test statistic that increases with the size

of ||TB|| - for example:

h = ||TB||2. (3.6)

Now suppose that we have access to anatomical information that can be used to

find A0, b0, and W . Then the normal brightness temperature TB,0 can be calculated

using (1.3). By defining the centered observation as U = TB−TB,0, the log likelihood

ratio (that is the log of 3.4) can be written as:

< U,R−1TB,a > −1

2
< TB,a, R

−1TB,a > (3.7)

Since the exact form of TB,a is unknown, the likelihood ratio cannot be computed

directly. Instead we use a Generalized Likelihood Ratio test. That is, we form a test

statistic by substituting the maximum likelihood estimate of TB,a under H1 in the

log-likelihood ratio. If we assume the abnormal temperatures are positive, but impose

no other restrictions, then because of the nature of the weighting functions, it follows

that the anomalous brightness vector can only hold positive values. Therefore, the

ML estimate of the anomalous brightness temperature, T̂B,a, is the solution to the

constrained optimization problem:

Minimize < U−TB,a, R−1(U−TB,a) > such that TB,a(k) ≥ 0 for k = 1, ..., K (3.8)

From the Kuhn-Tucker conditions on the solutions to optimization problems with

inequality constraints [33], the solution to this problem has the form:

T̂B,a = U +Rd (3.9)

where d is a vector such that d(k) ≥ 0 for each k; d(k) = 0 when T̂B,a(k) > 0; and

T̂B,a(k) ≥ 0 for each k. When this is solved for T̂B,a and d, and T̂B,a is substituted
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for TB,a in (3.7), we get the GLR test statistic < U,R−1U > − < d,Rd >. If we

assume that R = σ2I, then we have the maximum likelihood estimate:

T̂B,a(k) =


Uk, Uk ≥ 0

0, otherwise

and the GLR test statistic reduces to:

γ = ||U ||2 − ||d||2 (3.10)

=
K∑
k=1

V 2
k (3.11)

where

Vk =


Uk, Uk ≥ 0

0, else

Note that this discounts cases when the observed brightness temperature is smaller

than the nominal expected value since we are assuming an anomaly that causes an

increase in temperature. A threshold on γ will be used to classify a power measure-

ment reading as nominal, H0, or abnormal, H1. As will be shown in the test results

in Chapter 4, comparison of this statistic (3.11) with statistic h defined previously in

(3.6) shows having anatomical information improves the detection of anomalies.

3.2 Incorporating Signatures in the Detection Algorithm

This section presents a GLR test that can further exploit the availability of

anatomical information to improve detection. Since we have the ability to generate

brightness temperature profiles for given tissue configurations and values for physio-

logical parameters, we can also generate abnormal brightness temperature measure-

ments due to anomalies at different locations in the model. If we run the anomalous
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temperature fields through the weighting functions matrix, we will generate the ex-

pected brightness temperature signatures of anomalies in different tissue locations.

By providing more information about the expected observation due to a temperature

anomaly, we would expect that the signatures could be used to improve anomaly

detection. These measurements will also provide insight about the anomaly location

by determining at what location an anomaly generates brightness temperatures very

close to the observed anomalous brightness temperature. In the following we first de-

scribe how the properties of the terms in the bio-heat equation enable us to compute

sets of anomaly signatures with reasonable effort. Then we develop detection and

location estimation algorithms that make use of the signature dictionary.

3.2.1 Generating a Signature Dictionary

Suppose that we are looking for a tissue anomaly of a specified type, character-

ized by some anomalous physiological parameters (metabolic and perfusion rates).

Suppose also that we can specify a shape for the anomalous region (e.g. a sphere of

a certain size). We want to characterize expected anomalous brightness temperature

vectors (that is, the observed signatures) that result from the anomalous region being

placed in different tissue locations. If we follow the same steps used to generate the

temperature profiles in section 3.2, sparse matrix solvers would be used to calculate

the temperature profile as an anomaly is moved throughout the model. This task

becomes a long computational problem that is also dependent on the number of pro-

files generated. However, we propose to exploit similarities of temperature anomalies

within the same tissue region to regenerate anomalous temperature profiles without

multiple uses of the sparse matrix solver.

Note first that, from equation 2.4, the matrix A in the discretized form of the

Pennes bio-heat equation is very sparse, with the row corresponding to tissue voxel

u having non-zeros entries only at the diagonal (u, u) and the six components cor-
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responding to the nearest-neighboring voxels of u. So, a physiological anomaly at

a voxel affects at most seven rows of A, out of many thousands of rows in the full

matrix, and for a voxel in the interior of a tissue region the configuration of the

changed entries in constant except for a position shift as the voxel is moved. That

is, the system of equation 3.12 that defines the anomalous temperature field is nearly

shift-invariant with respect to shifts that keep a small physiological anomaly in the

interior of a given tissue region. Since the nominal temperature profile is known,

(A0T 0 = b0), we can subtract these terms from both sides of the equation.

