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ABSTRACT

N3ASICS: DESIGNING NANOFABRICS WITH
FINE-GRAINED CMOS INTEGRATION

FEBRUARY 2012

PAVAN PANCHAPAKESHAN

B.E, VISHVESHWARIAH TECHNOLOGICAL UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Csaba Andras Moritz

Nanoscale-computing fabrics based on novel materials such as semiconductor

nanowires, carbon nanotubes, graphene, etc. have been proposed in recent years.

These fabrics employ unconventional manufacturing techniques like Nano-imprint

lithography or Super-lattice Nanowire Pattern Transfer to produce ultra-dense nano-

structures. However, one key challenge that has received limited attention is the in-

terfacing of unconventional/self-assembly based approaches with conventional CMOS

manufacturing to build integrated systems.

We propose a novel nanofabric approach that mixes unconventional nanomanufac-

turing with CMOS manufacturing flow and design rules to build a reliable nanowire-

CMOS 3-D integrated fabric called N3ASICs with no new manufacturing constraints.

In N3ASICs active devices are formed on a dense semiconductor nanowire array and

standard area distributed pins/vias, metal interconnects route signals in 3D.

The proposed N3ASICs fabric is fully described and thoroughly evaluated at all

design levels. Novel nanowire based devices are envisioned and characterized based on
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3D physics modeling. Overall N3ASICs fabric design, associated circuits, interconnec-

tion approach, and a layer-by-layer assembly sequence for the fabric are introduced.

System level metrics such as power, performance, and density for a nanoprocessor de-

sign built using N3ASICs were evaluated and compared against a functionally equiv-

alent CMOS design. We show that the N3ASICs version of the processor is 3X denser

and 5X more power efficient for a comparable performance than the 16-nm scaled

CMOS version without any new/unknown-manufacturing requirement.

Systematic yield implications due to mask overlay misalignment have been evalu-

ated. A partitioning approach to build complex circuits has been studied.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

As dimensional scaling of CMOS is approaching fundamental limits, several new

materials, devices and information processing paradigms are being explored to sustain

the historical trend of integrated circuit scaling and reduction of cost per function. For

example, spin waves [28], QCAs [6], carbon nanotubes [14], semiconductor nanowires

[13] [11] etc are under investigation as potential replacements for CMOS. However, re-

liable manufacturing of integrated nanosystems incorporating these novel nanodevices

continues to be challenging. Specifically, assembly of nanostructures, achieving recon-

figurable devices, interfacing and overlay considerations are key issues for nanoscale

computing fabrics. While nanofabrics such as NASICs [16] [21] [37] [17] [38] [19],

CMOL [12] and FPNI [29] have been proposed minimizing certain manufacturing

constraints, some or all of the aforementioned concerns still exist.

Unconventional/self-assembly based manufacturing techniques like Nano Imprint

Lithography (NIL) [18] and Superlattice Nanowire Pattern transfer (SNAP) [34] [33],

are able to produce ultra-high density nanostructures. For e.g., it has been shown

that 7nm width with 13nm pitch nanowires can be patterned with SNAP [10]. How-

ever these and other unconventional techniques have very poor overlay with respect to

previously formed patterns. Overlay imprecision for NIL is as high as 3σ = ±105nm

[25]. Further, interfacing and integration with external CMOS (e.g. for control, in-

put/output functions) becomes challenging when unconventional techniques are em-

ployed.
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On the other hand photolithography has an excellent overlay and alignment pre-

cision. According to International Technology Roadmap for Semiconductors (ITRS)

[1] 16nm CMOS is projected to have an overlay imprecision of 3σ = ±3.3nm. Also,

CMOS manufacturing flow has very low defect rates compared to the self-assembly

based approaches. However, conventional manufacturing flow has reduced density

benefits when compared to the unconventional approaches.

Our goal in this thesis is to develop an approach by which we can combine uncon-

ventional and conventional manufacturing approaches while retaining the benefits of

both. Unconventional nanomanufacturing is used in conjunction with conventional

CMOS lithography and design rules to build a new class of 3-D integrated nanofabrics

without any additional manufacturing constraints. A new nanofabric, called N3ASICs

(Nanoscale 3-D Application Specific Integrated Circuits [24]) is presented. This fab-

ric can achieve the high densities obtained from unconventional manufacturing along

with the reliability and overlay precision of conventional photolithography.

One possible variant of N3ASICs is discussed in this thesis. The key idea is the

use of standard pin-based 3D integration following design rules. Other versions might

be envisioned by relaxing some of the design rules and/or reducing the pins/vias to

achieve greater density benefits, or using programmable devices. The main contribu-

tions of this thesis are

• We present N3ASICs, a new hybrid nano/CMOS computational fabric with no

special manufacturing constraints.

• We show a layer-by-layer assembly sequence for N3ASICs depicting how the

complete fabric (including devices, interconnect and interfacing) may be realized

on a single Silicon-on-Insulator (SOI) wafer.

• We show how fine-grained integration between nanoscale and CMOS features

can be achieved using standard area distributed pins/vias and design rules.
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• Novel dual-channel crossed nanowire field effect transistors (2C-xnwFETs) are

proposed. Extensive characterization of these devices is done using Synopsys

Sentaurus.

• We validate the fabric using an integrated device-circuit methodology. Be-

havioral models are developed and verified using detailed HSPICE circuit level

simulation.

• We evaluate key system-level metrics such as density, performance and power

for N3ASICs and compare it against an equivalent 16nm CMOS design.

The rest of the thesis is organized as follows: Chapter 2 presents the physical

fabric vision. Chapter 3 describes the N3ASICs fabric in detail. Chapter 4 describes

N3ASICs devices, behavioral models and circuits. System level evaluations such as

area, power and performance comparison are presented in Chapter 5. Chapter 6

describes how some of the limitations of the two-level logic approach can be over-

come and presents an approach to build complex logic functions. Systematic yield

implications due to mask-overlay misalignment are discussed in Chapter 7. Chapter

8 concludes the thesis.
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CHAPTER 2

PHYSICAL FABRIC VISION

In this chapter, we discuss how unconventional/self-assembly and conventional

manufacturing techniques can be combined to build a 3-D integrated fabric, with

careful consideration of manufacturing and overlay requirements. Different integra-

tion approaches are discussed and challenges are outlined. Based on this understand-

ing, a physical fabric vision for a hybrid nano-CMOS fabric is presented.

