
SCHEDULING HEURISTICS FOR MAXIMIZING

OUTPUT QUALITY OF IRIS TASK GRAPHS IN

MULTIPROCESSOR ENVIRONMENT WITH TIME AND

ENERGY BOUNDS

A Thesis Presented

by

RAJESWARAN C RAVINDRAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

May 2012

Electrical and Computer Engineering

SCHEDULING HEURISTICS FOR MAXIMIZING

OUTPUT QUALITY OF IRIS TASK GRAPHS IN

MULTIPROCESSOR ENVIRONMENT WITH TIME AND

ENERGY BOUNDS

A Thesis Presented

by

RAJESWARAN C RAVINDRAN

Approved as to style and content by:

C Mani Krishna, Co-chair

Israel Koren, Co-chair

Michael Zink, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

ABSTRACT

SCHEDULING HEURISTICS FOR MAXIMIZING

OUTPUT QUALITY OF IRIS TASK GRAPHS IN

MULTIPROCESSOR ENVIRONMENT WITH TIME AND

ENERGY BOUNDS

MAY 2012

RAJESWARAN C RAVINDRAN

B.E., MADRAS UNIVERSITY, CHENNAI, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor C Mani Krishna and Professor Israel Koren

Embedded real time applications are often subject to time and energy constraints.

Real time applications are usually characterized by logically separable set of tasks

with precedence constraints. The computational effort behind each of the task in the

system is responsible for a physical functionality of the embedded system. In this

work we mainly define theoretical models for relating the quality of the physical func-

tionality to the computational load of the tasks and develop optimization problems to

maximize the quality of the system subject to various constraints like time and energy.

Specifically, the novelties in this work are three fold. This work deals with maximizing

the final output quality of a set of precedence constrained tasks whose quality can be

expressed with appropriate cost functions. We have developed heuristic scheduling

algorithms for maximizing the quality of final output of embedded applications rather

iii

than intermediate quality which has not been dealt with before. This work also deals

with the fact that the quality of output of a task in the system has noticeable effect

on quality of output of the other dependent tasks in the system. Finally run time

characteristics of the tasks are also modeled by simulating a distribution of run times

for the tasks, which provides for averaged quality of output for the system rather

than un-sampled quality based on arbitrary run times.

Many real-time tasks fall into the IRIS (Increased Reward with Increased Service)

category. Such tasks can be prematurely terminated at the cost of poorer quality

output. In this work, we study the scheduling of IRIS tasks on multiprocessors. IRIS

tasks may be dependent, with one task feeding other tasks in a Task Precedence

Graph (TPG). Task output quality depends on the quality of the input data as well

as on the execution time that is allowed. We study the allocation/scheduling of IRIS

TPGs on multiprocessors to maximize output quality. The heuristics developed can

effectively reclaim resources when tasks finish earlier than their estimated worst-case

execution time. Dynamic voltage scaling is used to manage energy consumption and

keep it within specified bounds.

iv

TABLE OF CONTENTS

Page

ABSTRACT . iii

LIST OF TABLES . vii

LIST OF FIGURES .viii

CHAPTER

1. INTRODUCTION . 1

1.1 Examples of IRIS Tasks . 2
1.2 Examples of IRIS feeding IRIS . 3

2. PREVIOUS WORK . 5

2.1 Models and Heuristic Scheduling algorithms . 5
2.2 Implementation of IRIS type tasks . 9

3. MODEL AND PROBLEM STATEMENT . 11

3.1 Task Model . 11
3.2 Processor Model . 11
3.3 Optimization Objective and Constraints . 13

4. SCHEDULING ALGORITHMS . 16

4.1 Two Level Scheduling . 16
4.2 Offline Allocation and Scheduling Heuristic . 16

4.2.1 Simulated Annealing Module . 18
4.2.2 Greedy Allocator Module . 21
4.2.3 Time Bound Module . 22
4.2.4 Energy Bound Module . 24

4.3 Online Algorithm . 26

v

5. SIMULATOR DETAILS . 28

5.1 Task Precedence Graph Generator . 28

5.1.1 Inputs . 29
5.1.2 Outputs . 29
5.1.3 Generator . 30

5.1.3.1 Adjacency matrix . 30
5.1.3.2 Depth . 30
5.1.3.3 Initial Configuration . 30

5.2 Offline and Online Scheduler . 30
5.3 Result Analyzer . 31
5.4 Usage . 31

5.4.1 Compiling . 31
5.4.2 Main Parameters . 32

6. NUMERICAL RESULTS . 33

6.1 Experimental Setup . 33

6.1.1 Task Graph modeling . 33
6.1.2 Error Functions and Sensitivity values . 33
6.1.3 Run Time Requirements modeling . 34

6.2 Effect of OutDegree . 35
6.3 Effect of Minimum Run times . 36
6.4 Effect of Standard Deviation . 37
6.5 Effect of Online Reclamation . 38
6.6 Our Allocation Vs BFA Allocation . 39
6.7 Effect of Different Error Functions . 40
6.8 A Real World Application . 41

7. CONCLUSION . 43

BIBLIOGRAPHY . 44

vi

LIST OF TABLES

Table Page

3.1 Some Notations . 12

vii

LIST OF FIGURES

Figure Page

3.1 Task Graph Example . 14

4.1 Offline Heuristic. 17

6.1 Effect of Outdegree . 35

6.2 Effect of Minimum Run Time . 36

6.3 Effect of Standard Deviation of Run Times . 37

6.4 Effect of Online Reclamation . 38

6.5 Greedy Vs BFS Allocation . 39

6.6 Effect of Step Error Function . 40

6.7 Anytime Robot [21] . 41

6.8 Error Variation with Time and Energy Constraints 42

6.9 Error Functions from Performance Profiles . 42

viii

CHAPTER 1

INTRODUCTION

An embedded system is a collection of computational and physical components

that coordinate with each other to achieve a given objective by a specified deadline.

The deadline has a fundamental impact on the design and operation of the embedded

system. The common concerns in both hard and soft real time systems are quality

of result and resource allocation. In case of a hard real time system, the quality

of result is zero once the deadline expires whereas in the case of a soft real-time

system the quality of output degrades more gracefully after the deadline expires. An

effective embedded system requires a superior resource allocation strategy which tries

to maximize the quality of result. This work specifically deals with systems which are

characterized by imprecise computations or IRIS (Increased Reward with Increased

Service) tasks. IRIS tasks are characterized by mandatory and optional portions.

The system has option of terminating the optional portion early at the price of a

less accurate output. The resolution of this trade-off between quality of result and

allocated resources is the focus of this thesis.

A typical embedded system or a real time application in the real world is assumed

to consist of logically separable computational tasks with precedence constraints,

each of which has a specific functionality. The initial requirement of this work is

to construct a task model which accommodates physically meaningful cost functions

that reflect the quality of the result as a scalar value allowing optimization problems

to be modeled with desired constraints. The reward accrued increases with increase

in computation or service. Moreover this model also paves the way for an ideal blend

1

of soft and hard real time characteristics into a single unified frame-work in which

the quality of the result can be expressed and optimized.