A0T 0 + A0T a + AaT 0 + AaT a = b0 + ba

A0T a + AaT 0 + AaT a = ba

(A0 + Aa)T a = ba − AaT 0

T a = (A0 + Aa)
−1(ba − AaT 0) (3.12)

Because of the shift-invariance property of the anomalous temperature, instead

of adjusting physiological properties and using the sparse matrix solver, numerous

signatures can be created by shifting the temperature contribution of the anomaly

throughout the temperature profile. That is if the anomalous temperature field due

to a small region with abnormal physiology centered at voxel v0 is Ta,v0 = {Ta,v0(v),∈

V }, then the field due to the same abnormality shifted to be centered at voxel v1 is

Ta,v1 ≈ {Ta,v0(v − [v1 − v0]), v ∈ V }.

This practical method reduces the computational time it takes to generate over

hundreds of signatures from hours to minutes. The brightness temperature vector for

each anomalous temperature profile can then be calculated by applying the weighting

function matrix W ∗ by calculating T b,a = W ∗T a. Each set of brightness temperatures

are normalized so that the norm of each signature set equals one. The result is a
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dictionary of anomalous brightness temperature vectors, say {sa,m = W ∗T a,vm} for

anomalies centered at some selected set of voxels {vm,m = 1, . . . ,M}.

As an example, we observed two 1000 voxel anomalies placed within the cube

model. One anomaly occurs in the center of the cube and another is off-centered.

The temperature fields were calculated using the sparse matrix solver. Once the

nominal temperature profile is subtracted, the increase in temperature and fall off

appear to be identical (Figure 3.1). Next, the anomalous temperature fields were

calculated by subtracting the nominal temperature field. As shown in Figure 3.2,

except for a position shift the two anomalous patterns are nearly identical.

It should be noted that anomalies that occur near the skull are expected to produce

different anomalous temperature increases compared to anomalies that do not occur

near tissue discontinuities. For example, in the cubic head model, there is a bigger

difference when the anomaly occurs closer to the skull (Figure 3.3).

We now consider how the brightness temperature vector for a given anomaly may

be represented by the signatures in the dictionary. Now we can note some properties

of the anomalous matrix Aa. The physiological changes that characterize anomalies

of interest to use are variations from the nominal metabolic and blood perfusion

rates. Metabolic rate does not contribute to A, so it does not factor in Aa. A

change in blood perfusion rate at a given voxel affects only the diagonal entry of

A corresponding to that voxel, and the change is relatively small. (For example,

using the values from Table 2.1, a drop in blood perfusion rate to zero at a given

voxel changes the value of the diagonal element of A corresponding to that voxel by

less than 4%, and leaves all other elements unchanged). This small difference allows

(A0 + Aa)
−1 to be approximated:

(A0 + Aa)
−1 ≈ A−1

0 − A−1
0 AaA

−1
0 (3.13)
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Figure 3.1. 1-D View of abnormal temperature profiles where the anomaly occurs
at two different locations.

The term (ba −AaT 0) in 3.12 can be expanded as
∑

v∈Va α(v)δv where Va is a set

of anomalous voxels, δv is the unit vector of the voxel v and {α(v)} is some set of

coefficients. (This follows from the fact that the Aa has non-zero columns of the form

{C(v)δv, v ∈ Va}). The anomalous temperature field then satisfies:

T a ≈ (A−1
0 − A−1

0 AaA
−1
0 )

∑
v∈Va

α(v)δv

=
∑
v∈Va

α(v)(hv − A−1
0 Aahv) (3.14)

Where hv represents the bio-heat impulse response due to the unit vector δv,

hv = A−1
0 δv. Note that Aahv =

∑
u∈V C(v)hv(u)δu where hv(u) is the uth component

of hv. Then:

∑
v∈Va

α(v)A−1
0 Aahv =

∑
v∈Va

∑
u∈Va

α(v)C(v)hv(u)hu

=
∑
v∈Va

∑
u∈Va

α(u)C(u)hu(v)hv (3.15)
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Figure 3.2. Comparison of temperature anomalies generated using the matrix solver
and shifting the anomaly.