2.1 Approaches to Build a Nano-CMOS Hybrid Fabric

One approach to build a fully integrated 3-D fabric is to use only optical lithogra-

phy for all the process steps. The extremely good overlay precision of CMOS is the key

advantage of this approach. Therefore, yield obtained will be comparable to CMOS

process yield. However, the approach is expected to have low density when compared

to techniques that use self-assembly/unconventional nanofabrication techniques since

it is limited by optical lithography.

A second approach would be to use unconventional approaches on top of a conven-

tional manufacturing flow to obtain a 3D integrated fabric of high density. Such an

approach has been examined in CMOL [12] and FPNI [29] nanofabrics, where uncon-

ventional techniques such as nanoimprint are necessary after the fabrication of CMOS

layers. Overlay alignment precision needed for imprint lithography is 3σ=±105nm

[25], which implies significant challenges in alignment against previously defined litho-

graphic features. Such a large overlay misalignment can contribute to significant yield
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loss (or conversely trading-off much of the density benefit using well separated features

for acceptable yield) and is not ideal.

In our current work we propose a nano-CMOS integration approach which consid-

ers the order of manufacturing process steps along with fabric design choices which

aids in mitigating mask overlay while still achieving an ultra dense fabric. Given that

unconventional techniques have very high overlay imprecision, a simple and intuitive

way of overcoming this limitation is to make use of NIL/SNAP as the first step in the

manufacturing process. This overcomes the overlay limitation of nano-manufacturing,

since first step of the manufacturing sequence will not have any overlay requirement.

All subsequent steps use conventional lithography and have excellent overlay align-

ment.

2.2 Physical Fabric Vision

Based on the latter approach, we propose a new physical fabric that consists

of nanowire arrays at the bottom (built using unconventional manufacturing) with

a conventional CMOS metal stack for interconnect (built using photolithography)

on top. All active devices and logic implementation is achieved on the ultra-dense

nanowire arrays which can be direct-patterned on an ultra-thin Silicon-On-Insulator

(SOI) wafer. The patterning can be achieved using techniques like NIL or SNAP.

In this approach, patterning of high-density nanostructures is carried out prior

to all lithography steps. Furthermore if the defined nanostructure pattern is regular

(e.g. parallel arrays), the first lithographic mask has overlay tolerance, i.e. it may

be offset over the array without yield loss. Subsequent steps make use of conven-

tional photolithography. The a priori assembly/direct-patterning of sub-lithographic

features on the densest NW layer before any conventional lithographic step (e.g., for

contacts/vias) means 3D overlay alignment requirements exist only between subse-

quent lithographic masks, projected to be 3σ = ±3.3nm for 16nm CMOS [1]. This
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approach achieves 3-D integration without any special manufacturing requirements

while ensuring finer nanoscale resolution (and consequently higher density) than can

be achieved with lithography at the bottom.

To enable full and fine-grained integration with CMOS without new manufactur-

ing requirements, lithographic design rules need to be followed. Standard lithography

design rules are used for lithographic functionalization steps including defining posi-

tions of transistors, power and control rails, vias, interconnect etc. Lithographically

defined vias or area-distributed interfaces connect the nanowire arrays through a

CMOS metal stack. Metal interconnects are used for routing the signals in 3D. These

are described in the subsequent chapters.

Figure 2.1. Nanowires and alignment markers in the same mold for NIL technique

In order to aid registration of photo lithographic steps, additional alignment mark-

ers can be created at the same time as the logic nanowires. If NIL is used, alignment

markers for subsequent lithography steps and logic nanowires can be part of the same

mold and hence transferred to the substrate in a self-aligned fashion as shown in

Fig. 2.1. In the case of SNAP, where an arbitrary alignment marker may be diffi-
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cult to achieve, patterned nanowires of different dimensions can be used as Moire

patterns/fringes [39].

2.3 Chapter Summary

Different approaches to build a nano-CMOS hybrid fabric were presented. A nano-

CMOS integration approach with careful consideration to the order of manufacturing

process steps was developed. This manufacturing approach does not introduce any

new manufacturing constraints. A single unconventional step is carried out and all

the subsequent steps make use of conventional lithography. Further the use of con-

ventional lithography is possible because all the layers adhere to the CMOS design

rules.

The next chapter discusses N3ASICs, a fabric incorporating these principles of 3-D

integration, and shows how CMOS design rules can be applied to this Nano-CMOS

hybrid fabric. Detailed assembly sequence is presented.
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CHAPTER 3

N3ASICS FABRIC

3.1 Introduction

In this chapter we present the 3-D integrated N3ASICs fabric built using the

physical fabric vision presented in the previous chapter. The fabric can be built on a

single ultra-thin SOI wafer, with a direct-patterned nanowire logic plane surrounded

by support CMOS circuitry (e.g. for external control). Fine-grained lithographically

defined vias or area-distributed interfaces connect the nanowire arrays through a

CMOS metal stack. Detailed N3ASICs description and evaluations are presented in

the following chapters.

Figure 3.1. Nano-CMOS integrated N3ASICs fabric
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Fig. 3.1 shows the envisioned N3ASICs fabric built on a standard Silicon-on-

Insulator (SOI) wafer. It consists of uniform parallel semiconductor nanowire arrays

on which logic/memory is implemented. Active devices in N3ASICs are single type,

doped dual channel crossed nanowire transistors (2C-xnwFETs). Area-distributed in-

terfaces or vias are used to connect outputs of nanowire stages to a standard CMOS

metal stack. Metal interconnections between vias achieve arbitrary routing. The

nanowire logic plane is surrounded by CMOS circuitry. The peripheral CMOS cir-

cuitry can be used for control logic, dynamic clocking, mixed signal etc.

Figure 3.2. N3ASICs input-output organization

Since vias and metal interconnects are used to contact the nanowires, fine-grained

integration is possible. Fine-grained integration refers to the fact that every nanowire

gate is able to communicate with a CMOS gate. The communication between the
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Nano-CMOS layers is not limited to the periphery. Each input/output of a nanowire

gate can be connected to the input/output of a CMOS gate. Fig. 3.2 shows the input-

output organization in a N3ASICs tile. All the channel nanowires are horizontal. The

inputs are fed from the top onto metal 1 layer. VDD and GND contacts define the

boundary of the single stage of a N3ASICs tile. The outputs are available on the

vias (shown in Fig. 3.2). These outputs can be routed to any other tile using metal

interconnects.