1.1 Examples of IRIS Tasks

IRIS tasks can be found for a wide variety of applications. Some of them are

explained below.

Simulated Annealing is a heuristic search algorithm which can be used for gen-

erating optimal or near-optimal solutions for the well known symmetric traveling

salesman problem [14]. A key control parameter is depreciation factor, which has a

direct relationship with amount of time given to the algorithm versus the quality of

results. The depreciation factor is a real value in the range (0,1) which is multiplica-

tive factor for the cooling temperature during successive iterations of the algorithm.

The higher the depreciation factor the slower the decrease in temperature, the greater

the algorithm execution time. The depreciation factor for the temperature can be ad-

justed based on the time available for making decision offline. The lowerThis cooling

schedule forms the basis of the the annealing, which enables the algorithm to get out

of local minimas and progress towards global minimas. the depreciation the longer

the search. Thus, at the start of SA, most worsening moves may be accepted, but at

the end only improving ones are likely to be allowed. Accepted worsening moves can

help the procedure jump out of a local minimum. The algorithm may be terminated

after a specified number of jumps in temperature or at a given minimum temperature.

The cost is an indication of the quality of result and the algorithm looks to minimize

the cost. Better costs are achieved when the algorithm runs for a longer time, thereby

validating the IRIS nature of this algorithm.

The quadratic assignment problem [9] is also an iterative task. Quadratic as-

signment is a basic optimization problem that generalizes TSP, clustering etc., The

premise is set of n facilities and a set of n locations. For each pair of facilities a

2

weight or flow is specified (e.g., the amount of supplies transported between the two

facilities) and for each pair of locations, a distance is specified. The problem is to

assign all facilities to different locations with the goal of minimizing the sum of the

distances multiplied by the corresponding flows. The input to the quadratic assign-

ment problem consists of two n × n matrices W = w(i,j) (the weight or flow matrix

between facilities) and D = d(i,j) (the distance matrix between locations) . Given

matrices W,D and a permutation φ : n → n the objective function is to minimize

Q(φ) =
∑

i,j∈n

w(i,j) · dφ(i),φ(j) (1.1)

In these algorithms the cost improves with increase in number of iterations of the

algorithm but flattens out to a near-optimum value after a considerable number of

iterations.

Some other applications which could use such a model include audio and video

processing, multimedia data streaming, real-time image tracking, scalable multime-

dia processing and transmission, network traffic management, decision making under

uncertainty, anytime learning in evolutionary robotics, motion planning and robot

control and multi-target tracking. Multi core real-time scheduling algorithms may

use the imprecise/IRIS model for grouping and scheduling a set of imprecise/IRIS

tasks. In virtualized platforms, a group of IRIS applications may run as virtual pro-

grams on a single machine. In such a case, effective imprecise algorithms can be used

by Hypervisor schedulers, such as Xen Hypervisor, in allocating the CPU resource to

multiple virtual programs.

1.2 Examples of IRIS feeding IRIS

Consider the open source video codec tool, xvid [18]. This tool has a two-pass

option for video encoding. The first pass analyzes the video clip; the second pass uses

3

the results of that analysis to obtain a high-quality encoding. Algorithm settings allow

one to control the time spent in first-pass analysis; one can trade off the precision of

the motion search against the time taken. The second pass takes the first pass results

to efficiently encode the video clip. Controlling the allowed bitrate allows us here

to trade off the quality against the computational work of this step. The quality of

the first pass affects the range of possibilities for the second pass; the quality of both

passes depends on the length of time devoted to them.

A second example is path planning in robotics [21]. Path planning includes sensing

and planning modules, both of which have the IRIS property. The sensing module

builds up an awareness of the environment; this is then used by the planning module

to complete path planning.

A third example is developing control inputs for cyber-physical systems. Suppose

a linear control system has multiple control variables. One approach is to calculate

these variables one at a time in order of their perceived impact on the quality of

control provided; when control input k is calculated, the values of control inputs

1, · · · , k − 1 are already available. Depending on the amount of time available, we

may only calculate the first N control inputs, leaving the others at 0. Gupta has

shown this to be a viable strategy in an environment where the amount of time

available for computation is variable [7].

Our final example is the task structure for the control of a planetary rover [22].

The task is composed of a sequence of processing levels li and each level contains

alternative modules m1
i , m2

i , · · · . Each alternative module has a different resource

requirement in return for which it provides a certain quality output. By selecting the

modules appropriately, we can trade off the quality of control provided against the

resources (e.g., time) consumed.

4

CHAPTER 2

PREVIOUS WORK

2.1 Models and Heuristic Scheduling algorithms

Existing models for imprecise computation can be mainly classified under the

following divisions - the basic imprecise computation model, the extended imprecise

computation model, IRIS model and anytime algorithms. All these motives deal

with splitting the task into mandatory and the optional parts. It is necessary that

the mandatory part is complete in order to obtain a meaningful or lowest quality

acceptable result while the optional part enhances the quality of the result produced

by the mandatory part. The optional part can be prematurely terminated or omitted

in its entirety as per user discretion. Most work on scheduling IRIS tasks has focused

on independent tasks. Also, the common assumption is that all tasks run up to their

estimated worst-case execution times.

The basic imprecise computation model by Lin et al. [11] introduces this kind

of simple logical segregation of the task. The quality of result is denoted by the

amount of error produced by the task, which depends on the unexecuted fraction of

the optional part of the task. This error decreases as more and more of the optional

part is executed and reaches zero when the optional part is completed. The IRIS

(Increased Reward Increased Service) Model [3] is similar to the basic model except

that the metrics for quality measurement is given by reward accrued by the tasks.

The reward accrued is higher when the error is small and vice versa.

The computation models adopted in anytime algorithms are a group of algorithms

[20] that can return a meaningful result at any time and are developed for real-time

5

artificial intelligence problems which allow computation to be terminated prematurely.

They differ from other models in the fact that the mandatory portion requirement of

the tasks are almost negligible compared to the optional portion. In many cases the

mandatory portion is just a preliminary assignment of a group of parameters used in

the computation.

Chung, et al. consider periodic task sets running on multiprocessors [1]; the task

set is known ahead of time and a schedule can be set up offline. A first-fit approach

is taken to allocating tasks to processors; following this, uniprocessor scheduling is

carried out on each processor. The Rate Monotonic (RM) algorithm [13] is used to

assign static priorities to the mandatory portions of each task based. The optional

portions of all tasks have lower priority than the mandatory portion of any task.

Various simple heuristics have been studied for scheduling the optional portions, in-

cluding static priorities inversely related to the task utilization and dynamic priorities

favoring the optional portion with the least execution time provided or the one with

the least slack time. It is assumed that the error associated with premature termina-

tion of an optional portion is proportional to some positive power of the fraction of

uncompleted work.

An online approach is discussed in Shih and Liu [17]. The workload consists of

a set of tasks known ahead of time together with tasks that arrive during system

operation. The error model is linear, the output error being equal to the amount

of unfinished work. As tasks arrive, time is reserved for their mandatory portions

using the latest-ready-time-first order. Optional tasks can execute as long as there is

enough time.