So that:

T a ≈
∑
v∈Va

α(v) −
∑
u∈Va

α(u)C(u)hv(u)

hu (3.16)

From the equation above, anomalous temperature fields can be approximated as

linear combinations of impulse responses to the nominal PBE with inputs in the

anomalous region. Suppose that the entire volume Va can be broken up into disjoint

blocks such that Va =
∑

m Va,m. Then equation 3.16 becomes:

T a ≈
∑
m

 ∑
v∈Va,m

α(v −
∑
u∈Va

α(u)C(u)hu(v)

hv
 (3.17)

While the anomalous field due to an anomaly confined to Va,m is:

T a,m =
∑
v∈Va,m

α(v) −
∑

u∈Va,m

α(u)C(u)hu(v)

hv (3.18)

Comparing to equation 3.35, we see that T a ≈
∑

m T a,m. If we include coefficients

{ψ(m)} to allow for a better match, then the anomalous temperature field can be
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Figure 3.3. Comparison of temperature anomalies generated using the matrix solver
and shifting the anomaly closer to the skull

approximated as:

T a ≈
∑
m

ψ(m)T a,m (3.19)

where ψ(m) is a set of non-negative weights that optimize the approximation. The

brightness temperature anomaly signature then satisfies:

sa ≈
∑
m

ψ(m)W ∗T a,m =
∑
m

ψ(m)sa,m (3.20)

where sa,m are the generated brightness temperature anomaly signatures.

3.2.2 GLR Test Using Signatures

We now formulate an anomaly detector using the generated signature dictionary.

Define the true anomaly brightness temperature signature to be sa = W ∗T a:

H0 : TB = W ∗T 0 + T n

H1 : TB = W ∗T 0 + T n + sa (3.21)
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As previously, the nominal brightness temperature W ∗T 0 is subtracted from TB to

give the vector U that satisfies hypothesis:

H0 : U = T n ∼ N(0, σ2I)

H1 : U = T n ∼ N(sa, σ
2I) (3.22)

Applying the generalized likelihood approach, the test statistic of the log-likelihood

ratio is:

t = < U, ŝa > −1

2
< ŝa, ŝa >

= < U, ŝa > −1

2
||ŝa||2 (3.23)

where ŝa is the maximum likelihood estimate of sa. We have investigated two

methods for determining ŝa. First, a linear combination of signatures from the dictio-

nary is used (following equation 3.20) and second the signature in the dictionary with

the highest correlation to the observed values is selected as the anomaly signature

estimate.

To estimate the anomalous the anomalous signature using a linear combination,

let S contain columns of signatures {sa,m}. The ML estimate of the coefficients in

equation 3.20 is the solution to the problem:

Find ψ that minimizes ||U − Sψ||2such that ψ(m) ≥ 0 for m = 1, . . . ,M (3.24)

where ψ is a set of non-negative coefficients.

By using Kuhn Tucker conditions once again, the coefficient vector ψ must satisfy:

S∗Sψ̂ = S∗U + d, where d(m) ≥ 0 for m = 1, . . . ,M and d(m) = 0 when ψ̂(m) > 0

(3.25)
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The next step is to solve for ψ̂ by using the restricted inverse of S∗S.

ψ̂ = (S∗S)−1
r S∗U + (S∗S)−1

r d (3.26)

The right hand side of the equation can be broken into two terms, (S∗S)−1
r S∗U

and (S∗S)−1
r d. Then combined to solve for the coefficients. We will first solve for

(S∗S)−1
r S∗U . Finding the restricted inverse may prove difficult so instead the term is

rewritten in terms of eigenvalues {λj} and eigenvectors {φ
j
} of the full-rank (KxK)

matrix SS∗:

(S∗S)S∗φ
j

= λjS
∗φ

j
(3.27)

(Note that λj > 0 for all j = 1, . . . , K). Equation 3.27 can be rewritten as:

(S∗S)ρj = λjρj (3.28)

where

ρ
j

=
1√
λj
S∗φ

j
(3.29)

Then since S∗U =
∑L

j=1 < S∗U, ρ
j
> ρ

j
we have:

(S∗S)−1
r S∗U =

L∑
j=1

1√
λj

< S∗U, ρj > ρj

=
L∑
j=1

< S∗U,
1√
λj
S∗φ

j
>

1√
λj
S∗φ

j

=
L∑
j=1

1

λj
< S∗U, S∗φ

j
> S∗φ

j

=
L∑
j=1

1

λj
< U, SS∗φ

j
> S∗φ

j
(3.30)
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Define Φ as a KxK matrix whose columns are {φ
k
} and Λ the diagonal matrix of

eigenvalues {λk}, then equation 3.30 above can be rewritten as:

(S∗S)−1
r S∗U = S∗ΦΛ−1Φ∗U (3.31)

The term (S∗S)−1
r d can then be found similarly:

(S∗S)−1
r d =

L∑
j=1

1

λj
< d, ρj > ρj

= PΛ−1P ∗d (3.32)

where P is the MxK matrix whose columns are ρ
k
. Therefore:

ψ̂ = S∗ΦΛ−1Φ∗U + PΛ−1P ∗d (3.33)

where dk ≥ 0, k = 1, . . . , K and dk = 0 if ψk > 0.