3.2 CMOS Design Rules Applied to the Fabric

Figure 3.3. CMOS Design rules applied to N3ASICs

To enable full and fine-grained integration with CMOS without any new manu-

facturing requirements, lithographic design rules need to be followed. Fig. 3.3 shows
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representative λ design rules applied to the N3ASICs fabric. All design rule require-

ments like Metal-Metal spacing, Metal-via spacing and Via-overhang are followed. C.

Bencher et. al. [7] project that the metal 1(M1) pitch for the 16nm technology node

is 40nm. This is equal to 5λ where λ=8nm for 16nm technology node.

Since metal vias are used to contact nanowires, the nanowire spacing should adhere

to CMOS design rules. Given that nanowires can have much smaller dimensions than

vias, more sub-lithographically patterned nanowires may be bundled within the same

via dimension without any density impact. Having more than one nanowire per via

allows for better contact, performance and inherent defect resilience, as will be shown

in the subsequent chapters.

Fig. 3.3 shows how bundled pair of nanowires are contacted using a via. Metal 1

interconnects is used to connect the inputs of the transistors. Metal 2 interconnects

are used to connect the output on the nanowires to the subsequent stages.

3.3 Assembly Sequence

We have seen that the order of manufacturing process helps in mitigating the

manufacturing constraints when unconventional and conventional processes are used

in conjunction. Here we present a simplified assembly sequence followed in building

the N3ASICs fabric.

The assembly sequence is as follows

• Creation of uniform semiconductor nanowire array

• Creation of lithographic contacts for VDD, GND, precharge and evaluate

• Metal gate deposition to define transistor positions (for any arbitrary function-

ality)

• Metal1 vias and interconnects to connect the inputs
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• Metal2 interconnects to connect the signals across the logic planes

Figure 3.4. Patterned Nanowires

Figure 3.5. Creation of Lithographic contacts and dynamic control rails

At the bottom of the fabric is a uniform semiconductor nanowire array. This can

be direct patterned on ultra-thin Silicon-On-Insulator. Nanowires can be bundled in

pairs in order to achieve better contact with the vias. Fig. 3.4 shows the uniform

dense nanowire array created a priori to any lithographic step.
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Fig. 3.5 shows the contact creation for VDD and GND, precharge and evaluate.

This diagram depicts the scenario of two stages cascaded next to each other. This

can be treated as two logic planes as shown in the figure. We can use interconnects

to route signals across the logic planes. Logic plane 1 is on the left and logic plane 2

is on the right

Fig. 3.6 shows the metal gate deposition step. Metal gates (shown in green) are

deposited at certain positions to define 2C-xnwFETs using conventional lithography

and masks. Initially the nanowires are doped p-type. A self-aligning ion implanta-

tion is then used to create n+/p/n+ source/channel/drain structures. This creates

enhancement mode 2C-xnwFETs similar to conventional MOSFETs in CMOS. All

device channels are oriented along the same direction and lie on the substrate itself.

Figure 3.6. Metal gate deposition step

Fig. 3.7 shows the Metal 1 vias and interconnects. Metal lines and vias are laid

down for interconnection. Inputs are received through an M1 array (light blue lines)

and vias are dropped on to the nanowires to tap the outputs (blue dots).

As shown in Fig. 3.8, outputs from the left logic plane are cascaded to the inputs

of the right plane using M2 (orange lines). The output of the second logic plane can
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Figure 3.7. Metal 1 vias and interconnects

Figure 3.8. Metal 2 interconnects to route across logic planes
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be routed to other tiles using higher metal layers in the metal stack. This allows us to

achieve arbitrary routing between two different tiles. All local routing within a single

stage is achieved on the nanowires themselves. This helps in reducing the routing

overhead of the design.

3.4 Chapter Summary

In this chapter core concepts of the N3ASICs fabric were introduced. It was shown

how the CMOS design rules can be applied to the N3ASICs fabric. A layer-by-layer

assembly sequence was shown demonstrating how the fabric may be realized on a

single Silicon-on-Insulator (SOI) wafer. This approach can be scaled to a large scale

design with multiple cascaded logic planes.

In subsequent chapters novel dual-channel Crossed Nanowire Field Effect Transis-

tors (2C-xnwFETs), the active devices in N3ASICs are presented, associated circuit

styles and interconnection approach are described and validated for functionality,

a nanoprocessor design is implemented on N3ASICs, and key system-level metrics,

including area, power and performance are evaluated.
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CHAPTER 4

N3ASICS DEVICES AND CIRCUITS

4.1 Introduction

N3ASICs evaluations were carried out at device, circuit and architecture level.

An integrated device-fabric exploration methodology originally proposed for NASIC

fabric was adopted [20]. The methodology is summarized in Fig. 4.1

Physical fabric choices impact the structure and properties of N3ASICs devices.

For e.g. if SNAP is used to pattern the bottom most ultra-dense nanowire layer,

nanowires with square cross section will be obtained. Further, use of CMOS design

rules facilitates bundling of nanowires because of the larger via dimension compared

to nanowires. Hence, dual-channel devices can be used in N3ASICs. For this device

structure the electrical properties are obtained from Synopsys SentaurusTM [5]. Using

this data, behavioral model compatible with HSPICE [3] is created. This behavioral

model is used to carry out circuit and system level evaluations.

The device and the circuit level evaluations will be presented in this chapter.

System level evaluation and comparison with 16nm CMOS will be presented in the

next chapter.

4.2 Device Structure

The use of standard design rules and lithography for manufacturing determines

device structure and dimensions. Given that channel nanowires could have much

smaller dimensions than metal vias, they are bundled into pairs to make better con-

tact, and provide for dual channel FETs. The 2C-xnwFET with an omega-like metal
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Figure 4.1. Integrated Device-fabric exploration methodology
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Figure 4.2. 3D structure of N3ASICs device (2C-xnwFET)

gate is shown in Fig. 4.2. The gate width and the channel length of the device

are defined by the technology node as they are lithographically defined. So, for the

purpose of study, devices with 16nm gate lengths were simulated. A high-k dielectric

(HfO2 [9]) was used as gate oxide material. A gate self-aligned process with etch

back can be used for defining the oxide structure.