Dey et al. presented three heuristic scheduling algorithms for online scheduling

of aperiodic workloads [4] [2]. Their reward function is a concave non-decreasing

function of the execution time. Two of the algorithms take a two-level approach.

The top level is executed whenever a new task arrives and is responsible for deciding

6

the allocation of service time to that task such that the reward is maximized. The

lower-level algorithms decide the order in which tasks execute. Their third algorithm

takes a greedy approach. The two metrics used for evaluating performance are the

reward rate and average number of task preemptions using each scheduling policy.

They have developed an analytical model for an IRIS task system and obtained

the upper-bounds on the reward-rate that is achievable by any scheduling policy

adopted. This work concludes that with the appropriate lower-level scheduling policy,

the performance of their algorithm approaches quite close to its upper bound. The

average number of preemptions is very small when the Earliest Deadline First (EDF)

scheduling algorithm is used at the lower level.

Mej a-Alvarez et al. [23] presented the INCA server that incrementally searches

within a set of feasible solutions to maximize reward or value. Every task is assigned

a criticality value and consists of a mandatory part and an optional part. The aim

is to execute the most critical tasks in the system so that the total value of the

system output is maximized. In the case of overload, the first move of the INCA

server is to disable some optional parts to eliminate the overload. Selecting the

optional parts to discard involves searching through a number of combinations and

is time consuming. Hence in such cases the INCA server iteratively executes a quick

approximate online algorithm to select a set of optional parts to execute to maximize

the value. Hence further iterations of the approximate algorithm refine the quality of

the initial solution.

A very good analysis of the independent task set problem is presented in [17],

where every independent task follows the mandatory/optional model and the aim is

to minimize the total error incurred by all the tasks. This work takes into account

three distinct scenarios based on the presence of offline tasks (ones that arrive before

the processor starts execution) and the ready time of the arriving tasks. They have

developed three algorithms one for each case mentioned above to minimize total error

7

incurred. Their algorithm describes various events that can occur when a task is

executing online and appropriate handlers for each of those events such that the

objective of minimizing the total error is achieved.

A hierarchical approach to scheduling is taken by Tchamgoue, et al. [19]. The

overall workload is divided into components; each component is guaranteed to obtain

a certain minimum amount of resources over every specified period. Each component

can then be scheduled with this guarantee in mind. A hierarchical approach allows

the scheduling of one component to be decoupled from the scheduling of another.

The above mentioned works all deal with independent tasks. By contrast, Feng

and Liu consider composite tasks, each of which consists of linearly dependent tasks

[5,6]. That is, each task (except for the first and last) in a composite task has exactly

one parent and one child; a task receives input from its parent, carries out some

processing, and then forwards the output to its child. The first task receives inputs

from the application; the final task produces output to the application. The quality

of output of a task depends both on the quality of its input as well as on the amount

of time it executes for. An interesting assumption is that inaccuracies in the input

can cause the mandatory and optional portions to require more time to execute.

Feng and Liu introduce a two-level scheduler. The first level schedules the com-

posite tasks using a modified EDF approach which treats the entire composite task

as optional and cuts off tasks at the deadline, even if they have not been given their

full execution time. If it manages to find full execution time for each composite task,

we are done. If not, it augments the execution time allocation to composite tasks

with relatively small optional parts. In the second level, the time allocated for each

composite task at the first level is distributed to its subtasks such that the output

error of the composite task is minimized. They have developed and compared the

performance of five second-level heuristic scheduling algorithms.

8

2.2 Implementation of IRIS type tasks

Lin et al. proposed three kinds of practical implementations of imprecise/IRIS

computations [11]. The main motivation behind the milestone approach is taking a

backup of the imprecise output in systems with the assumption that the output from

the system increases monotonically in correctness as it progresses towards completion.

Therefore, the longer a procedure executes, the more accurate is the result. They ar-

gue the correctness of a system can be more correctly represented by a staircase

function where each step indicates completion of a intermediate phase. The assump-

tions behind the sieve approach is that the output corresponds in number and type

to the inputs and sieves are functions which refine the inputs in terms of correctness.

The sieves perform computation in order to increase precision, and hence choosing

not to execute them leads to imprecision but faster execution. This method is based

on using a staircase function where execution of a sieve corresponds to a step in the

staircase. The third method is a multi-version method in which each version delivers

a different quality result. The version that has to be executed is selected based on

which one would give the best results under the given deadline constraints. Lin et

al. [12] also proposes the Concord system which is a client server structure depicting

imprecise computation based on the milestone approach. An imprecise computation

is started on the server side when the client requests one to be started. A supervi-

sor is a handler on the server side which is responsible for saving the intermediate

results of the computation. If the server completes its execution before the deadline,

then the precise result is sent back to the client via the supervisor. Otherwise, the

computation is terminated on deadline and the imprecise result is returned to the

client.

Marty and Stankovic [8] developed a kernel thread package for the Spring real time

system. The thread package allows safe premature termination of computations by

killing threads at logical boundaries such that the state of the thread is determinate.

9

A request/release pair provides for mutual exclusion which facilitates safeguarding

the thread from being killed when a computation is in progress. This is quite similar

to cancellation points in POSIX threads.

10

CHAPTER 3

MODEL AND PROBLEM STATEMENT

3.1 Task Model

We are given a task precedence graph (TPG) indicating the dependence between

tasks. This may well consist of multiple connected components. A task is assumed to

require inputs from all its parents before it starts executing; it delivers output only

at the end of its execution. The quality of the result of any task has a noticeable

effect on the quality of result of its dependent tasks. Hence the factors that decide the

quality of result of a task are the cost function associated with the task, the amount

of service it gets, the quality of result(s) that is passed on to it and its sensitivity to

that quality. This is modelled as follows.If ~σi denotes the vector of inputs to task Ti

and φi the fraction of its optional portion that has been executed, its output error is

given by Ei(~σi, φi). As a practical matter, unless we instrument the code to monitor

and output the progress of the execution, φi is never known exactly except when the

optional portion finishes, i.e., when φi = 1. At all other times, we must use our best

estimate of this value based on profiling and on the number of cycles consumed so far

in its execution.

3.2 Processor Model

The IRIS workload runs on a set of processors which use dynamic voltage scaling

[16] to trade off clock frequency (and hence rate of execution progress) and energy

consumed. In this work, we assume that there are two discrete voltage levels, Vhigh

and Vlow. It is quite easy to extend this algorithm to account for a larger number of

11

Notation Explanation

di Deadline of Leaf Task i
FTi Finish time of Leaf Task i
Eb Energy bound for the TPG
clowi Number of low voltage cycles spent executing Task i

chighi Number of high voltage cycles spent executing Task i
cwm
i Mandatory worst case cycles of Task i
cwo
i Optional worst case cycles of Task i
ehigh Energy consumed by one high voltage cycle
elow Energy consumed by one high voltage cycle
ν low Step size at low voltage
νhigh Step size at high voltage
Pswap Swap Probability
χ A mapping of tasks to processors (1..n)→(1..m)
Λ A set {cihigh} where i ∈ {1..n}

Ω A set {cilow} where i ∈ {1..n}
Π A schedule given by three tuple 〈 χ, Λ, Ω 〉
∆online Online time granularity
~σi Input Vector to Task i
Ei(·) Output Error function of Task i

Γ Final error of task graph

F (·) Recursive application of Ei(·)

Table 3.1. Some Notations

voltage levels; however, with maximum supply voltages dropping every semiconductor

generation, it is increasingly unlikely that more than two voltage levels will be useful.