To find ψ̂ from equation 3.33 we let M0 = {m : {S∗ΦΛ−1Φ∗U}m < 0} and let Bm

denote the mth column of PΛ−1P ∗. Then we set:

(i) d(m) = 0 if m /∈M0

(ii) −{S∗ΦΛ−1Φ∗U}m =
∑
l∈M0

Bl(m)d(l),m ∈M0 (3.34)

We solve the set of equations (3.34 (ii)) for {d(m),m ∈M0} and set ψ̂ = S∗ΦΛ−1Φ∗U+

PΛ−1P ∗d. Then ŝa = Sψ̂ is used to form the GLR test statistic (3.23).

The approach outlined above estimates the anomaly signature under H1 by a lin-

ear combination of all signatures in the dictionary. One potential problem with this

approach is that since there are many more dictionary entries than observation com-

ponents, there are too many degrees of freedom - we can find a linear combination of
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signatures that matches almost any positive deviation from the nominal temperature,

so the test statistic (3.34) is not much different from that of equation 3.12.

As an alternative, we can estimate sa by the one signature in the dictionary that

best matches U . That is, define:

ŝa = argmin
m,ψ>0

||U − ψsa,m||2 (3.35)

Since the sa,m are normalized, this leads to:

ŝa = max{max
x

< U, sa,m >, 0} (3.36)

We can then use this in equation (3.23) to generate one more detection test statistic.

3.2.3 Anomaly Location Estimation Using Signatures

The set of signatures can also be used to estimate the location of an anomaly. As

stated previously, the number of radiometric measurements is significantly smaller

than the number of unknowns and makes the reconstruction of a temperature profile

impossible. Selecting the signature with the highest correlation is equivalent to se-

lecting the anomalous temperature profile that produced the brightness temperature

with the highest correlation. Instead of reconstructing the entire profile, the goal

becomes the selection of a profile that mostly likely resembles the observation. The

center of the most highly correlated signature entry then becomes an estimate of the

true anomaly location. For cases where there is more than one anomaly present, the

correlation from each observation point could be calculated separately.

3.3 Conclusion

This chapter described two detection algorithms that used anatomical information.

The first method only used the nominal brightness temperature. The second and
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method used sets of signatures to estimate the anomalous observation. The estimate

of the signature can be found by finding the linear combination of signatures or

choosing the signature with the largest correlation with the observation. An energy

based detection algorithm is also derived when anatomical information is not available

in order to compare the derived detection methods introduced. The simulation results

for each of the detection methods and estimation results are presented in Chapter 4.
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CHAPTER 4

DETECTION AND ESTIMATION RESULTS

4.1 Cube Model Simulation Results

In simulations, the detection algorithms derived in Chapter 3 were executed to

compare their performance rates. We expected that algorithms that include anatom-

ical knowledge will produce better detection results than the energy-based algorithm.

Simulations were run on the same cubic tissue model used to construct the temper-

ature profiles and weighting functions in Chapter 2. To represent an anomaly, an

ischemic condition was represented by setting the blood perfusion rate to zero in a

1000 voxel region. Temperature brightness measurements were calculated by taking

the inner product of the weighting functions and the temperature profiles.

To generate Receiver Operative Characteristics (ROCs), noise and variation needed

to be introduced into simulations. To achieve this, 500 nominal and abnormal bright-

ness temperatures were generated by adding varying Gaussian noise to the normal

and abnormal brightness temperatures. The same noise generator was used for each

detection method to ensure fair comparison across the detection methods. Test statis-

tics were calculated using the generated brightness temperatures for all hypothesis

frameworks/detection algorithms. ROCs were generated by varying the threshold

under each detection method, γ, and counting the test statistic values under the null

hypothesis, H0, that fell above the threshold (giving the false alarm rate). The test

statistic values under the abnormal hypothesis, H1, that fell above the threshold were

also counted (giving the detection rate).
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A set of 125 signatures were pre-calculated for use in the detection algorithms

and location estimation. A 10x10x10 anomaly was observed in the center of the cube

and although the anomaly occurs in an 1000 voxel region, the neighboring voxels

also show an increase in temperature. The anomalous contribution was isolated to a

16x16x16 voxel region. Each signature was generated by shifting the 16x16x16 voxel

region throughout the 3D temperature profile. The anomaly contribution was only

allowed to occur within brain matter. The brightness temperature for each profile

was calculated and the difference from the nominal brightness temperature was found.