As HfO2 (high-k gate dielectric) is used, metal gates [27] are preferred over the

regular poly silicon gates. Polysilicon gates are not suitable with HfO2 as they cause

VTH instabilities and mobility degradation [9]. Moreover fully silicided metal gates

have very low resistivity and do not have the problem of gate depletion either with

SiO2 or HfO2. Further they allow work function engineering for VTH tuning. Gate

first [8] or gate last [15] processes can be employed in order to build the gate.

As opposed to the conventional top-gated device structures, the Omega-gated

structure (somewhat similar to multi gate FETs [23]), provides better electrostatic

control of the channel. A better electrostatic control over the channel gives a higher on
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to off current ratio. The use of dual channels implies higher on-current, with potential

benefits for system-level performance. Furthermore, the dual-channel structure im-

plies inherent defect resilience against broken nanowires and some types of stuck-off

defects, without any density impact. Even a single correctly functioning nanowire can

still produce the correct output (but with a larger delay). In general, Stuck-off defects

are very difficult to mask and dual channel provides a way of alleviating it. On the

other hand, stuck-on defects can be masked fairly easily with structural redundancy.

4.3 Device Simulations

Device simulations were done using Synopsys Sentaurus. These device-level simu-

lations provide 3 sets of data: i) Current data (IDS) for different values of drain-source

(VDS) and gate-source (VGS) voltages, ii) Device capacitances at different values of

VGS, and iii) device parameters that determine noise margins and performance of the

devices such as the on-currents (ION), threshold voltage (VTH). We can adjust these

device parameters by changing the metal gate workfunction or substrate bias (e.g. a

higher threshold voltage may be obtained by modifying the metal work function or

using a more negative back gate bias).

Dual-Channel Crossed Nanowire FETs (2C-xnwFETs, Fig. 4.2) were extensively

characterized using accurate physics-based 3D simulation of the electrostatics and

operations using Synopsys SentaurusTM . The 2C-xnwFETs employ metal Omega

gate structures for tighter electrostatic control. Gate material work function is 4.6

eV. 16nm channel devices were simulated given that it is the minimum feature size

for lithographically defined gates. The notation N3ASICs-16 represents N3ASICs

constructed with 16nm CMOS design rules, which implies λ the scale length, is equal

to 8nm. The channels are doped p-type of the order of 1018 cm−3 and the source/drain

regions were doped n-type of the order of 1020 cm−3. A substrate bias of -3V was

assumed to deplete the channel and adjust device parameters such as threshold voltage
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Table 4.1. Devices Simulation Parameters

Parameter Value

Gate Material Metal
Gate Workfunction(eV) 4.6
Channel Doping (cm−3) 1018

Gate Oxide Material HfO2

Gate oxide thickness (nm) 3
Bottom oxide material SiO2

Bottom oxide thickness (nm) 10
Back Gate bias (V) -3

Source/Drain doping (cm−3) 1020

and on/off current ratios for correct cascading. A high-k HfO2 material is used for

gate oxide.

The gate oxide thickness was 3nm. Drift diffusion transport models [30] were

used to simulate the 3D devices. Simulations were calibrated to account for interface

scattering, surface roughness and interface trapped charges as explained in [20].

Table 4.1 summarizes the parameters used for Device simulations.

Drain current vs. drain voltage (IDS-VDS), drain current vs. gate voltage (IDS-

VGS), and different parasitic capacitances vs. gate voltage (C vs VGS) were simulated.

On-current (ION) and on/off (ION/IOFF ) current ratio were extracted. Fig. 4.3

shows the IDS-VDS curve for different VGS values. Fig. 4.4 shows the IDS-VGS

curves for different VDS values. These simulations verify inversion mode behavior for

2C-xnwFETs with a positive threshold voltage.

Table 4.2 shows key device simulation results for N3ASICs-16 2C-xnwFET. With a

high on current, VTH > 0.2, and ION/IOFF > 104 the devices meet circuit requirements

for correct functionality and noise.

Various capacitances at different values of VGS were extracted from Synopsys

Sentaurus. The figure shows the Gate capacitance with respect to VGS. A plot of the

gate capacitance CG vs VGS is as shown in Fig. 4.5.
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Figure 4.3. IDS vs VDS with varying VGS for 2C-xnwFET

Table 4.2. Devices Simulation output

Parameter N3ASICs-16 2C-xnwFET

VTH 0.27
ION 39.6µA

ION/IOFF 26218
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Figure 4.4. IDS vs VGS with varying VDS for 2C-xnwFET

Figure 4.5. Gate capacitance vs VGS for 2C-xnwFET
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We see that the gate capacitance increases with increases in gate source voltage.

The maximum gate voltage is 1V. Hence the maximum gate capacitance seen at any

input will be around 20 aF.

4.4 Behavioral Model Creation for Circuit Simulation in HSPICE

The current data is fitted as a function of VGS and VDS using regression analysis

and curve fitting [22]. An expression representing the current as a mathematical

function of VGS and VDS is obtained from the curve-fit. The expression for the cur-

rent, in conjunction with a piecewise linear approximation for the device capacitances

forms a behavioral model of the xnwFET, which may be incorporated into HSPICE

to carry out circuit level evaluations.

A regression based [22] approach is very generic and can be used to fit arbitrary

device characteristics. Coefficients extracted from regression data fits are represen-

tative of the device behavior over sweeps of drain-source and gate-source voltages.

This is in contrast to conventional in-built models in SPICE for MOSFETs and other

devices, which use analytical equations derived from theory and physical parameters

such as channel length and width. The regression coefficients in our approach may

not directly correspond to conventional physical parameters. Therefore different re-

gression fits will need to be extracted for devices with varying geometries, doping

etc.

4.5 Circuit Style and Evaluations

N3ASICs uses a dynamic circuit style similar to the circuit style employed by

NASICs [22]. These dynamic circuit styles are amenable to implementation on reg-

ular nanowire arrays without the need for complementary devices, arbitrary sizing or

placement, simplifying manufacturing requirements of N3ASICs. It uses single type of
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FETs to realize logic without the need for complementary devices or arbitrary doping

profiles which significantly reduces customization and manufacturing requirements.

Figure 4.6. Schematic diagram of a sample circuit to illustrate how 2 stages of
N3ASICs are connected

Fig. 4.6 shows a circuit-level abstraction of cascaded NAND-NAND stages real-

ized on the N3ASICs fabric using n-type 2C-xnwFETs. All the outputs are precharged

to logic 1 and if all inputs are logic 1, the output discharges to logic 0. All the control

signals (precharge and evaluate) are active high. The outputs of the first stage act as

inputs to the second stage. Logic customization is limited to defining the positions

of the 2C-xnwFETs on the logic planes.