We assume that voltage switching costs are negligible: given that each task undergoes

at most one voltage switch in our algorithm, this is a reasonable assumption. Moreover

the overhead of voltage switching is typically a few tens of microseconds, which is very

small in comparison to the execution time of complex control algorithms and the

task periods in cyber-physical systems. A detailed discussion on the time overhead

models can be found in [15]. The processor consumes ehigh and elow energies per clock

cycle at Vhigh and Vlow, respectively; the corresponding frequencies are fhigh and flow.

The energy spent in communication is folded into the cost of execution and is not

accounted for separately.

12

3.3 Optimization Objective and Constraints

The only output that is visible to the application is that from the leaves of the

TPG. Denote by L the set of leaves of the TPG, by di, FTi the deadline and finishing

time of leaf task Ti respectively, and by clowj , chighj the number of low-voltage and high-

voltage clock cycles spent executing any Tj. Number the tasks from 1 to n; let Eb be

the upper bound of the energy consumption (set it to ∞ if no such bound exists).

The overall optimization problem is to minimize the weighted sum of the leaf

errors:

Γ =
∑

i∈L

κiEi (~σi, φi) (3.1)

subject to the following constraints for all j ∈ L and i ∈ {1, · · · , n}:

FTj ≤ dj (3.2)
n

∑

i=1

(

chighi · ehigh + clowi · elow

)

≤ Eb (3.3)

where κj is the weight given to the error in the output of leaf task Tj , and reflects

the scale of values of the application.

There are two sources for task input: the external world and other tasks. We

assume that the error from the external world input is zero. It is not difficult to

relax this assumption to account for say sensor errors. This can be accomplished by

adding another set of variables which can account for them. With this assumption

and applying the error function Ei recursively, we can write the overall error as

some function of the number of clock cycles consumed by each task. That is, if

ci = clowi + chighi is the number of clock cycles consumed by Ti, we can write

Γ = F (c1, c2, · · · , cn) (3.4)

where F (·) can be obtained by recursive application of the Ei(·) functions.

13

T4

T1

T2 T3

Figure 3.1. Task Graph Example

As a simple example, consider the task graph shown in Figure 3.1. Tasks T2 and

T3 receive inputs from T1, T4 receives inputs from both T2 and T3. We wish to derive

F (·) from the error functions, Ei(·, ·), i = 1, · · · , 4. Based on our profiling of these

tasks, suppose our best estimate of the mandatory and optional cycles used by these

tasks are given by µi, ωi respectively for i = 1, · · · , 4. Therefore, if ci is the number of

cycles allocated to task Ti, our best estimate of the fraction of the optional portions

completed is given by φi = max
{

0, ci−µi

ωi

}

.

Hence, we can write

~σ2 = ~σ3 = (E1(0, φ1))

~σ4 = (E2(σ2, φ2), E3(σ3, φ3))

Hence, the output error, which is the error in the T4 output is given by

E4(~σ4, φ4).

14

Based on the above expressions, we can obviously express E4 in terms of ci, i =

1, · · · , 4.

The problem is complicated by the fact that, as mentioned above, the actual total

number of execution cycles required to finish a task is not known precisely (except

when the task finishes). At best, we only know its probability distribution based

on workload profiling. We therefore have to use an estimate of φi as a function of

ci, based on the information available. We do know the worst-case cycles, cwm
i , cwo

i ,

required for the mandatory and optional portions, respectively, of each task Ti.

15

CHAPTER 4

SCHEDULING ALGORITHMS

4.1 Two Level Scheduling

The scheduling heuristic developed for this task model is divided into two stages

offline and online. Offline scheduling involves schedule-building that is performed be-

fore the system is put into operation, while online scheduling is that performed during

system operation . The offline algorithm uses heuristic search techniques to search

through a finite solution space of configurations with a view to minimizing the final

error of the TPG for the given deadline and energy constraints. The offline algorithm

makes sure that each task in the TPG receives the mandatory worst case requirement

which guarantees that the mandatory portion of the task is always completed. When

the deadlines are so tight that the mandatory worst case cannot be provided to a

task , the algorithm keeps searching through different configurations to find a valid

schedule within the time allocated for the scheduler to make a decision. Since offline

decisions are based on the worst case assumptions regarding their execution cycles,

the tasks sometimes finish earlier and does not use all the allcoated cycles. The online

algorithm distributes such released cycles to other tasks in the system with a view

to minimize the final error of the TPG without violating the end-to-end deadline

constraints.

4.2 Offline Allocation and Scheduling Heuristic

It is not practical to obtain an algorithm to optimize Γ in Equation 3.1. To begin

with, we do not have perfect information as to φi. Even if we had some oracle to

16

Figure 4.1. Offline Heuristic.

accurately divine the value of φi during execution, this would still be an NP-complete

problem. We must therefore satisfy ourselves with a heuristic.

Our heuristic exploits the fact that in cyber-physical systems (our target appli-

cation area), the computational tasks are known in advance, and can be profiled

extensively before the system starts operation. Such advance information can be ex-

ploited by having separate offline and online phases in the scheduling process. In the

offline phase, tasks are assigned to processors and a schedule is generated making

assumptions about the tasks’ running time. In the online phase, as tasks finish, we

update our knowledge of their actual running time and reclaim whatever resources

are released by early task completion. For obvious reasons, the online heuristic must

be lightweight.

Our algorithm has the high-level structure shown in Figure 4.1. We start with a

candidate allocation of tasks to processors. This allocation is assessed for its ability

to meet time and energy constraints as will be described later. Simulated annealing

is used to navigate through various allocations in a search to find one which offers

good performance.

17

4.2.1 Simulated Annealing Module

The basic elements of the simulated annealing module are:

1. A finite space,S, of all possible configurations, where each configuration is a

mapping of the entire task set to processor set.

2. A step function STEP() which returns a configuration after moving a random

task from one processor to another or swaps two random tasks on two different

processors based on Pswap which indicates the probability with which two tasks

assigned to different processors are swapped. The higher the value of Pswap, the

grater the chances of tasks getting exchanged between different processors.

3. A cooling schedule with an initial temperature Tempinitial and a final temper-

ature Tempfinal, a depreciation factor df and Ntries a limit to the number of

tries of the greedy algorithm at each temperature value.

4. An acceptance criterion which states that every new configuration is accepted

with probability p , where p is based on δ the difference between the new final

error and the best final error, k the Boltzmann constant and T is the current

temperature.

5. The depreciation factor df for the temperature can be adjusted based on the

time available for making the scheduling decision offline. The lesser the depre-

ciation the the better the chance of finding better configurations.