Each set of differences was then normalized.

While generating signatures, the location of each anomaly is recorded. The sig-

nature with the highest correlation is selected as the estimated anomaly location.

The euclidean error is calculated between the actual and the estimated locations.

We also estimated the anomalous location with no radiometric noise. The estimated

location with no radiometric noise provides the best possible estimation and helped

to determine if estimation results with noise were acceptable.

Four radiometric views were chosen with three frequencies (2.45 GHz, 3.5 GHz,

and 4.5 GHz) observed at each position, resulting in 12 radiometric measurements.

Each radiometric view was centered in the face plane of the cube. Assuming that

the anomaly can occur anywhere in the model lowers detection rates. However, this

assumption is feasible if the location of an anomaly is unknown [23]. ROC results for

a 10x10x10 anomaly placed 16mm from the skin’s surface under .05◦C noise variation

(Figure 4.1). The location was slightly off center by 6 voxels (12 mm). Estimating the

signature using the highest correlated signature produces detection rates of 85 percent

for 10 percent false alarm. Using correlation outperforms the energy based method by

45 percent. All detection methods that incorporate anatomical information produce

better results than the energy based method.
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Figure 4.1. ROC of 16mm deep 10x10x10 anomaly in Cube model with .05◦C
standard deviation.

For over 90 percent of simulations, the location distance error was 4 voxels (Figure

4.2). The closest location in the signature set is 4 voxels which proves that our method

to estimate an anomaly location produces decent results. The detection rates and

estimation results were also found for .1◦C noise error (Figures 4.3 and 4.4).

4.2 Zubal Model Simulation Results

The cube model’s dimensions are comparable to an infant child and were originally

used to determine the detection on a small model. The detection algorithms were also

performed on an adult head; the Zubal head model. A set of 1335 signatures were

created by shifting a 10x10x10 anomaly throughout the brain matter in the Zubal

model. In the cube model, the anomalous temperature was shifted strictly within

the brain matter. In the Zubal model, however, there are pockets of CSF throughout

the brain matter so the anomaly needs to be shifted throughout the brain and csf

tissue types. For each anomalous case, the location was estimated and the euclidean

distance error was calculated. The best estimate was also found by not adding noise to
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Figure 4.2. Euclidean error estimation results of 16mm deep 10x10x10 anomaly in
Cube model with .05◦C standard deviation.

the observed brightness temperatures. This helped to determine the best achievable

estimate based on the set of signatures.

ROCs were generated for all proposed detection methods assuming varying degrees

of noise error. Anomalies were placed at various depths to determine the limits

of detection based on anomaly depth. Once again, the detection algorithms that

include signatures in the detection process produce the best detection results. Using

anatomical information in both detection algorithms produces better results than the

energy based method.

The estimation location results appear to follow a pattern in terms of the euclidean

distance error. This was also true in the Cube estimation results. This is because a

noise seed generator is being used in Matlab. As a result, the noise results for 500

scenarios are all the same. This was done to guarantee that the detection algorithms

were being compared under the same conditions. The seed can be removed or adjusted

to observe other random noise scenarios.
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Figure 4.3. ROC of 16 mm deep 10x10x10 anomaly in Cube model with .1◦C
standard deviation.

4.3 Discussion of Results

4.3.1 Effects of Radiometric Noise

The radiometric noise has a significant impact in the detection algorithms and the

ability to detect anomalies with a low false alarm rate. Detection results are promising

when the standard deviation is .05◦C in the Cube model which has a detection rate of

80 percent for a false alarm rate of 10 percent (Figure 4.5). Increasing the standard

deviation to .1◦C reduces detection rates to 40 percent for a false alarm rate of 10

percent (Figure 4.7). Based on these results, minimizing the radiometric noise will be

an important design requirement in order to use radiometry in medical applications.

The radiometric noise also impacts the location estimation results in a similar

manner. When the standard deviation is .1◦C the percentage of results with the

minimal euclidean distance error is about 74 percent (Figure 4.8). However, when

the standard deviation is .05◦C, the minimal euclidean distance is found for 96 percent

of the cases (Figure 4.6). The minimal euclidean error is 4 voxels in both scenarios.

Based on the signature dictionary, there were no other entries in the dictionary that

were closer to the actual location of the anomaly than the estimated location.
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Figure 4.4. Euclidean error estimation results of 16mm deep 10x10x10 anomaly in
Cube model with .1◦C standard deviation.

Detection results for the cube model are better than those for the Zubal model.