One dynamic sequencing scheme for cascading is shown in Fig. 4.7 [20]. In this

scheme, successive stages are clocked using different precharge and evaluate signals,

with hold phases inserted for correct cascading. During a hold phase, the output node

of a given stage is implicitly latched, and used for evaluation of the next stage, similar

24



Figure 4.7. Four phase clocking scheme

to [20] [22] [35]. Implicit latching implies that area expensive latches or flip-flops

requiring complementary devices/local feedback paths are not needed.

Fig. 4.8 shows the top view of a 1-bit full adder circuit built using two N3ASICs

logic planes. Stage 1 generates the minterms based on the inputs (marked stage 1

outputs). Minterms are fed to stage 2 using horizontal metal interconnects. Stage 2,

using a combination of minterms generates different outputs. The outputs available

on the right side of this stage can be routed to subsequent tiles using additional metal

interconnects. Fig. 4.9 shows the cross sectional view of a cross point in the N3ASICs

tile.

Simulations were carried out using the behavioral models in HSPICE to evaluate

the performance and power of N3ASICs design. Since vias and metal interconnects

are used to route signals, CMOS interconnect models are necessary to evaluate the

performance of N3ASICs. The interconnects were modeled using the Predictive Tech-

nology Model (PTM) [2] [40] models. The dimensions and parameters for scaled

CMOS interconnect were chosen as projected by ITRS [1] and [7]. With the help of
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Figure 4.8. N3ASICs 1 bit full adder top view

Figure 4.9. Cross sectional view of a cross point in N3ASICs
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behavioral models, HSPICE simulations were carried out to verify functionality and

measure the performance and power of N3ASICs.

The full-adder in Fig. 4.8 was simulated in HSPICE to verify expected circuit level

behavior. Fig. 4.10 shows the output waveforms of the one bit full adder simulated

in HSPICE with the behavioral model. These simulations verify functionality of the

circuits and adequate noise margins. It can be noted that the data on the output node

is latched during the hold phases thereby exhibiting the implicit latching behavior.

Figure 4.10. Simulation waveforms of N3ASICs One bit full adder

4.6 Chapter Summary

In this chapter device-fabric exploration methodology was introduced. Exten-

sive device simulations of 2C-xnwFETs were shown. It was seen that the simulated

devices met the circuit requirements with positive VTH and 4 orders of magnitude

ION/IOFF ratio. Using the device level data, HSPICE compatible behavioral models

were created. Circuit simulations were carried out to validate the N3ASICs circuits.

One possible sequencing scheme was shown here, while other variants can also be

used. We show how careful device design and sequencing schemes help us achieve

implicit latching on the nanowires which means area expensive flip-flops and latches

are not necessary to latch the data.
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In the following chapter, we will present the system level evaluations of N3ASICs.

The results obtained will be compared against an equivalent 16nm CMOS design.
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CHAPTER 5

SYSTEM LEVEL EVALUATION

In the previous chapter we looked at the Device I-V and C-V characteristics, re-

flecting accurate 3-D physics. Circuit level simulations were carried out to verify

functionality. In this chapter, system-level metrics such as density, power and perfor-

mance are evaluated for a N3ASICs processor design WISP-0 and compared against

a 16nm CMOS baseline.

5.1 WISP-0

This section provides details about WISP-0 [16] [36], used to evaluate N3ASICs.

Wire Streaming Processor version-0 (WISP-0) is a stream processor that implements

a 5-stage microprocessor pipeline architecture including fetch, decode, register file,

execute and write back stages. WISP-0 consists of five nanotiles: Program Counter

(PC), ROM, Decoder (DEC), Register File (RF) and Arithmetic Logic Unit (ALU).

Fig. 5.1 shows its layout. It uses dynamic circuits and pipelining on the wires to elim-

inate the need for explicit flip-fops and therefore improve the density considerably.

WISP-0 is used as a design prototype for evaluating key metrics such as area, per-

formance and power. 16nm CMOS equivalent of WISP-0 was developed to compare

N3ASICs-16.

5.2 CMOS Baseline WISP-0

A 16nm static CMOS baseline was created using the following methodology. A

functional description of WISP-0 was written in Verilog. Using Synopsys Design
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Figure 5.1. WISP-0 Nanoprocessor layout
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Compiler [4] and a 45nm IBM standard cell library, a gate level Verilog netlist was

created. This was converted to a SPICE netlist using the nettran utility. A standard

cell library for SPICE was obtained and device dimensions were scaled to the 16nm

technology node. The SPICE netlist, library and PTM 16nm MOSFET models were

used to run circuit level simulations in Synopsys HSPICE to characterize the power

and performance of the CMOS design. This methodology is summarized in the flow

diagram in Fig. 5.2. It is seen that the best operating frequency for a 16nm CMOS

design at the nominal voltage of 0.7V is 6.25GHz. Power consumption of WISP-0

was obtained from HSPICE.

In order to obtain the area estimate of 16nm WISP-0, placement and routing was

carried out on the 45nm synthesized netlist. The area numbers so obtained were

quadratically scaled to obtain the 16nm area numbers.

5.3 N3ASICs WISP-0

A HSPICE circuit definition of the entire WISP-0 was created with proper in-

terconnects to calculate the power and performance of N3ASICs-16 WISP-0. The

behavioral models created for 2C-xnwFETs were used. It is important to model

the metal interconnects while estimating the power and performance, since metal

interconnects is used to route the signals in N3ASICs. PTM interconnects models

were used to obtain the RC value of interconnects. The parameters chosen for the

interconnects were in accordance with ITRS and [7].

The area of the N3ASICs WISP-0 was calculated based on the design rules and

the number of metal tracks. The area of each tile depends on the number of inputs,

outputs and the number of minterms used to realize the logic. This is a two stage

NAND-NAND logic. Minterms are generated in the first stage and a combination of

minterms is used to produce the outputs.
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Figure 5.2. Methodology for performance characterization of 16nm static CMOS
baseline

Figure 5.3. A N3ASICs tile. Area calculation example
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The area of a tile (shown in Fig. 5.3) with n inputs, o ouputs and m minterms

will be

(n ∗ 5λ+ 7 ∗ 5λ+m ∗ 5λ+ 24λ)X(m ∗ 5λ) (5.1)

where, 5λ is the Metal 1 pitch. The components in equation 5.1 are

• Components in the length dimension

– n * 5λ - n inputs pitch of M1 layer

– 7 * 5λ Metal rails for contacts and dynamic clocking

– m * 5λ -m minterms generated in the first stage which act as inputs to the

second stage

– 24λ- for the vias on either side

• Components in the width dimension

– m * 5λ m minterms and the pitch of Metal 1

5.4 N3ASICs-16 and 16nm CMOS Comparison

Fig. 5.4 shows the density advantage of N3ASICs at various technology nodes.