6. An arbitrarily generated initial configuration χinitial with a random mapping of

{1..n}→{1..m}.

18

In what follows, δij is the Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise.

The worst-case mandatory and optional execution cycles of task Ti are denoted by

cwm
i and cwo

i , respectively. We assign cycles to tasks in steps where necessary: the

step size at high and low voltage levels is denoted by νhigh, ν low, respectively. These

are chosen so as to take the same time, i.e., such that νhigh · fhigh = ν low · flow.

19

Module SIMULATED-ANNEALING

Input : Tempinitial , Tempfinal , df , Ntries , Tb , χinitial

Output : Πfinal
Begin

temp = Tempinitial;

χ = χinitial ;

Γfinaloffline = ∞;

Πfinal = INVALID;

χfinal = INVALID;

while (temp > Tempfinal) do

for i in (1 .. Ntries)

χnew = STEP(χ);
Π= GREEDYALLOC(χnew);

if (Π is valid)

δ = F(Π) - Γfinaloffline

if (δ < 0) OR (RANDOM(0,1) > e
−δ

k×temp)

χ = χnew;

if (F(Π) < Γfinaloffline)

Γfinaloffline = F(Π)
Πfinal = Π

χfinal = χ
end for

temp = temp / df;

end while

return Πfinal
End.

20

Module GREEDYALLOC

Input : Configuration χ
Output : A valid Π or INVALID indication

Π =TIMEBOUND(χ)
If (Π! = INVALID) {

If (
∑n

i=1 c
high
i · ehigh ≤ Eb)

return Π

else

return ENERGYBOUND(Π)

}
return Π = INVALID

4.2.2 Greedy Allocator Module

The greedy allocator returns a schedule based on which one can estimate the

offline final error Γoffline, for the specified task assignment. The schedule is marked

INVALID if it is unable to find one which does not satisfy the deadline and energy

constraints. It first generates a time allocation taking only the deadlines into account

and disregarding the energy bound, if any. If an energy bound is specified, it then

modifies this schedule by swapping high-voltage and low-voltage cycles if this is needed

to meet the bound. If no such feasible swap can be found, it declares failure and

returns an INVALID result.

21

4.2.3 Time Bound Module

The time bound module generates a static offline schedule for the given configu-

ration. The input to the algorithm is a configuration χ passed in by the SA module.

The algorithm starts by assigning high cycles to meet the worst case mandatory

requirement of all tasks. Next a check is done to analyze whether the schedule gen-

erated after this step violates the deadline. If this happens then the search heuristic

is informed that this is an invalid configuration. If the deadline is not violated then

the algorithm proceeds with the allocation of high cycles for the optional part of all

tasks. The allocation is given to tasks in slices of νhigh. The task which gives the

maximum improvement in final error at that instant is given the slice. Ties are bro-

ken arbitrarily. If by allocating the slice to the task the path on which it is placed

becomes critical (the TPG violates end-to-end deadline) or if it exceeds total worst

case requirement of the task, then the allocation is retracted and the task is marked

for denying any allocations in the future. tiaf is a flag used for indicating this. If tiaf

is zero then the task becomes unallocatable. This allocation continues until all the

tasks are marked as unallocatable, at which point the valid schedule is returned to

the greedy allocator module.

22

Module TIMEBOUND

Input : Configuration χ
Output : A valid Π or INVALID indication

Π = INVALID;

ci = cwmi , i = 1, · · · , n .

If a deadline is violated,

return Π = INVALID.

else

Assign tiaf = 1 for i = 1, · · · , n.

while (∃i s.t. tiaf == 1): {
for each such i

for each j ∈ {i, · · · , n} c′j = cj + δijν
high

Calculate Bi = F(c1, · · · , cn) − F(c′1, · · · , c
′
n)

Define imax = arg max1≤i≤nBi.

Set cimax+ = νhigh

If a deadline is missed

set timaxaf = 0

revert allocation cimax − = νhigh

else

update Π

}
Return Π

23

4.2.4 Energy Bound Module

The energy bound phase starts after the time bound phase arrives at a valid

schedule with respect to deadline constraints. The offline energy bound phase starts

by assigning low voltage cycles to all the tasks in the time frame allocated by the

time-bound phase. Then it makes sure that all the tasks have enough cycles to satisfy

their required worst case mandatory workload by converting low voltage cycles to high

voltage cycles. Now after this stage, if the schedule has violated the energy deadline

then low cycles are removed from the tasks which least affect the final error without

violating their worst case mandatory work load requirement. If the algorithm runs

out of tasks to remove low cycles and the energy deadline is still violated, the user is

notified of this failure. If we are still under the energy bound, after completing the

mandatory workload of the task, the low cycles of the tasks are converted into high

cycles greedily until the energy barrier is hit or we run out of low cycles. When this

condition is reached a valid schedule is returned.

24

Module ENERGYBOUND

Input : Configuration χ
Output : A valid Π or INVALID indication

1) clowi = ⌊chighi · flow/fhigh⌋ c
high
i = 0

2) for each i ∈ 1, · · · , n}
while (ci < cwmi)

clowi − = νlow

c
high
i + = νhigh

3) Calculate energy consumed, Ec.

4) while (Ec > Eb)

tasklowfound = FALSE

for each i ∈ {1, · · · , n}
∆i = ∞
if (ci ≥ cwmi + νlow)

tasklowfound = TRUE

for each j ∈ {i, · · · , n} c′j = cj − δijν
low

∆i = F(c′1, · · · , c
′
n) − F(c1, · · · , cn)

if (tasklowfound == FALSE)

return INVALID

else

Find imin = min arg1≤i≤n∆i
clowimin

− = νlow

Recalculate Ec
5) while (Ec < Eb)

for each i ∈ {1, · · · , n}
for each j ∈ {i, · · · , n} c′j = cj + δij(ν

high − νlow)
Bi = F(c1, · · · , cn) − F(c′1, · · · , c

′
n)

if ∀i ∈ {1, · · · , n}, clowi < νlow

return schedule Π

if ∀i ∈ {1, · · · , n}, ci ≥ cwoi + cwmi
return schedule Π

else

Define imax = arg max1≤i≤nBi.

c
high
imax + = νhigh

clowimax
− = νlow

Recalculate Ec

2
25

4.3 Online Algorithm

As mentioned earlier, the actual execution times vary from one execution instance

to another. The actual demand of a task is not known unless and until the task

completes execution. At this point, we know that the entire optional part has been

executed. Once task Ti completes execution, we know that φi = 1, meaning that

the Ti output error will be given by Ei(~σi, 1). This then affects all tasks that are

downstream from it and allows the error function F (·) to be updated appropriately.

Also, if a task completes before its assigned time has been spent, additional time is

released for other tasks to use. The job of the online algorithm is to reclaim this

released time to improve on the offline schedule.

The algorithm makes sure that the tasks do not exceed their static finish times

assigned by the offline algorithm while distributing the energy, thereby respecting

the global deadline. The two parameters to control the amount of time the online

scheduler has for distributing the released energy are the granularity of allocation

∆online and the set of tasks considered for distribution. The lesser the granularity the

more the time for calculating benefit for the tasks and hence more time will be taken

for distributing the released energy.