This is most likely due to the method in which weighting functions were acquired. In

the cube model, the waveguide was flush against the side of the cube and therefore

power was deposited in a focused region. For the Zubal model, the waveguide was

against the back of the head model which curved and there were open areas due to the

waveguide dimensions that allowed power to escape. For future work, the waveguide

needs to be made smaller to focus the power reception and also improve feasibility in

the medical environment. This can be done by inserting a ceramic into the waveguide.

For example, the S-band waveguide would reduce in size from 7.620 by 3.819 cm to

1.14 by .212 cm [24].

4.3.2 The Impact of the Radiometer Location

In the cube results above, the anomaly was shifted slightly off center (12 mm)

from the radiometer view. If the anomaly occurs in direct view of the radiometer the

detection results improve by 15 percent to 95 percent detection rate for 10 percent

43



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

ROC for Ischemic (10x10x10 voxels) anomaly, 18mm from the skin surface

 

 

GLR using correlation
GLR with signatures
GLR without signatures
Energy−based test

Figure 4.5. ROC of 18mm deep 10x10x10 anomaly in Cube model with .05◦C
standard deviation.

false alarm rate (Figure 4.15). Based on these results, some type of radiometer array

can be used to increase detection of anomalies.

4.3.3 Effects of Anomaly Depth

The depth of the anomaly will also impact detection and estimation results.

Anomalies that occur at a higher depth have less weight in the weighting function and

have less impact on the radiometric readings. For this analysis, all anomalies were

centered in radiometer’s viewing position. At 20mm deep, the detection rate is 77

percent for 10 percent false alarm rate (Figure 4.16). At 22mm deep, the detection

rate reduces by 22 percent to 55 percent for a 10 percent false alarm rate (Figure

4.17).

4.3.4 Effects of Anomaly Size

Larger sized anomalies cause larger increases in temperature. Detection of larger

anomalies is easier compared to smaller sized anomalies. Figure 4.18 shows the ROC

for an anomaly that is 6x6x6 voxels. Figure 4.19 shows the ROC for an anomaly that
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Figure 4.6. Euclidean error estimation results of 18mm deep 10x10x10 anomaly in
Cube model with .05◦C standard deviation.

is 8x8x8 voxels. Figure 4.20 shows the ROC for an anomaly that is 10x10x10 voxels.

In all cases, the edge of the anomaly occurs at the same depth (16mm from the skin’s

surface). However, the 10x10x10 anomaly has better detection results compared to

the 8x8x8 anomaly for a 10 percent false alarm rate.

4.3.5 Effects of Signature Size

The size of the dictionary also impacts the detection rates for the correlation

method. Generating signatures with smaller sized anomalies will not be helpful be-

cause smaller anomalies are harder to detect as shown in Figures 4.18 to 4.20. Larger

sized dictionaries can be created by shifting the anomaly in the 3D model by different

increments. Two additional sets of signatures were produced by shifting the anomaly

every 5 and 8 voxels. Shifting by 5 voxels produces 1331 signatures and shifting by

8 voxels produces 343 signatures. For analysis, an 8x8x8 anomaly was placed 16mm

deep in the cube model. By using a larger set of signatures the detection rate im-

proves by 6 percent (Figure 4.21). The set of 343 signatures slightly out performs

the set with 1331 signatures, however, there is little difference between them. This
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Figure 4.7. ROC of 18mm deep 10x10x10 anomaly in Cube model with .1◦C stan-
dard deviation.

proves that increasing the signature size can be helpful but if the set is much larger,

it does little to improve detection results.

4.4 Conclusion

This chapter presented the detection and estimation results based on the algo-

rithms described in chapter 3. In each scenario, incorporating the anatomical infor-

mation in the detection process produces better detection results. We also demon-

strated how a set of signatures can be used to improve detection performance and

estimate the location of an anomaly. Radiometric noise was found to play a signifi-

cant part in detection rates and reducing noise will be a key design feature. The size

of the anomaly, anomaly location, and signature sizes were varied to determine how