The proposed N3ASICs-16 is 3X denser compared to 16nm CMOS. The density ad-

vantage of N3ASICs is due to the dense nanowire array at the bottom (implying

the use of devices with smaller dimensions when compared to conventional CMOS

FETs), use of single type FET to realize logic, implicit latching on the nanowires

(which ensures that there is no need for area expensive latches and flip-flops) and fi-

nally reduced transistor count compared to CMOS. Since CMOS design rules are used

for pitch and spacing, the scaling trend is almost constant across different technology

nodes considered.

As the nanowire layer confirms to CMOS design rules, the spacing between the

nanowires is greater compared to a 2-D grid based NASIC fabric. While the NASIC
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Figure 5.4. Density Comparison of N3ASICs with CMOS at different technology
nodes

Table 5.1. Key system level metrics for WISP-0

Area(µm2) Performance(GHz) Power(µW)

CMOS Baseline(16nm) 66.24 6.25 77.90
N3ASICs-16 22 6.32 14.36

Relative Improvement 3.01 1.01 5.42

fabric is 33X denser [16] than functionally equivalent CMOS WISP-0 design, the

use of design rules, while alleviating manufacturing requirements, reduces the density

advantage of N3ASICs to 3X. The evaluation results are summarized in the table.

Power and performance comparisons are shown in Table 5.1. We notice that the

performance of N3ASICs-16 is comparable to that of 16nm CMOS equivalent WISP-

0. These simulations do not consider key optimizations for 2C-xnwFETs making

comparisons pessimistic. For example, while the PTM models employ strained silicon,

no straining was assumed for 2C-xnwFETs. It is expected that a better mobility and

hence better performance could be obtained when straining techniques are employed

in N3ASICs.
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Figure 5.5. Transistor width distribution in 16nm CMOS-WISP-0

A significant reduction in average power of 5.4X was observed in case of N3ASICs-

16. To clearly explain this, experiments were carried out with different circuits and

varying number of inputs. With the voltage and the frequency of operation being the

same, the capacitances were investigated. Since there is no arbitrary sizing in the case

of N3ASICs and all 2C-xnwFETs are identical, the maximum input gate capacitance

is always 20.42aF (Fig. 4.5). In case of the CMOS WISP-0 design, the transistors are

sized, contributing to increased gate capacitance. The input gate capacitance in the

case of minimum sized inverter in CMOS is 75.14aF which is more than 3.5X that

of the N3ASICs. The largest NMOS device used has a gate capacitance of 135.4aF

and the largest PMOS device has a gate capacitance of 372.38aF. A plot of the

distribution of the transistor widths in the case of WISP 0-CMOS is shown in Fig.

5.5. Since a dynamic logic style with only single type FET is used, N3ASICs-16 uses

a fewer number of transistors to realize the logic. Implicit latching [35] [36] of signals

on the nanowires further reduces the number of transistors required. The transistor

counts were 1306 and 3252 in case of N3ASICs and CMOS respectively. With the
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use of transistors of various widths, the gate capacitance further increases leading to

increased dynamic power consumption for CMOS WISP-0.

5.5 Chapter Summary

Detailed system level evaluations were carried out using WISP-0 nanoprocessor as

the test case. 16nm CMOS equivalent of WISP-0 was developed in order to compare

the area, power and performance. N3ASICs design is 3X denser than 16nm CMOS

equivalent design. It was seen that N3ASICs was able to achieve comparable per-

formance at 5X lower power consumption. This might be a pessimistic comparison

because the PTM models used to compare the results make use of straining where as

the N3ASICs devices don’t. In the further chapters we will look at some logic par-

titioning examples and its impact on area, power and performance.Also systematic

yield implications of mask overlay misalignment on the fabric will be presented.
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CHAPTER 6

LOGIC PARTITIONING STUDY

6.1 Introduction

All the logic tiles in N3ASICs are implemented as NAND-NAND stages. While

two-level logic can implement any arbitrary function, in general it does not scale well

with increasing number of inputs. As the complexity of the implemented function

increases, there is an exponential increase in the number of product terms required to

realize the logic. This in-turn leads to increased transistor count and might degrade

the power and performance of the system. Further it might not be the most area

efficient way to realize a given functionality. In order to overcome these limitations

we investigate how complex logic can be realized in N3ASICs while retaining the

dynamic logic style, single type of FETs and taking advantage of implicit latching

With the help of smaller two-level logic tiles in conjunction with intelligent clock-

ing schemes we can realize complex logic with less overhead compared to a brute

force two-level logic approach. The key idea is to divide the logic into smaller tiles

and leverage metal routing stacks to connect the tiles to realize the complex logic

function. While individual tiles still implement two-level logic, we expect the overall

area/performance impact to be less when compared to a full blown two-level logic

implementation. This approach is proposed with careful consideration to the fabric

vision that was developed. This does not make use of complementary devices and

there is no arbitrary sizing or placement of the devices. In the following section we will

present the motivation for such an approach and subsequently present the clocking

schemes for the same.
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6.2 Case study

In this section we evaluate two different circuits to examine how two level logic

scales with increased complexity of the function that is being implemented.

6.2.1 Two bit adder

Two approaches that are compared here are

1. A two-level logic implementation of 2 bit adder (without partitioning)

2. Two one bit full adder tiles connected to form a 2bit ripple carry adder (with

partitioning)

6.2.1.1 Two-level implementation of a 2bit full adder

In this approach the outputs are expressed as sum-of-products of the inputs and

are directly realized using two-level NAND-NAND stages (Fig. 6.1).

Figure 6.1. A two-level two-bit adder (Top view)
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Table 6.1. Comparison of different metrics of the two approaches for a 2bit adder

Metric Without partitioning With partitioning

Number of transistors 182 128
Number of product terms 23 8 in each tile

Max Delay (ps) 126.47 97.16
Average power (µW) 3.40 2.14

Area(µ2) 1.607 0.644

6.2.1.2 With partitioning

In this approach the two bit adder is realized in a ripple carry fashion. The ripple

carry adder is as shown in Fig. 6.2, comprising of two one-bit full adders.