The input parameter tlevel controls the set of tasks considered for energy distri-

bution when a task finishes: it can be regarded as a means to limit lookahead in an

effort to reduce the algorithm overhead. We only consider tasks which are tlevel levels

away from Tf in the task graph. depth(Ti) gives the shortest distance of task Ti from

the root of TPG and oncriticalpath(Ti) returns true if the allocation of additional

energy to the task violates the deadline or energy constraint, finished(Ti) returns

true if the entire optional portion has finished.

26

Module ONLINE

Inputs: ∆online, tlevel.

1)Calculate, treclaimed, the time reclaimed upon task Tf completion.

2) If (treclaimed == 0)

return

else while (treclaimed > 0) {
3) n

temp
low = treclaimed · flow

4) nslice = ∆online · flow
5) If n

temp
low < ∆online return

6) nallocated = 0

7) Identify task set OTS of tasks Tx such that

depth(Tx) − depth(Tf) ≤ tlevel
finished(Tx) = FALSE

Tx is not on a critical path to a leaf

If OTS is empty, return

8) for Ti ∈ {OTS}
if (ci + nslice > cwok + cwmk) remove Ti from OTS

if OTS is empty, return

9) Assign nslice cycles at Vlow to the task Tk
in OTS which yields the greatest improvement in error:

ck = ck + nslice
treclaimed − = ∆online

10) If Tk now finishes later than in the offline schedule,

reverse this: {
ck − = nslice
Remove Tk from OTS

treclaimed+ = ∆online
}

}

27

CHAPTER 5

SIMULATOR DETAILS

The simulator developed for this work The simulator environment for this work

consists of the following major parts and some of their salient features are described

below:

1. A task precedence graph generator

2. An offline and online scheduler

3. Result Analyzer

5.1 Task Precedence Graph Generator

The graph generator module generates task precedence graphs of varied charac-

teristics for the Scheduler module to work on. The generated graphs are in the form

of an adjacency matrix for the scheduler module to read. Apart from generating the

TPGs this module also generates the worst case execution times of the mandatory

and optional part of the tasks. It generates the online characteristics of the task. It

generates suitable mean and standard deviation for the task run times based on the

worst-case execution times. It generates the initial configuration for the TPGs i.e a

mapping of the tasks to the processors which is used as the starting point for the

search heuristics in the scheduler module. This module is also responsible for finding

the depth of the TPGs that it generates; It also generates the communication cost

that is accrued by the schedule for dependent tasks executing on different processors.

28

5.1.1 Inputs

1. Number of processors

2. Number of Tasks

3. Number of TPG

4. The maximum out degree of the tasks

5. A probability parameter for deciding the edge between two tasks before maxi-

mum out degree is reached for the parent task

6. A specification for the minimum run time of the tasks

5.1.2 Outputs

:

1. Adjacency matrix indicating the dependency relation among tasks

2. Communication matrix indicating the communication cost accrued by tasks

3. Sensitivity of each task to its parent task(s)

4. The depth of each TPG

5. An initial configuration for the search heuristics in the scheduler module

6. Worst case Mandatory and optional execution times for the tasks

7. Mean and deviation for the run times of the tasks describing the online charac-

teristics

29

5.1.3 Generator

5.1.3.1 Adjacency matrix

Random TPGs are generated such that the maximum out degree and the edges are

assigned as per the probability specified before the maximum out degree is reached.

A separate module checks for the connected components and independent tasks of

the TPG and connects them to a fictitious root node with null execution time and

zero communication cost. This module also checks for cycles present in the graph and

throws away the TPG if a cycle is found to be present in it. The generated TPG’s

are in the form of an adjacency matrix and fed to the scheduler through a temporary

file.

5.1.3.2 Depth

The maximum depth of each TPG is calculated and written into a separate file

for further numerical analysis.

5.1.3.3 Initial Configuration

A mapping of tasks to processors is also generated such that the different search

heuristic techniques can start their search at this configuration. Given the common

starting point, this allows a chance for heuristics to be fairly compared to each other.

5.2 Offline and Online Scheduler

The scheduler module uses the output of the generator module and applies the

offline and online heuristics to extract the offline and online errors for the TPG’s

under the specified constraint.The scheduler starts by reading the adjacency matrix

from a file output by the generator. It generates the communication cost and the

sensitivity matrix for the tasks in the TPG. It finds out the connected components of

the TPG and uses a fictitious root to connect all identified components of the TPG.

The communication cost, sensitivity and execution times of the fictitious root are null.

30

The next step is to find the depth of the nodes and assign an initial configuration

for the heuristic search. It then generates the distribution of the run times of the

tasks based on the generator’s input. The offline algorithm is then executed on the

initial configuration to obtain an acceptable and error minimized configuration for

the current TPG. The result of the offline stage is written into a file for temporary

analysis. Then the online algorithm is executed based on the generated run times

and and the final online error is written into a file. This whole process is repeated for

successive TPGs.

5.3 Result Analyzer

The result analyzer reads through the files output by the scheduler and uses the

information in them to calculate the average, confidence interval of the results of the

current run of the scheduler.

5.4 Usage

The implementation is divided into three separate c files:

1. rtsched gen.c [Generates the required files]

2. rtsched sa.c [Scheduler Implementation]

3. read online.c [Result Analyser]

5.4.1 Compiling

The standarad GNU Scientific library (GSL) is a requirement for the simulator.

This is a well known liibrary and can be installed from http://www.gnu.org/software/gsl.

It should be linked and used as follows

gcc -std=c99 rtsched gen.c -o rtsched gen -lgsl -lgslcblas -lm

gcc -std=c99 rtsched sa.c -o rtsched sa -lgsl -lgslcblas -lm

31

gcc -std=c99 read online.c -o read online

5.4.2 Main Parameters

1. #define NUMBER OF TASKS (Number of tasks)

2. #define NUMBER OF PROCESSORS (Number of Processors)

3. #define NUMBER OF GENERATIONS (Total number of TPG’s)

4. #define MAX OUT DEGREE (Maximum Outdegree)

5. #define EDGE PROBABILITY (Edge Probability)

6. #define MIN RUN TIME (Minimum run time fraction)

7. #define DEVIATION FACTOR (Deviation factor)

8. #define ALLOC TIME (Allocation Granularity)

9. #define N TRIES (Number of tries)

10. #define ITERS FIXED T (Iterations at each temperature)

11. #define K (Boltzmann constant)

12. #define T INITIAL (initial temperature)

13. #define MU T 1.1 (damping factor for temperature)

14. #define T MIN 0.01 (Final Temperature)

32

CHAPTER 6

NUMERICAL RESULTS

6.1 Experimental Setup

6.1.1 Task Graph modeling

Our numerical results are based on simulating 1000 random directed acyclic di-

rected TPGs, each of which was run 500 times with different random on-line runtimes.