detection rates are impacted.
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Figure 4.8. Euclidean error estimation results of 18mm deep 10x10x10 anomaly in
Cube model with .1◦C standard deviation.
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Figure 4.9. ROC of 19.8mm deep 10x10x10 anomaly in Zubal model with .03◦C
standard deviation.
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Figure 4.10. Euclidean error estimation results of 19.8mm deep 10x10x10 anomaly
in Zubal model with .03◦C standard deviation.
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Figure 4.11. ROC of 19.8mm deep 10x10x10 anomaly in Zubal model with .05◦C
standard deviation.
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Figure 4.12. Euclidean error estimation results of 19.8mm deep 10x10x10 anomaly
in Zubal model with .05◦C standard deviation.
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Figure 4.13. ROC of 19.8mm deep 12x12x12 anomaly in Zubal model with .05◦C
standard deviation.
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Figure 4.14. Euclidean error estimation results of 19.8mm deep 12x12x12 anomaly
in Zubal model with .05◦C standard deviation.
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Figure 4.15. ROC of a centered 18mm deep 10x10x10 anomaly in Cube model with
.05◦C standard deviation.
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Figure 4.16. ROC of a centered 20mm deep 10x10x10 anomaly in Cube model with
.05◦C standard deviation.
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Figure 4.17. ROC of a centered 22mm deep 10x10x10 anomaly in Cube model with
.05◦C standard deviation.
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Figure 4.18. ROC of a centered 16mm deep 6x6x6 anomaly in Cube model with
.05◦C standard deviation.
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Figure 4.19. ROC of a centered 16mm deep 8x8x8 anomaly in Cube model with
.05◦C standard deviation.
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Figure 4.20. ROC of a centered 16mm deep 10x10x10 anomaly in Cube model with
.05◦C standard deviation.
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Figure 4.21. ROCs of a centered 16mm deep 8x8x8 anomaly in Cube model with
.05◦C standard deviation using different sized signature sets.
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CHAPTER 5

EFFECTS OF PARAMETER VARIATIONS

The nominal brightness temperature is calculated by using the set of physiological

parameters in Table 2.2. However, different papers have different parameter values

and variation is expected among the general population. Parameters may also vary

within a person depending on the time of day, whether a person recently ate, stress,

and other factors that cannot be precisely accounted for. The anomaly detection

algorithms described in Chapter 3 rely on the fact that nominal variations in phys-

iological properties cause temperature variations smaller than actual anomalies. If

these variations are large, then the constructed detection algorithm would not work

because it would not detect the difference between an anomaly and nominal temper-

ature readings.

Parameter variation can be categorized into two categories, systematic and noise

errors. Systematic errors are viewed as a consistent variation that takes place in

individuals that are different from the nominal values. Noise variations are interpreted

as random parameter variations across the observed region. This chapter covers the

impact of variations on the different physiological parameters and presents possible

methods of reducing uncertainty.

5.1 Systematic Error Analysis

Using the cube model, parameters were given a constant variation of error and the

resulting brightness temperatures were calculated. Results show that the difference

between the original brightness temperature and the temperature under systematic
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Table 5.1. Variation caused by systematic parameters on the nominal brightness
temperature measurements at different frequencies.

Systematic Error 2.45 GHz 3.5 GHz 4.5 GHz
-20% 0.0280 0.0083 0.0228
-10% -.0106 .0022 -.0087
+10% .0065 .0001 .0054
+20% -0.0106 0.0012 -0.0088

variations are small (Table 5.1). Literature has also found that although variation is

expected, the PBE still provides a good model that can match expectations [9].

5.1.1 Dielectric Properties

The average dielectric systematic variation that is expected to occur does not have

a significant impact on the weighting function measurements. This was shown in [18],

[1], and [17].

5.1.2 Thermal Conductivities

Thermal conductivity does vary among the different tissue types, however, within

the same tissue, thermal conductivity does not change by a significant amount. This

also applies to the thermal conductivity values in the brain. Although there are differ-

ent tissues types in the brain (such as grey and white matter), the thermal properties

of the brain are consistent [21]. The difference between an abnormal brightness tem-

perature and measurements with errors in thermal conductivity were also calculated

(Table 5.2). Anomalous regions may have other physiological deviations than just

the blood perfusion rate.

5.1.3 Tissue Layer Thicknesses

Accurate tissue layer thickness information is important for calculating correct

weighting functions [18]. If tissue layer thicknesses are unknown, Ultrasound mea-

surements can be used to make measurements and reduce errors[4], [22]. Tissue
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Table 5.2. Variation between the abnormal brightness temperature measurements
and brightness temperatures with systematic errors in thermal conductivity within
the anomalous region.

Error 2.45 GHz 3.5 GHz 4.5 GHz
-20% 0.0096 -0.0151 -0.02
-10% -0.0046 -0.0074 -0.0097
+10% 0.0047 0.0074 0.0095
+20% 0.0093 0.0149 0.0187

accuracy is important because errors will impact the weighting functions and ra-

diometric measurements. If tissue thickness is incorrect, it is possible to give more

weight to areas in the model that do not actually contribute a significant amount to

the weighting function.

5.1.4 Metabolic Rate

The metabolic rate throughout the body is known to vary. Even the metabolic

rate in the brain can change based on the activity in the brain. However, Collins

showed the greatest cause to temperature deviation occurs when the blood perfusion

rate varies from the norm [3]. This is also observed by calculating the difference

in brightness temperatures when metabolic rates deviate from the norm within the

anomalous region (Table 5.3). These deviations show that the greatest effect on

the temperature are variations in the blood perfusion rate. However, since the best

detection rates are seen when the radiometric noise is .05◦C (for the cube model),

metabolic variation may impact the detection rate if the noise cannot be reduced.