Figure 6.2. Partitioned N3ASICs two-bit adder

6.2.1.3 Comparison of the two approaches

The Table .6.1 compares the two different approaches of the adders implemented

in N3ASICs. From the table it is clear that as we increase the design complexity, the

overhead increases without partitioning. While the number of transistors required

in implementing a 1bit Full adder is 64, the transistor count increases to 182 for

a 2bit adder. The delay without partitioning increases due to increased number of

transistors on the evaluate stack in the second stage. There is a maximum of 12

transistors in the evaluate path without partitioning and requires 2.5X more area,

1.5X more power. This increases further as we go to higher bit-widths. For example,
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Table 6.2. Comparison of different metrics for the two approaches for a (7,3) counter

Metric Without partitioning With partitioning

Number of transistors 1316 256
Number of product terms 127 8 in each tile

Max Delay (ps) 768.41 145.74
Average power (µW) 4.36 1.23

Area(µ2) 30.27 1.29

a two-level 4-bit adder without partitioning would require 988 more transistors and

26X more area compared to a partitioned 4-bit adder.

6.2.2 (7,3)-Counter

(n,m) parallel counters count the number of logic 1s out of n input bits and yield m

= log2(n+1) output bits and are commonly used in fast multipliers. In this section, we

investigate how partitioning impacts area, power and performance of a (7, 3) parallel

counter and compare it to a design without partitioning. With partitioning the (7,3)

counter is realized using four 1-bit full adders as shown in Fig. 6.3. From the

Figure 6.3. Partitioned (7,3) counter

Table. 6.2 partitioned design is 5X faster than the one without partitioning. This is

due to the fact that the maximum number of transistors on the evaluate stack for the

unpartitioned design is 64, which significantly impacts the evaluation delay. Also the
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number of transistors required in case of an unpartitioned design is almost 5 times

that of the partitioned design and it is 23X denser.

A similar study was carried out for the NASIC fabric. It was shown that partition-

ing of the ALU block into smaller tiles helped in achieving better performance [31].

Further, fewer transistors are required in case of the partitioned approach compared

to the original design. Hence, partitioning the design aids in realizing complex logic

functions.

Since, these dynamic circuits exhibit implicit latching behavior, additional latch-

ing overhead is not incurred when partitioning the design. The partitioning algorithms

used for partitioning PLAs [26] can be adopted to partition the design into smaller

tiles.

In the next section we will discuss some of the timing schemes that can be adopted

with the partitioned design. These timing schemes can be modified to tune the circuit

to obtain area, power or performance benefits.

6.3 Study of Clocking schemes for partitioning approach

With a partitioned design, a variety of sequencing schemes might be employed.

We can tailor the sequencing schemes to obtain better performance at the cost of area

and power or we can tailor the sequencing schemes to obtain low power and lesser

area at the cost of performance. We demonstrate this with the help of two generic

sequencing schemes evaluated for various circuits. One of the sequencing schemes is

the 4-phase scheme that was presented earlier (Fig. 4.7). The above representative

functional unit (Fig. 6.4) when implemented with 4-phase clocking scheme would

require additional identity tiles in order to balance the path as shown in Fig. 6.5.

Another approach is by having more number of clock phases. This would mean that

we would need less identity tiles to balance the paths. For sample functional unit, we
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Figure 6.4. Sample functional unit

Figure 6.5. Functional unit with 4-phase clocking scheme
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Table 6.3. Comparison of 4-phase and 6-phase clocking schemes for (7,3) counter

4-phase clocking 6-phase clocking

Number of transistors 2926 256
Max Delay (ps) 97.16 145.74

Average power (µW) 5.28 4.48
Area(µ2) 1.53 1.29

can make use of a 6-phase clocking scheme as shown in Fig. 6.6. A representative

6-phase clocking scheme is as shown in Fig. 6.7. It has four hold phases.

Figure 6.6. Functional unit with 6-phase clocking scheme

The Table. 6.3 shows the area, power and performance for (7,3) counter design

with 4-phase and 6-phase clocking scheme. Fig. 6.8 shows the (7,3) counter with

identity tiles.

The Table. 6.4 below provides the results for a 3bit adder with different clocking

schemes. The 4-phase clocking scheme achieves better performance but has area

penalty but the 6-phase clocking scheme has lower throughput at lesser area and

power. The 4-phase clocking scheme has better throughput as every stage evaluates

once in 4 cycles, when compared to 6 cycles in a 6-phase clocking scheme. The 4-
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Figure 6.7. 6-phase clocking scheme

Figure 6.8. (7,3) counter with 4-phase clocking showing the identity tile
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Table 6.4. Comparison of 4-phase and 6-phase clocking schemes for 3bit addder

4-phase clocking 6-phase clocking

Number of transistors 240 192
Max Delay (ps) 91.36 141.54

Average power (µW) 4.43 3.23
Area(µ2) 1.21 0.97

phase clocking scheme consumes more power as additional identity tiles are required

to balance the paths (shown in Fig. 6.8). These identity tiles have an area penalty.

In a 6-phase clocking scheme, fewer identity tiles are required to balance the path

and hence it is more area and power efficient.

6.4 Chapter Summary

In this chapter, we showed partitioning and clocking schemes that can be adopted

in order to overcome the limitations of the two-level logic schemes. The partitioning

has been proposed with careful consideration to the fabric vision presented earlier.

With increased complexity of the function being implemented, partitioning yields

better results when compared to the regular two-level logic approach. Partitioning

algorithms developed for PLAs can be adopted in order to divide a large tile into

smaller blocks. Since the use of CMOS interconnects enables arbitrary routing, the

smaller tiles can be easily routed. Further, we can modify the clocking schemes to suit

the requirements (Area, power and performance). With the help of partitioning and

intelligent clocking schemes, we can realize complex logic functions without significant

penalty.

45



CHAPTER 7

IMPACT OF MASK OVERLAY

7.1 Introduction

As shown in earlier sections, the N3ASICs fabric vision was developed with careful

consideration to the order of manufacturing process. A single unconventional step is

carried out a priori, without any overlay or registration requirement. All subsequent

steps make use of conventional photolithography, which has excellent overlay precision

(3σ = ±3.3nm). Therefore, while many lithographic masks will be employed for

manufacturing N3ASICs, the overlay-limited yield is expected to be high. This section

investigates the impact of mask overlay imprecision on N3ASICs yield. Specifically, we

address the following questions: (i) How much overlay precision is necessary between

process steps? (ii) What is the impact on yield if different overlays are used?