Each TPG was generated based on an Edge Probability P , P ∈ (0,1), which speci-

fies the probability of an edge between two nodes in the TPG, and a Maximum Out

Degree D specifying the maximum number of children a node can have. Low values

of P and D will generate leaner TPGs with less dependencies, and vice versa. The

worst case mandatory and optional parts of each task were selected at random out

of {5,10,15}. The deadline for each TPG was selected as no lower than the sum of

the worst case mandatory parts of the longest directional path in the graph. During

allocation of time or energy to tasks, a critical path violation (a path in the TPG

which violates the time deadline) is identified using standard algorithms mentioned

in [10]. When applying the offline Simulated Annealing algorithm, we performed 90

iterations of the algorithm before starting the online phase (unless stated otherwise).

This value was chosen as there was not much improvement in quality after this for

the TPGs considered. Any other special settings for the experimental results are

mentioned in the subsequent sections.

6.1.2 Error Functions and Sensitivity values

We assume that the error generated by an incomplete task is a convex function

of the fraction of the uncompleted optional part out of the total optional part. We

33

used as error function the function x8 unless stated otherwise. In addition, each task

has sensitivity values, which denote the sensitivity of its output error to its input

errors. We selected these sensitivities at random for each task out of the interval

(0, 2.0]. A high sensitivity value will lead to high increases in output error for small

input errors and vice versa. A linear error propagation model is assumed for all the

experiments conducted; the output error is convex with respect to the fraction of

unexecuted optional part whereas it is linear with respect to the input errors.

6.1.3 Run Time Requirements modeling

The run time characteristics of the tasks are modeled as follows. The actual run

time follows the Normal distribution, conditioned on falling between specified min-

imum and maximum values, with the mean midway between them. The minimum

value is given by a fraction (mf) of the worst case requirement whereas the maximum

is the worst case itself: timan ∈ {[mf, 1.0] * tiwm} and tiopt ∈ {[mf, 1.0] * tiwo} . The on-

line phase is sampled 500 times and the average of 1000 successfully scheduled TPGs

is used for analysis.

Based on the above described setup, we performed several experiments in order to

determine the effect of some key parameters on the output quality of the task graphs

34

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
V

E
R

A
G

E
 O

N
LI

N
E

 E
R

R
O

R

EDGE PROBABILITY

MAX OUTDEGREE - 2
MAX OUTDEGREE - 3
MAX OUTDEGREE - 4

Figure 6.1. Effect of Outdegree

6.2 Effect of OutDegree

Figure 6.1 shows the average online error against edge probability P which is the

probability with which a task is connected to another task in the system before the

max out degree is reached. Each point on this graph is the average online error

for 1000 successfully scheduled TPGs, each TPG sampled 500 times for online error

with random run times for tasks. This graph shows that as the maximum out degree

allowed on the TPGs get higher the dependencies in the TPGs increase and the task’s

input error increases eventually driving the final error higher.

35

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
V

E
R

A
G

E
 O

N
LI

N
E

 E
R

R
O

R

FRACTION OF MINIMUM RUNTIME (mf)

P = 0.1
P = 0.2
P = 0.3
P = 0.4
P = 0.5
P = 0.6

Figure 6.2. Effect of Minimum Run Time

6.3 Effect of Minimum Run times

Figure 6.2 shows the average online error as a function of rmin the ratio of the

minimum run time to the worst case run time of tasks. The different curves pertain

to different values of edge probability P . As the value of P increases, the dependency

between the tasks increases. From the error model it can be noted that both prece-

dence and quality dependency increases as P increases. This results in the sharp rise

of curves pertaining to higher P value. Very high values of P result in too many

TPGs with cycles and cannot produce meaningful results.

36

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

0.31 0.18 0.13 0.09 0.07

A
V

E
R

A
G

E
 O

N
LI

N
E

 E
R

R
O

R

DEVIATION / MEAN

Deadline 55 ms
Deadline 65 ms
Deadline 70 ms

Figure 6.3. Effect of Standard Deviation of Run Times

6.4 Effect of Standard Deviation

Figure 6.3 shows the effect of varying the standard deviation of the run time

distribution with different time deadlines. The standard deviation decreases from left

to right along the x-axis. As the coefficient of variation goes up, the offline algorithm

has less information about the actual execution times of the tasks. This leads to an

increase in error, as can be seen in the figure.

37

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 24 26 28 30 32 34 36 38 40

O
N

LI
N

E
 E

R
R

O
R

 /
O

F
F

LI
N

E
 E

R
R

O
R

TIME DEADLINE(s)

Energy Bound 350 mJ
Energy Bound 375 mJ
Energy Bound 475 mJ

Figure 6.4. Effect of Online Reclamation

6.5 Effect of Online Reclamation

Figure 6.4 shows the effect of online reclamation. The plot shows the ratio of the

average online error with reclamation to the average online error without reclamation.

We first observe that for a very tight time deadline, not much reclamation is done even

for increasing energy constraints. This can be owed to the fact that cycles released by

tasks are not effectively used by other tasks, because doing so would violate the TPG’s

time deadline. Second, for medium time deadlines, reclamation is more effective for

relatively tighter energy constraints than for loose energy constraint. This is due to

the fact that for stricter energy constraints even a small amount of energy released

can be distributed much more effectively than for looser energy constraints. Thirdly,

for very relaxed time deadlines, there were not many opportunities to reclaim as tasks

were allocated with ample resources.

38

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

55 60 65

G
R

E
E

D
Y

 -
 B

F
S

 E
R

R
O

R
 R

A
T

IO

TIME DEADLINE (ms)

120 iterations
45 iterations
20 iterations

Figure 6.5. Greedy Vs BFS Allocation

6.6 Our Allocation Vs BFA Allocation

Figure 6.5 compares the performance of our algorithm to a Breadth First Allo-

cation (BFA) algorithm. The BFA offline and online algorithms have no knowledge

of the error functions associated with the tasks. This algorithm prioritizes the tasks

based on their appearance in a Breadth First Search and allocates time to them as

per their priorities in a round robin fashion while taking care not to violate the time

deadline. The plot shows the ratio of the final average error of our algorithm to BFA

as a function of the time deadline, for three values of the number of iterations of the

offline algorithm, which depends on the time allotted to the offline scheduler. Our

algorithm performs much better than BFA when the scheduler has less time and a

very tight deadline for the TPG. As expected, our algorithm beats BFA by larger

margins as the deadline gets loose. This is mainly because the optional part for the

tasks is allocated more wisely based on the benefit in final error.

39

 5

 10

 15

 20

 25

 30

Convex0.0010.010.1

A
V

E
R

A
G

E
 O

N
LI

N
E

 E
R

R
O

R

STEP VALUE

D/M 0.31
D/M 0.18
D/M 0.07

Figure 6.6. Effect of Step Error Function

6.7 Effect of Different Error Functions

Figure 6.6 compares the average error for different error functions. We used a

convex error function f(x) = x2 and a series of step functions f(x, steps) = (⌊(x ∗

steps)⌋)/steps (where x is the fraction of the unexecuted/unallocated optional part

and steps is a power of 10). As the number of steps increases the step error function

behaves much like the convex error function but is bounded below by it. The plot

shows that for larger step sizes (indicating a more abrupt but less frequent change in

error value), the output error increases.