5.1.5 Blood Perfusion Rate

Previous studies have also shown that changes in the blood perfusion rate cause

significant temperature profile errors [32]. For this reason, changes in the nominal

values were used to represent anomalies. The effects of theses changes can be seen in

the detection algorithms and location estimation [23], [24]. Also, the uncertainty of

the blood perfusion rate can be reduced by using doppler ultrasound [30].
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Table 5.3. Variation between the abnormal brightness temperature measurements
and brightness temperatures with systematic errors in metabolic rate within the
anomalous region.

Error 2.45 GHz 3.5 GHz 4.5 GHz
-30% -0.0187 -0.0353 -0.0345
-20% -0.0124 -0.0235 -0.023
-10% -0.0062 -0.0118 -0.0115
+10% 0.0063 0.0017 0.0115
+20% 0.0125 0.0235 0.023
+30% 0.0186 0.0352 0.0345

5.2 Noise Error Analysis

To observe nominal variations, temperature profiles of the cube were generated

by varying the parameter values used to solve the PBE (i.e. thermal conductivity,

blood perfusion rate, etc.) at each voxel. The only parameter that varied consistently

was the metabolic rate which was uniformly distributed from 9000 to 11000 W/m3

in the brain tissue. Other parameters were selected to vary from 10% to 50% error

and tissues that had parameter values set to zero did not change. The parameters

were not smoothed between voxels but selected randomly on a uniform distribution

range based on the error percentage selected. The nominal temperature profile was

then subtracted from the generated temperature profiles containing variations in the

parameters.

The ischemic temperature profile difference was calculated (Figure 3.2) and showed

a maximum temperature difference up to .7◦C whereas the difference with 10% varia-

tion in parameters is less than 0.1◦C (Figure 5.1). Therefore, random variations in the

nominal parameters are not expected to produce deviations from the nominal tem-

perature that resemble anomalous temperature readings in the detection algorithm.

The difference between the nominal brightness temperature and the brightness tem-

perature as a result of 10% variation vary from .0002 to .0012◦C. With 20% variation,

the changes increase to .0047◦C.
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Figure 5.1. The temperature difference between profile with nominal parameters
and profile with 10% random variations in nominal parameters.

5.3 Conclusion

This chapter analyzed the effects of systematic and random errors on the calcu-

lation of temperature profiles and the brightness temperature measurements. It may

be possible to reduce error in model parameters such as tissue layer thicknesses and

blood perfusion rates through the use of additional measurements such as pulse and

doppler ultrasound [6]. Random errors produce minimal changes from the nominal

results. Even errors in the anomalous region tend not to have a major impact on de-

viations from the nominal brightness temperature. The parameter with the greatest

impact on the anomalous brightness temperature is the blood perfusion rate.

58



CHAPTER 6

CONCLUSION AND FUTURE WORK

The use of radiometry to detect anomalies in the human head have been inves-

tigated using simulations. Detection models were created using a hypothesis testing

framework given that different amounts of a priori information is available. Detection

rates improve when incorporating knowledge of the anatomical structure instead of

using an energy-based approach. Using the anatomical model to pre-calculate signa-

tures can further improve detection. Pre-calculated signatures can also be used to

locate the anomalous region in the model. By locating the anomaly, there is no longer

a need to estimate the entire temperature profile of the model.

We have shown that the detection rate of the radiometer is limited by the loca-

tion of the anomaly and the noise variation of the radiometer will play a significant

role in limiting detection results. Radiometry was previously investigated in medical

applications for observing temperature deviations over time. By utilizing anatomical

information, changes in temperature results can be detected in an instance. There is

limited literature about the limitations of radiometry and this thesis detailed those

results. The ability to reduce radiometric noise is a known goal in the microwave area.

But the affect of the radiometric noise is presented in detail to provide a standard for

allowable deviations that still allow for detection.

The ability to detect anomalies based on parameter variation was also investigated.

Physiological parameters were varied by various percentages of error across the model

and showed minimal changes in temperature that would affect the nominal brightness

temperature. Systematic errors were observed to evaluate the effects of a consistent
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variation which is expected among the general population. Again, the results showed

that there were minimal affects to the brightness temperature.

We have studied using radiometry on head models, but expect that radiometry

should perform equivalently or perhaps even better when observing other regions of

the body. One application that should be investigated is breast cancer. Cancerous

legions are known to have a higher temperature than normal tissue and this increase in

temperature should be easier to capture using radiometry due to the tissue properties

that allow for easier propagation.
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