To study the impact of mask overlay a methodology was previously developed for

a 2D-grid based NASIC fabric [32]. Overlay misalignment between successive masks

were modeled as Gaussian random variables and Monte Carlo simulations were carried

out in a custom simulator to determine the number of functioning chips. The same

methodology was adopted for the N3ASIC fabric.

7.2 Alignment and Mask overlay

Nanowire patterning may be carried out using NIL [18] or SNAP [10]. This

step does not have any overlay requirement since it is carried out a priori to any

lithographic step. In addition, self-aligned alignment markers can be patterned on

the substrate at the same time as the logic nanowires. These alignment markers can
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be used by subsequent lithographic steps for registering nanowire positions. If NIL is

used, alignment markers and logic nanowires can be part of the same imprint mold.

This can be transferred to the substrate in a self-aligned fashion. In the case of SNAP,

where an arbitrary alignment marker may be difficult to achieve, patterned nanowires

of different dimensions can be used as Moire patterns/fringes [39] as shown in Fig. 7.1

Figure 7.1. Patterned nanowires (larger than logic nanowires) could be used as
Moire patterns for alignment

Since the underlying pattern of nanowires is uniform, this allows the first litho-

graphic mask to be horizontally offset with some tolerance and still achieve correct

functionality. Fig. 7.2 depicts the mask registration process during contact creation

step. Fig. 7.2(a) shows the nanowires and the alignment markers created using the

initial patterning technique (e.g. NIL). Fig. 7.2(b) shows the desired alignment sce-

nario for the first lithographic step. Alignment marker (AM# 1) 1 is used as the

alignment target and the litho-mask is perfectly aligned in this case. New alignment

markers (AM# 2) created during this step, may be used as the alignment target for

47



the subsequent mask. Fig. 7.2(c) shows an excessive misalignment case which results

in nanowires being not contacted by the power rails resulting in a defective chip.

Figure 7.2. Depiction of mask registration and alignment markers during contact
creation step

Fig. 7.3 depicts the impact of mask misalignment during functionalization to create

metal gates and 2C-xnwFETs [24]. An incorrectly shorted device can be formed due

to large vertical misalignment, impacting the yield. Also, this step has little tolerance

to horizontal misalignment as contacts have already been defined. Fig. 7.3 shows

correctly functionalized devices despite some overlay misalignment demonstrating the

misalignment tolerance in this step. Fig. 7.3(c) shows shorted devices due to excessive

overlay misalignment. During this step additional alignment markers (not shown in

Fig. 7.3) will be created which will be the alignment targets for the subsequent step.
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Figure 7.3. Mask registration during functionalization step

7.3 Mask Overlay simulation

The manufacturing of 3D integrated fabric employs lithographic masks. The con-

tact creation and metal gate deposition steps involve alignment to the smallest fea-

tures, and hence they are most critical to mask overlay and contribute significantly to

the yield loss. Yield loss due to mask overlay during metal stack creation is minimal

(identical to conventional CMOS). Hence metal stacks higher than M2 layer have

not been considered in these simulations. The WISP-0 [36] nanoscale processor de-

sign was mapped onto the N3ASIC fabric. Several 3σ overlay misalignment values

projected by ITRS 2009 [1] were used to carry out the simulations.

The results in Fig. 7.4 show that close to 99% mask overlay limited yield may be

obtained for 3σ = ±9nm overlay (manufacturing solutions known as per ITRS 2009)

when constructing a uniform nanowire bundle with λ=8nm (16nm technology node)

in the 3D integrated fabric. Within a bundle the width of nanowires is 5nm each, with

6nm spacing to accommodate 16nm vias. Fig. 7.4 shows that even with a pessimistic
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Figure 7.4. Mask overlay limited Yield vs. Overlay for 3D integrated fabric

mask overlay projection of 3σ=±16nm a mask overlay limited yield of 83% can be

observed. These overlay requirements are far less stringent than the requirement for

16nm CMOS (3σ=±3.3nm for 16nm CMOS, per ITRS 2009).

It is evident from the results that the use of regular structure (like the nanowire

arrays in N3ASICs) does not impose stringent constraints on overlay precision re-

quirement. Further, fewer masks are required to manufacture this fabric compared

to a CMOS design which is beneficial from both yield and cost perspective.

The simulation methodology employed enables addressing key overlay and regis-

tration requirements. It is possible to estimate the overlay-limited yield for a range

of overlay projections. It is also possible to address sensitivity of the overlay-limited

yield to key fabric parameters such as the width and pitch of nanowires.

7.4 Chapter Summary

We have shown that by analyzing the available design choices and careful con-

sideration of the order of manufacturing processes, the impact of mask overlay can

50



be alleviated. The N3ASIC 3-D nanofabric, built using these principles, is realizable

with available manufacturing techniques at very minimal yield loss. Assuming an

overlay precision of 9nm or better results in a mask overlay limited yield of 100%. In

contrast, irregular structures would have more stringent mask overlay requirements.

For example, the proposed approach also has considerably greater tolerance ( 3X) to

overlay imprecision than 16nm CMOS that requires a 3.3nm precision at 16nm node

as per ITRS 2009.
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CHAPTER 8

CONCLUSION

A 3-D integrated nano-CMOS hybrid fabric N3ASICs was presented. A physical

fabric vision was developed to enable the self-assembly/unconventional manufactur-

ing approach and conventional photolithography, to be employed in conjunction while

retaining the benefits of both the approaches. To facilitate the use of photolithog-

raphy CMOS design rules were followed at all levels. No special manufacturing con-

straints were introduced. A detailed layer-by-layer assembly sequence of the fabric

was presented. Fabric evaluations were carried out at device, circuit and system lev-

els. A nanoprocessor implemented using the proposed N3ASIC fabric was shown to

be 3X denser than equivalent CMOS design and 5X power efficient for a comparable

performance. Systematic yield implications due to mask overlay misalignment were

analyzed. Results show that a yield of 83% was obtained even for a pessimistic over-

lay misalignment of 3σ = ±16nm. An approach to scale the design in order to realize

complex logic functions was presented.
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