40

Figure 6.7. Anytime Robot [21]

6.8 A Real World Application

This experiment was conducted on a real world model of a robot implementing

anytime sensing, planning and action shown in Figure 6.7 [21]. Our analysis con-

centrates on determining the resource allocation for each of the tasks by using our

scheduling algorithm for minimizing the error in the final output. Figure 6.8 shows

the effect of simultaneous deadline and energy constraints on the system. The error

functions we used were obtained by curve fitting to the performance profiles found

in [21] as shown in Figure 6.9. The curves in Figure 6.9 also show the effect of input

error on the performance profiles. The tasks that don’t have an optional part, don’t

have an effect on the final output quality. The figure shows that the output quality

of the system improves with loose time deadline and energy constraints. It can be

noted that rate of fall in error decreases with higher deadlines.

41

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 20 22 24 26 28 30 32 34 36

A
V

E
R

A
G

E
 O

N
LI

N
E

 E
R

R
O

R

TIME DEADLINE (s)

325 mJ
350 mJ
375 mJ
400 mJ
500 mJ

Figure 6.8. Error Variation with Time and Energy Constraints

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
E

R
F

O
R

M
A

N
C

E
 P

R
O

F
IL

E
 B

A
S

E
D

 E
R

R
O

R
(a

pp
ro

x)

FRACTION OF EXECUTED OPTIONAL PART

Input Quality 100%
Input Quality 98%
Input Quality 96%

Figure 6.9. Error Functions from Performance Profiles

42

CHAPTER 7

CONCLUSION

This work has concentrated on developing a model for minimizing the final error

for systems with dependent IRIS tasks. Greedy algorithms are developed for mini-

mizing error in both offline and online stages of the systems. The advantages of using

this model are justified by comparing against a base algorithm and by applying the

model to a real world system. Task graphs with different characteristics are studied

with a run-time model depicting actual workloads. The developed algorithms can

be made use along with real world system simulations for studying the effect of re-

source allocation on final output quality. Future work includes the use of hierarchical

scheduling methods to allow IRIS tasks to coexist with traditional 0-1 task sets. The

instrumenting of IRIS code which would allow one to determine its execution progress

and thereby provide additional run-time information to the system without imposing

too great an overhead is another promising area

43

BIBLIOGRAPHY

[1] Chung, Jen-Yao, Liu, Jane W. S., and Lin, Kwei-Jay. Scheduling periodic jobs
that allow imprecise results. IEEE Trans. Comput. 39 (September 1990), 1156–
1174.

[2] Dey, J. K., Kurose, J., and Towsley, D. On-line scheduling policies for a class of
iris (increasing reward with increasing service) real-time tasks. In IEEE Trans-
actions on Computers (July 1996), pp. 802–813.

[3] Dey, J. K., Kurose, J. F., Towsley, D., Krishna, C. M., and Girkar, M. Efficient
on-line scheduling for a class of iris real-time tasks. In ACM SIGMETRICS
Performance Evaluation Review (June 1993), pp. 217–228.

[4] Dey, Jayanta K., Kurose, James F., Towsley, Donald F., Krishna, C. M., and
Girkar, Mahesh. Efficient on-line processor scheduling for a class of iris (increas-
ing reward with increasing service.) real-time tasks. In SIGMETRICS (1993),
pp. 217–228.

[5] Feng, W., and Liu, J. W. S. Algorithms for scheduling real-time tasks with input
error and end-to-end deadlines. In IEEE Transactions on Software Engineering
(Feb. 1997), pp. 93–106.

[6] Feng, W., and Liu, J.W.S. An extended imprecise computation model for time-
constrained speech processing and generation. In Real-Time Applications, 1993.,
Proceedings of the IEEE Workshop on (may 1993), pp. 76 –80.

[7] Gupta, Vijay. On an anytime algorithm for control. Proceedings of the 48h IEEE
Conference on Decision and Control CDC held jointly with 2009 28th Chinese
Control Conference, 0 (2009), 6218–6223.

[8] Humphrey, M., and Stankovic, J. A. Predictable threads for dynamic, hard real-
time environments. In IEEE Transactions on Parallel and Distributed Systems
(Mar. 1999), pp. 261–296.

[9] Koopmans, T. C., and Beckmann, M. J. Assignment problems and the location
of economic activities. In IEEE 21st Symposium on Operations Research (Dec.
1973), pp. 498–516.

[10] Kwok, Yu-Kwong, and Ahmad, Ishfaq. Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors. ACM Computing Surveys 31, 4
(1999), 406–471.

44

[11] Lin, Natarajan, and Liu. Imprecise results: Utilizing partial computations in
real-time systems. In IEEE 8th Real-Time Systems Symposium (Dec. 1987),
pp. 210–217.

[12] Lin, K., Natarajan, S., and Liu, J. Concord: A distributed system for making
use of imprecise results. In COMPSAC (Oct. 1987).

[13] Liu, C. L., and Layland, James W. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM 20 (January 1973), 46–61.

[14] Menger, Karl. Travelling salesman problem.

[15] Park, Jaehyun, Shin, Donghwa, Chang, Naehyuck, and Pedram, Massoud. Accu-
rate modeling and calculation of delay and energy overheads of dynamic voltage
scaling in modern high-performance microprocessors. In Proceedings of the 16th
ACM/IEEE international symposium on Low power electronics and design (New
York, NY, USA, 2010), ISLPED ’10, ACM, pp. 419–424.

[16] Pillai, Padmanabhan, and Shin, Kang G. Real-time dynamic voltage scaling for
low-power embedded operating systems. pp. 89–102.

[17] Shih, W., and Liu, J. On-line scheduling of imprecise computations to minimize
error. In IEEE RealTime Systems Symposium (Dec. 1992).

[18] Source, Open. Xvid tool.

[19] Tchamgoue, Guy Martin, Kim, Kyong Hoon, Jun, Yong-Kee, and Lee,
Wan Yeon. Hierarchical real-time scheduling framework for imprecise compu-
tations. In IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing (2010), pp. 273–280.

[20] T.Dean, and M.Boddy. An analysis of time-dependent planning. In Proceedings
of 7th National Conference on Artificial Intelligence (Aug. 1988), pp. 49–54.

[21] Zilberstein, Shlomo, and Russell, Stuart J. Anytime sensing, planning and ac-
tion: A practical model for robot control. In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence (Chambery, France, 1993),
pp. 1402–1407.

[22] Zilberstein, Shlomo, Washington, Richard, Bernstein, Daniel S., and Mouaddib,
Abdel-Illah. Decision-theoretic control of planetary rovers. In Revised Papers
from the International Seminar on Advances in Plan-Based Control of Robotic
Agents (London, UK, 2002), Springer-Verlag, pp. 270–289.

[23] a Alvarez, P. Mej, Melhem, R., and Moss, D. An incremental approach to
scheduling during overloads in real-time systems. In IEEE RealTime Systems
Symposium (Dec. 2000), pp. 283–293.

45

